人為什麼會夢遊?還可能「邊睡邊騎重機」?——《夜行大腦》
文章推薦指數: 80 %
我很常這樣大聲咆哮,她們都被我嚇到,不想睡在我旁邊。
」不僅如此,她在監督活動的大人眼中同樣是個麻煩人物。
「我會在半夜起床,一直走到河邊,或是 ...
063文字分享友善列印063人體解析好書推薦本月選書生命奧祕科學傳播醫療健康人為什麼會夢遊?還可能「邊睡邊騎重機」?——《夜行大腦》臉譜出版・2021/12/17・1907字・閱讀時間約3分鐘+追蹤作者/蓋伊・萊施茨納(GuyLeschziner)譯者/郭庭瑄賈姬的症狀已經持續了數十年。
她在英國出生,於加拿大長大,在那裡,她第一次明顯出現夢遊的現象。
「我會走到樓下的客廳,打開門,然後站在門口。
我父母就在那裡。
」她解釋自己半夜夢遊的行為。
「嗯,我母親嚇壞了,但我父親只是牽著我的手上樓,送我回床上睡覺。
就這樣。
幾乎是從我會走路後就一直有這種狀況。
」加入女童軍後,賈姬奇怪的夜間行為開始帶來負面的影響。
不用說,其他女孩都不太想跟她睡同一個帳篷。
而在加拿大的荒野中,她的睡眠行為格外令人尷尬。
「我會發出類似低吼、咆哮的聲音,」賈姬說。
「而且不是小聲的那種。
我猜她們大概覺得有熊追過來吧。
我很常這樣大聲咆哮,她們都被我嚇到,不想睡在我旁邊。
」不僅如此,她在監督活動的大人眼中同樣是個麻煩人物。
「我會在半夜起床,一直走到河邊,或是走進森林裡。
他們沒辦法應付這種情況,所以只能送我回家。
」賈姬笑著跟我分享這些過往,但我想這種事對當時還是個孩子的她一定造成很嚴重的衝擊,或許會讓她變得有點孤立,出現社會隔離的傾向。
對身為父母的人來說,賈姬有些夜間行為聽起來想必很耳熟。
夢遊及相關問題在兒童身上非常常見。
其中對父母而言(不是孩子喔),最折磨、最痛苦的就是夜驚(sleepterrors)。
孩子會在半夜撕心裂肺地大哭大叫,接著倒頭就睡,醒來後完全不記得發生了什麼事。
這些病症全都發生在不會做夢的深度睡眠階段,因而被稱為非快速動眼期異睡症(non-REMparasomnias)。
試圖喚醒處於深度睡眠狀態的孩子極有可能會引發夢囈,甚至是夢遊的現象。
夜驚的孩子會在半夜撕心裂肺地大哭大叫,接著倒頭就睡,醒來後完全不記得發生了什麼事。
圖/Pixabay夢遊的行為通常在進入成年期後就會消失,只有大約百分之一到百分之二的人仍會出現症狀。
賈姬就是其中之一。
她的夢遊現象一直持續到成年初期搬回英國後,而且才剛回來不久,她的情況就出現驚人的轉折。
當時賈姬借住在一位年長女性家裡,有天早上,她下樓吃早餐,房東太太卻用一個奇怪的問題向她打招呼,讓她一頭霧水。
「她問我,『你昨晚跑去哪裡啦?』」賈姬告訴我。
她對房東太太說,她沒有去哪裡啊。
「嗯?可是你騎機車出去耶。
」房東太太又說。
賈姬記得她當下第一個反應是困惑,而且非常震驚。
不難想像她無法理解自己剛才聽到的一切。
從她的角度來看,那天晚上她就像平常一樣上床睡覺,隔天早上就像平常一樣醒來。
她立刻問房東太太她有沒有戴安全帽。
「喔,有啊,你拖著沉重的腳步下樓,拿了安全帽就出門了。
」房東太太隨後又補充一句,說她大概出去了二十分鐘。
就這樣,沒有其他線索,因為她還分毫不差地把機車停回原來的地方。
之後同樣的情況又發生了幾次,於是賈姬便將機車鑰匙交由房東太太保管,後來就把車賣掉了。
她還是很想念她的BSA250。
「那臺很讚耶!大老遠就能聽到引擎聲了!」我跟她說,真想不到她居然沒被引擎聲吵醒。
「很意外對吧?」她回答。
