Karnaugh Maps, Truth Tables, and Boolean Expressions
文章推薦指數: 80 %
Now that we have developed the Karnaugh map with the aid of Venn diagrams, let's put it to use. Karnaugh maps reduce logic functions more quickly and easily ... NetworkSites: Latest News TechnicalArticles Latest Projects Education Latest News TechnicalArticles MarketInsights Education LogIn Join Login JoinAAC Orsigninwith Facebook Google LinkedIn GitHub 0:00 / 0:00 Podcast Latest Subscribe Google Spotify Apple iHeartRadio Stitcher Pandora TuneIn Menu Articles Latest News Projects TechnicalArticles IndustryArticles IndustryWhitePapers Forums Latest HardwareDesign Embedded&Programming Education Math&Science Community Education Textbooks VideoLectures&Tutorials Worksheets IndustryWebinars VirtualWorkshops Tools Calculators PartSearch TestEquipmentDatabase BomTool ICDesignCenter Videos Latest NewProducts VideoTutorials On-DemandWebinars TechChats VirtualWorkshops Datasheets Giveaways Industry Tech Days Podcast Connectwithus NetworkSites: Textbook KarnaughMaps,TruthTables,andBooleanExpressions JoinourEngineeringCommunity!Sign-inwith: Home Textbook Vol.IV-Digital KarnaughMapping KarnaughMaps,TruthTables,andBooleanExpressions PagesinChapter8 IntroductiontoKarnaughMapping VennDiagramsandSets BooleanRelationshipsonVennDiagrams MakingaVennDiagramLookLikeaKarnaughMap KarnaughMaps,TruthTables,andBooleanExpressions LogicSimplificationWithKarnaughMaps Larger4-variableKarnaughMaps MintermvsMaxtermSolution SumandProductNotation Don’tCareCellsintheKarnaughMap Larger5&6-variableKarnaughMaps KarnaughMaps,TruthTables,andBooleanExpressions Chapter8-KarnaughMapping PDFVersion WhoDevelopedtheKarnaughMap? MauriceKarnaugh,atelecommunicationsengineer,developedtheKarnaughmapatBellLabsin1953whiledesigningdigitallogicbasedtelephoneswitchingcircuits. TheUseofKarnaughMap NowthatwehavedevelopedtheKarnaughmapwiththeaidofVenndiagrams,let’sputittouse.KarnaughmapsreducelogicfunctionsmorequicklyandeasilycomparedtoBooleanalgebra.Byreducewemeansimplify,reducingthenumberofgatesandinputs. Weliketosimplifylogictoalowestcostformtosavecostsbyeliminationofcomponents.Wedefinelowestcostasbeingthelowestnumberofgateswiththelowestnumberofinputspergate. Givenachoice,moststudentsdologicsimplificationwithKarnaughmapsratherthanBooleanalgebraoncetheylearnthistool. Weshowfiveindividualitemsabove,whicharejustdifferentwaysofrepresentingthesamething:anarbitrary2-inputdigitallogicfunction.Firstisrelayladderlogic,thenlogicgates,atruthtable,aKarnaughmap,andaBooleanequation. Thepointisthatanyoftheseareequivalent.TwoinputsAandBcantakeonvaluesofeither0or1,highorlow,openorclosed,TrueorFalse,asthecasemaybe.Thereare22=4combinationsofinputsproducinganoutput.Thisisapplicabletoallfiveexamples. Thesefouroutputsmaybeobservedonalampintherelayladderlogic,onalogicprobeonthegatediagram.Theseoutputsmayberecordedinthetruthtable,orintheKarnaughmap.LookattheKarnaughmapasbeingarearrangedtruthtable. TheOutputoftheBooleanequationmaybecomputedbythelawsofBooleanalgebraandtransferedtothetruthtableorKarnaughmap. Whichofthefiveequivalentlogicdescriptionsshouldweuse?Theonewhichismostusefulforthetasktobeaccomplished. Theoutputsofatruthtablecorrespondonaone-to-onebasistoKarnaughmapentries.Startingatthetopofthetruthtable,theA=0,B=0inputsproduceanoutputα. NotethatthissameoutputαisfoundintheKarnaughmapattheA=0,B=0celladdress,upperleftcornerofK-mapwheretheA=0rowandB=0columnintersect.Theothertruthtableoutputsβ,χ,δfrominputsAB=01,10,11arefoundatcorrespondingK-maplocations. Below,weshowtheadjacent2-cellregionsinthe2-variableK-mapwiththeaidofpreviousrectangularVenndiagramlikeBooleanregions. CellsαandχareadjacentintheK-mapasellipsesintheleftmostK-mapbelow.Referringtotheprevioustruthtable,thisisnotthecase.Thereisanothertruthtableentry(β)betweenthem.WhichbringsustothewholepointoftheorganizingtheK-mapintoasquarearray,cellswithanyBooleanvariablesincommonneedtobeclosetooneanothersoastopresentapatternthatjumpsoutatus. ForcellsαandχtheyhavetheBooleanvariableB’incommon.WeknowthisbecauseB=0(sameasB’)forthecolumnabovecellsαandχ.ComparethistothesquareVenndiagramabovetheK-map. AsimilarlineofreasoningshowsthatβandδhaveBooleanB(B=1)incommon.Then,αandβhaveBooleanA’(A=0)incommon.Finally,χandδhaveBooleanA(A=1)incommon.ComparethelasttwomapstothemiddlesquareVenndiagram. Tosummarize,wearelookingforcommonalityofBooleanvariablesamongcells.TheKarnaughmapisorganizedsothatwemayseethatcommonality.Let’strysomeexamples. Examples Example: TransferthecontentsofthetruthtabletotheKarnaughmapabove. Solution: Thetruthtablecontainstwo1s.theK-mapmusthavebothofthem.locatethefirst1inthe2ndrowofthetruthtableabove. notethetruthtableABaddress locatethecellintheK-maphavingthesameaddress placea1inthatcell Repeattheprocessforthe1inthelastlineofthetruthtable. Example: FortheKarnaughmapintheaboveproblem,writetheBooleanexpression.Solutionisbelow. Solution: Lookforadjacentcells,thatis,aboveortothesideofacell.Diagonalcellsarenotadjacent.AdjacentcellswillhaveoneormoreBooleanvariablesincommon. Group(circle)thetwo1sinthecolumn Findthevariable(s)topand/orsidewhicharethesameforthegroup,WritethisastheBooleanresult.ItisBinourcase. Ignorevariable(s)whicharenotthesameforacellgroup.InourcaseAvaries,isboth1and0,ignoreBooleanA. Ignoreanyvariablenotassociatedwithcellscontaining1s.B’hasnoonesunderit.IgnoreB’ ResultOut=B ThismightbeeasiertoseebycomparingtotheVenndiagramstotheright,specificallytheBcolumn. Example: WritetheBooleanexpressionfortheKarnaughmapbelow. Solution:(above) Group(circle)thetwo1’sintherow Findthevariable(s)whicharethesameforthegroup,Out=A’ Example: FortheTruthtablebelow,transfertheoutputstotheKarnaugh,thenwritetheBooleanexpressionfortheresult. Solution: Transferthe1sfromthelocationsintheTruthtabletothecorrespondinglocationsintheK-map. Group(circle)thetwo1’sinthecolumnunderB=1 Group(circle)thetwo1’sintherowrightofA=1 Writeproducttermforfirstgroup=B Writeproducttermforsecondgroup=A WriteSum-Of-ProductsofabovetwotermsOutput=A+B ThesolutionoftheK-mapinthemiddleisthesimplestorlowestcostsolution.Alessdesirablesolutionisatfarright.Aftergroupingthetwo1s,wemakethemistakeofformingagroupof1-cell.Thereasonthatthisisnotdesirableisthat: ThesinglecellhasaproducttermofAB’ ThecorrespondingsolutionisOutput=AB’+B Thisisnotthesimplestsolution Thewaytopickupthissingle1istoformagroupoftwowiththe1totherightofitasshowninthelowerlineofthemiddleK-map,eventhoughthis1hasalreadybeenincludedinthecolumngroup(B).Weareallowedtore-usecellsinordertoformlargergroups.Infact,itisdesirablebecauseitleadstoasimplerresult. Weneedtopointoutthateitheroftheabovesolutions,OutputorWrongOutput,arelogicallycorrect.Bothcircuitsyieldthesameoutput.Itisamatteroftheformercircuitbeingthelowestcostsolution. Example: FillintheKarnaughmapfortheBooleanexpressionbelow,thenwritetheBooleanexpressionfortheresult. Solution:(above) TheBooleanexpressionhasthreeproductterms.Therewillbea1enteredforeachproductterm.Though,ingeneral,thenumberof1sperproducttermvarieswiththenumberofvariablesintheproducttermcomparedtothesizeoftheK-map. Theproducttermistheaddressofthecellwherethe1isentered.Thefirstproductterm,A’B,correspondstothe01cellinthemap.A1isenteredinthiscell.TheothertwoP-termsareenteredforatotalofthree1s Next,proceedwithgroupingandextractingthesimplifiedresultasintheprevioustruthtableproblem. Example: Simplifythelogicdiagrambelow. Solution: (Figurebelow) WritetheBooleanexpressionfortheoriginallogicdiagramasshownbelow TransfertheproducttermstotheKarnaughmap Formgroupsofcellsasinpreviousexamples WriteBooleanexpressionforgroupsasinpreviousexamples Drawsimplifiedlogicdiagram Example:Simplifythelogicdiagrambelow. Solution: WritetheBooleanexpressionfortheoriginallogicdiagramshownabove TransfertheproducttermstotheKarnaughmap. Itisnotpossibletoformgroups. Nosimplificationispossible;leaveitasitis. Nologicsimplificationispossiblefortheabovediagram.Thissometimeshappens.NeitherthemethodsofKarnaughmapsnorBooleanalgebracansimplifythislogicfurther. WeshowanExclusive-ORschematicsymbolabove;however,thisisnotalogicalsimplification.Itjustmakesaschematicdiagramlooknicer. SinceitisnotpossibletosimplifytheExclusive-ORlogicanditiswidelyused,itisprovidedbymanufacturersasabasicintegratedcircuit(7486). RELATEDWORKSHEETS: KarnaughMappingWorksheet BooleanAlgebraWorksheet BasicLogicGatesWorksheet MakingaVennDiagramLookLikeaKarnaughMap TextbookIndex LogicSimplificationWithKarnaughMaps RelatedContent TheKarnaughMapBooleanAlgebraicSimplificationTechnique GrayCodeBasics EverythingAbouttheQuine-McCluskeyMethod DescribingCombinationalCircuitsinVerilog BooleanBasics PublishedunderthetermsandconditionsoftheDesignScienceLicense Comments 0Comments Logintocomment Loadmorecomments YouMayAlsoLike RFSwitchUpsPowerDensityandIntegrationfor5GNetworks byJeffChild Proposedstandardizationofchipletmodelsforheterogenousintegration bySiemensDigitalIndustriesSoftware TheGuidetoPCBADevelopmentforSemiconductorApplications byTempoAutomation EmergingTrendsinWirelessInfrastructure byRohde&Schwarz IoTCommunicationProtocols—IoTDataProtocols byIgnaciodeMendizábal WelcomeBack Don'thaveanAACaccount?Createonenow. Forgotyourpassword?Clickhere. SignIn Stayloggedin Orsigninwith Facebook Google Linkedin GitHub Continuetosite QUOTEOF THEDAY “ ” -
延伸文章資訊
- 1Karnaugh Maps, Truth Tables, and Boolean Expressions
Now that we have developed the Karnaugh map with the aid of Venn diagrams, let's put it to use. K...
- 2Karnaugh Maps (K-Map) | 1-6 Variables Simplification ...
3 variable K-map can be in both forms. Note the combination of two variables in either form is wr...
- 3卡諾圖- 維基百科,自由的百科全書
Karnaugh, Maurice. The Map Method for Synthesis of Combinational Logic Circuits. Transactions of ...
- 4Online Karnaugh map solver with circuit for up to 6 variables
Online Karnaugh Map solver that makes a kmap, shows you how to group the terms, shows the simplif...
- 5Karnaugh map - Wikipedia
Karnaugh map ; Karnaugh map ( ; KM or ; K-map) is a method of simplifying Boolean algebra express...