影片來源/YouTube那麼,醫學科學會如何解釋賈姬的情況和這些深度睡眠中的夢遊、吼叫,甚至是騎機車等複雜行為呢?多年來,我們已經知道某些特定的動物(如海豚、海豹和鳥類)能一次只讓半邊大腦入睡,也就是所謂的「單腦半球睡眠」(uni-hemisphericsleep),這樣牠們就能邊睡邊游或邊睡邊飛。
水生哺乳動物顯然要能夠游泳和浮上水面呼吸,但牠們也跟我們一樣必須睡覺休息,這個逐步演化而來的奇妙技巧不僅能防止牠們在執行這些必要功能時溺水身亡,從演化的角度來看,它也強調了深度睡眠的重要性:若深度睡眠用途不大,單半球睡眠為什麼會成為必要機制?然而在人類的世界中,單半球睡眠並不存在。
從前我們總認為睡眠是一種大腦「非開即關」的狀態,不是醒著,就是睡覺,沒有中間地帶。
近幾年我們才知道,原來事情並不是這樣。
深度睡眠與完全清醒分屬光譜上的兩個極端,聽起來或許很難相信,但我們確實有可能同時處於這兩種狀態。
——本文摘自《夜行大腦:從失眠、夢遊到睡眠中躁動、暴食、性交……,神經科醫生與睡眠障礙的決鬥傳奇,揭開你不知道的睡眠祕密》/蓋伊・萊施茨納,2021年3月,臉譜出版。
數感宇宙探索課程,現正募資中!相關標籤:BSA250單半球睡眠夜驚夢遊大腦深度睡眠清醒重機熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間文章難易度剛好太難所有討論
0登入與大家一起討論臉譜出版60篇文章・
241位粉絲+追蹤臉譜出版有著多種樣貌—商業。
文學。
人文。
科普。
藝術。
生活。
希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。
RELATED相關文章猴痘有可能會大流行嗎?帶你一窺猴痘的症狀、傳播途徑與可能的防範措施不論你是什麼音,唱出自己的吼音──音樂關鍵字|EP3:吼節奏與你的前庭系統──音樂關鍵字|EP2:奔跑吧!阿公場域限制造成的「殘響」──音樂關鍵字|EP1:尋聲TRENDING熱門討論即時熱門低密度膽固醇過高加速動脈硬化,小心發生心肌梗塞!12天前超長工時值夜班,補休後的身體機能會恢復嗎?從本土醫師輪班資料談起12天前臺灣是過勞鬼島嗎?中日台韓工時比一比22天前喝牛奶就拉肚子,乳糖不耐的人缺鈣怎麼辦?13天前科學宅的戀愛契機:「同類交配」理論62022/06/11思考別人沒有想到的東西——誰發現量子力學?52022/06/03陰莖,是社交安全的重要指標?!32022/06/08英國「學童」取代「病理學家」?!辨識癌細胞的人工智慧22022/05/30024文字分享友善列印024化學物語編輯精選透視科學醫療健康為何新冠病毒突變之後傳染力更強?——關鍵在於變異株的棘蛋白結構研之有物│中央研究院・2022/01/25・5088字・閱讀時間約10分鐘+追蹤本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。
採訪撰文/寒波美術設計/林洵安為何新冠病毒突變之後傳染力更強?COVID-19至今仍深深影響全人類,新冠病毒持續演化,例如曾經造成臺灣大規模社區感染的Alpha變異株、傳染力更強的Delta變異株,近期出現的Omicron變異株等,它們逃避免疫系統的能力都不一樣,關鍵就在不同的棘蛋白(spikeprotein)結構。
「研之有物」專訪中央研究院生物化學研究所徐尚德副研究員,他的團隊陸續解析各種新冠病毒變異株的棘蛋白結構,不但能釐清新的突變帶來的威脅,後續也可作為研發人造抗體的指引。
徐尚德手上拿著新冠病毒的棘蛋白模型,顯示棘蛋白與兩種不同抗體結合的情況。
圖/研之有物解析新型冠狀病毒棘蛋白COVID-19的病原體是一種冠狀病毒,和SARS病毒是近親,正式命名為SARS-CoV-2,中文常稱作新型冠狀病毒。
為了知道病毒如何感染人體細胞,以及如何逃避免疫系統的辨識,我們需要進一步瞭解冠狀病毒表面的棘蛋白結構。
結構為什麼重要?因為結構會影響蛋白質功能。
蛋白質是由不同的氨基酸所組成的長鏈,實際作用時會摺疊形成特別立體結構,而冠狀病毒的蛋白質中,又以棘蛋白最為關鍵。
徐尚德強調,棘蛋白是冠狀病毒暴露在表面的蛋白質之一,絕大多數被感染者的免疫系統所產生的抗體都是辨識棘蛋白。
因此現今臨床使用的蛋白質次單元疫苗、腺病毒疫苗以及mRNA疫苗,都是以棘蛋白為基礎來研發。
Cryo-EM讓蛋白質結構無所遁形工欲善其事,必先利其器。
解析蛋白質結構的方法很多,早期的X光晶體繞射(X-raydiffraction),就像將影片定格截圖,但不一定為蛋白質實際作用的狀態。
再來是核磁共振(NuclearMagneticResonanc,簡稱NMR),這是徐尚德留學深造時的專業,可以重現蛋白質在水溶液中的結構及動態,更接近實際作用的形態,可惜不適合分子量較大的分子。
目前結構生物學最具潛力的新技術是:冷凍電子顯微鏡(CryogenicElectronMicroscopy,簡稱Cryo-EM),Cryo-EM可以拍出原子尺度下高解析度的三維結構,此技術於2017年獲得諾貝爾化學獎。
中研院則於2018年開始添購Cryo-EM設備,而Cryo-EM正是徐尚德用來解析棘蛋白結構的主要利器!在COVID-19疫情爆發初期(2020年1月),徐尚德就率先啟動新冠病毒的結構分析,當時他的研究團隊剛好已分析過感染貓科動物的冠狀病毒,對於解析棘蛋白結構有一定經驗,可說是贏得先機。
具體來說,如何用Cryo-EM解析新冠病毒的棘蛋白結構?首先要大量培養新冠病毒、再分離、純化得到棘蛋白。
接下來,將大量蛋白質樣本鋪成薄薄一層液體,之後以-190℃急速冷凍,讓蛋白質分子保持凍結前的形態,最後用程式重建棘蛋白的三維影像。
徐尚德譬喻,就像一匹馬在高速移動時,連續拍攝許多照片,再將照片疊加起來,重建馬的形狀。
棘蛋白的體積已經算大,假如又與其他蛋白質結合,體積將會更大。
能解析如此龐大結構為Cryo-EM一大優點,但是也會創造很大的資料量。
徐尚德強調,用Cryo-EM分析蛋白質結構不只做實驗,也要協調資料處理等疑難雜症。
冷凍電子顯微鏡可以紀錄同一時間下、不同狀態的蛋白質三維立體結構。
圖/研之有物關鍵D614G突變,讓新冠病毒棘蛋白穩定性大增儘管已有貓冠狀病毒的經驗,徐尚德研究團隊初期仍經歷一陣摸索,一大困難在於,做實驗時發現不少棘蛋白壞掉,不再保持原本的結構。
這是因為一般取得蛋白質樣本後會置於4°C冷藏,但4°C其實不適合保存棘蛋白。
接著徐尚德細心觀察到,具備D614G突變的棘蛋白,保存期限竟然比沒突變的棘蛋白要長,可以從1天增加到至少1週。
什麼是D614G突變呢?武漢爆發COVID-19疫情的初版新冠病毒,其棘蛋白全長超過1200個胺基酸,D614G突變的意思就是:第614號氨基酸由天門冬胺酸(asparticacid,縮寫為D)變成甘胺酸(glycine,縮寫為G)。
D614G突變誕生後,存在感持續上升,2020年6月時已經成為全世界的主流,隨後新冠病毒Alpha、Delta等變異株,皆建立於D614G的基礎上。
儘管序列僅有微小差異,許多證據指出D614G突變會增加新冠病毒的傳染力。
有趣的是,它也能大幅增加棘蛋白在體外的穩定性。
因此在研究用途上,變種病毒的棘蛋白反而容易保存,徐尚德更指出,對抗變種病毒的蛋白質次單元疫苗(subunitvaccine)穩定性也會增加。
圖片為徐尚德實驗室提供的新冠病毒模型與三種不同的棘蛋白模型,棘蛋白的主體為白色,棘蛋白的受器結合區域(receptorbindingdomain,RBD)為藍綠色。
圖/研之有物新冠病毒棘蛋白的「三隻爪子」:受器結合區域徐尚德參與的一系列新冠病毒結構研究,除了棘蛋白本身,還包含棘蛋白與細胞受器ACE2的結合、棘蛋白和人造抗體的結合。
既然要解析結構,儀器「解析度」能看清楚多小的尺度就很重要!蛋白質結構學的常見單位是Å(10-10 公尺),原子與原子間的距離約為2Å,Cryo-EM的極限將近1Å,不過棘蛋白大約到3Å便足以重建立體結構。
冠狀病毒如何感染宿主細胞,和結構又有什麼關係?棘蛋白位於冠狀病毒的表面,直接接觸宿主細胞受器ACE2的部分,稱為受器結合區域(receptorbindingdomain,簡稱RBD),結構可能展現「向上」(RBD-up)或是「向下」(RBD-down)的狀態。
向下,RBD便不會接觸宿主細胞的受器,缺乏感染能力,;向上,RBD方能結合受器,引發後續入侵。
徐尚德團隊透過冷凍電子顯微鏡,拍攝新冠病毒Alpha株的棘蛋白結構,其中有三類棘蛋白的RBD為1個向上(佔73%),有一類(類別3)的棘蛋白RBD則是2個向上(佔27%)。
圖/NatureStructural&MolecularBiology新冠病毒表面的棘蛋白有「三隻爪子」(3RBD),RBD有可能同時向上(3RBD-up),也可能只有1~2個向上,結構會影響病毒的感染能力。
更詳細地說,棘蛋白某些胺基酸位置的差異,會影響結構的開放與封閉程度。
棘蛋白向上或向下是動態的,假如能保持穩定性,延長向上的時間,也有助於新冠病毒的感染。
這正是徐尚德一系列研究下來,實際觀察到不同品系的變化。
截至2022年01月18日的新冠病毒品系發展歷史,其中Delta變異株擁有最多品系,而Omicron變異株則開始興起。
雖然Omicron的品系並不多,但已逐漸成為主流。
圖/Nextstrain;GISAID一網打盡所有高關注變異株的結構變化和武漢最初的新冠病毒相比,D614G突變帶來什麼改變呢?簡單說:棘蛋白向上的比例增加了,導致整個結構變得更加開放,增加新冠病毒對宿主受器的親合力(affinity)。
以D614G為基礎,接下來又獨立衍生出數款品系,皆具備多個突變,傳染力、抵抗力更強。
影響最大的是首先於英國現身的Alpha(B.1.1.7)、南非的Beta(B.1.351)、巴西的Gamma(P.1),以及更晚幾個月後,於印度誕生的Kappa(B.167.1)與Delta(B.167.2)。
Alpha一度於世界廣傳,導致包括臺灣在內的嚴重疫情,不過隨後不敵優勢更大的Delta。
對於上述品系,徐尚德率隊一網打盡。
Alpha的棘蛋白結構解析已經發表於《自然-結構與分子生物學》(NatureStructural&MolecularBiology)期刊,其餘新冠病毒變異株的論文仍在等待審查,目前能在預印網站bioRxiv看到,該研究一次報告38個Cryo-EM結構,刷新紀錄。
圖a顯示新冠病毒Alpha變異株棘蛋白的突變氨基酸序列,一共有9處突變,D614G突變以紫色表示。
圖b顯示突變的氨基酸在立體結構中的位置。
圖/NatureStructural&MolecularBiologyAlpha變異株的RBD向上結構穩定一度入侵台灣造成社區大規模感染的Alpha株有何優勢?其棘蛋白除了D614G,還多出8處胺基酸突變,徐尚德發現N501Y(天門冬酰胺變成酪胺酸)、A570D(丙胺酸變成天門冬胺酸)的影響相當關鍵。
直覺地想,棘蛋白的外層結構才會與受器接觸影響傳染力,立體結構中第570號胺基酸的位置比較裡面,乍看並不要緊。
但是徐尚德敏銳地捕捉到,A570D突變會改變局部的空間關係,令「RBD向上」的結構更加穩定。
徐尚德形容為「腳踏板」(pedal-bin)──A570D突變的效果就像踩著垃圾桶的腳踏板,讓桶蓋(也就是RBD)穩定保持開啟。
事實上,棘蛋白總體向上的比例,Alpha還比單純的D614G突變株更少,不過A570D增進的穩定性似乎優勢更大。
研究團隊製作缺乏A570D突變的人造模擬病毒,嘗試體外感染人類細胞,發現感染力明顯減少,證實A570D突變頗有貢獻。
新冠病毒Alpha株棘蛋白的「A570D突變」,會改變棘蛋白內部的空間,讓「RBD向上」的結構更加穩定,就像踩著垃圾桶的腳踏板,讓桶蓋保持開啟。
圖/研之有物(資料來源/徐尚德、NatureStructural&MolecularBiology)Alpha變異株的棘蛋白親近宿主細胞,干擾抗體作用另一個重要突變是N501Y,不只Alpha有,Beta等許多品系也有,Delta則無。
N501Y在眾多品系獨立誕生,似乎為趨同演化所致。
N501Y能為病毒帶來哪些優勢?第501號胺基酸位於棘蛋白表面,會直接與宿主受器ACE2結合。
此一位置變成酪胺酸(tyrosine,縮寫為Y)後,和受器的Y41兩個酪胺酸之間,容易形成苯環和苯環的「π–πstacking」鍵結,從而大幅提升棘蛋白對細胞的親合力。
新冠病毒Alpha株棘蛋白的「N501Y突變」,讓RBD的胺基酸與宿主細胞受器ACE2形成「π–πstacking」鍵結,大幅提升棘蛋白對宿主細胞的親合力。
圖/NatureStructural&MolecularBiology另一方面,N501Y突變也會干擾抗體的作用。
中研院細胞與個體生物學研究所的吳漢忠特聘研究員,率隊研發一批針對棘蛋白的人造抗體,測試發現有一款抗體chAb25對D614G突變株相當有效,但是對Alpha株無能為力。
徐尚德由結構分析發現:N501Y改變了棘蛋白表面的形狀,讓抗體chAb25無法附著。
好消息是,另外有兩款抗體chAb15、chAb45,依然能有效對抗Alpha病毒,不受N501Y影響。
這兩款抗體會附著在棘蛋白RBD的邊緣,避免棘蛋白和宿主細胞接觸。
而且抗體chAb15、chAb45會各占一方,可以同時使用,多面協同打擊病毒。
雖然新冠病毒Alpha株的棘蛋白表面讓某些抗體難以附著,還好仍有兩款抗體chAb15(綠色)、chAb45(黃色)能有效「卡住」棘蛋白,干擾棘蛋白與宿主細胞結合。
抗體chAb15、chAb45附著的位置,正好就是棘蛋白與宿主細胞結合的地方。
圖/NatureStructural&MolecularBiology棘蛋白結構不只胺基酸,還要注意表面的醣有了Alpha的經驗,接下來分析Beta、Gamma、Kappa、Delta便順手很多。
這批新冠病毒的棘蛋白變化多端,但是「RBD向上」的整體比例皆超過Alpha和D614G突變株,可見適應上各有巧妙。
徐尚德也發現,要釐清棘蛋白的結構,不能只關心蛋白質,還要考慮棘蛋白表面的醣基化(glycosylation)修飾。
蛋白質在完工後,某些胺基酸還能加上各種醣基。
病毒蛋白質表面的醣基可以作為防護罩,干擾抗體和免疫系統的辨識。
醣基化修飾就像替病毒訂作一套迷彩外衣,不同變異株的情況都不一樣,假如醣基化的位置和數量,由於突變而改變,便有可能影響立體結構,有助於它們閃躲抗體。
例如和武漢原版新冠病毒相比,Delta株棘蛋白少了一個醣化修飾,Gamma株棘蛋白則多了兩處醣化。
還好從結構看來,並沒有任何突變組合能完美逃避抗體。
例如由美國的雷傑納榮製藥公司(Regeneron)製作並通過緊急使用授權的抗體;以及中研院吳漢忠率隊研發,有望投入實用的多款人造抗體,對變異品系依然有效。
這場人類與病毒的長期抗戰中,同時使用多款抗體的「雞尾酒」療法,仍然是可行的醫療方案。
回顧將近兩年來的研究之路,徐尚德表示:時間壓力真的非常大!COVID-19疫情爆發後,全世界投入相關研究的專家眾多,只要稍有遲疑,便會落在競爭者後頭。
但是即使跑在最前端的研究者,也只能苦苦追趕病毒演化的速度,一篇論文還在審查時,現實世界的疫情已經邁向全新局面。
人類要贏得勝利,必需全方面認識病毒,而結構無疑是相當重要的一環。
數感宇宙探索課程,現正募資中!相關標籤:Omicron新冠病毒變異株新型冠狀病毒棘蛋白胺基酸蛋白質熱門標籤:大麻量子力學CT值女科學家後遺症快篩時間文章難易度剛好太難所有討論
0登入與大家一起討論研之有物│中央研究院19篇文章・
8位粉絲+追蹤研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。
探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。
網頁:研之有物臉書:研之有物@FacebookRELATED相關文章【2003諾貝爾化學獎】細胞膜的分子通道【2002諾貝爾化學獎】質譜與核磁共振關注大麻合法化,先了解大麻的大小事調香師的秘密:「糞臭素」挑起你骯髒的慾望TRENDING熱門討論即時熱門低密度膽固醇過高加速動脈硬化,小心發生心肌梗塞!12天前超長工時值夜班,補休後的身體機能會恢復嗎?從本土醫師輪班資料談起12天前臺灣是過勞鬼島嗎?中日台韓工時比一比22天前喝牛奶就拉肚子,乳糖不耐的人缺鈣怎麼辦?13天前科學宅的戀愛契機:「同類交配」理論62022/06/11思考別人沒有想到的東西——誰發現量子力學?52022/06/03陰莖,是社交安全的重要指標?!32022/06/08英國「學童」取代「病理學家」?!辨識癌細胞的人工智慧22022/05/30
延伸文章資訊
- 1誰得了夢遊症?
誰得了夢遊症? 神經科及睡眠中心 徐崇堯副教授(102年11月). 張小弟被滿臉焦急的爸媽帶進神經科門診。 「我兒子得了夢遊症耶!」張太太說:「每晚上床睡著以後,不到 ...
- 2夜驚、夢遊、鬼壓床,擾人清夢的異睡症 - 診所藥局
- 3成人夢遊是不是病?家裡有夢遊的人該怎麼治?
由於夢遊症常常發生在睡眠的前1/3深睡期,故各種使睡眠加深的因素,如白天過度勞累、連續幾天熬夜引起睡眠不足、睡前服用安眠藥物等,均可誘發夢遊症的 ...
- 4孩童時的夢遊別擔心一旦成人也會夢遊就要當心得了這種病
除了兒童時期出現的睡遊症之外,其實在成人身上發生類似夢遊的症狀才是值得讓人擔心的大問題,醫學界稱之為「快速動眼期睡眠行為障礙」(RBD),是一種會 ...
- 5壓力大腦退化「夢遊」突襲 - 明報健康網
香港睡眠醫學會榮譽秘書、精神科專科醫生林少萍表示,異類睡眠症是一種睡眠疾病,常見如睡遊(夢遊)、睡食,一般統稱作夢遊。只要腦內部分活躍,已 ...