Pareto distribution of the second kind - Vose Software
文章推薦指數: 80 %
A Pareto2 (1/b, a) distribution describes the time between events where the number of random events occurring in a unit of time follows a Pólya (a,b) ... Home PelicanERMSoftware WhatisPelican? Pelican-in-depthvideo WhatisEnterpriseRiskManagement? IsPelicanrightforyou? WhatmakesPelicanspecial? Videos,whitepapers,casestudies Riskmodelingsoftware ModelRisk-RiskAnalysisinExcel Tamara-ProjectRiskAnalysis Purchase Resources Frequentlyaskedquestions Exampleriskmodels Videos,whitepapers,casestudies TheVoseWikionrisk MonteCarlosimulation-asimpleexplanation Services Riskmanagementconsulting Training Technicalsupport CustomSoftwareDevelopment Company Blog Ourhistory Ourclients Contact Purchase Paretodistributionofthesecondkind Format:Pareto2(b,q) ThisdistributionissimplyastandardPareto distribution(ofthefirstkind)butshiftedalongthex-axissothat itstartsatx=0.Thisismostreadilyapparentbystudyingthecumulative distributionfunctionsforthetwodistributions: Pareto: Pareto2: TheonlydifferencebetweenthetwoequationsisthatxforthePareto hasbeenreplacedby(x+b)forthePareto2.Inotherwords: VosePareto2(b,q)=VosePareto(q,a) -a wherea=b,andq =q Thusbothdistributionshavethesamevarianceandshapewhena=b andq =q,butdifferentmeans. Uses APareto2(1/b,a)distribution describesthetimebetweeneventswherethenumberofrandomeventsoccurring inaunitoftimefollowsaPólya(a,b) distribution. Thisismorethananacademiccuriosity.Itiscommonlyassumedthat eventsoccurringrandomlyintimefollowaPoisson distribution,fromwhichitcanbedeterminedthatthetimebetween eventsfollowsanExponentialdistribution. However,manyeventsseemtoshowsomeclusteringintheirtiming,which meansthattherearemoreeventsclosertogetherandfurtherapartthan theExponentialdistributionwouldpredict.Fittingthetimebetweenevents usingbothaPareto2andanExponentialdistribution,thencomparingwhich distributionfitsbetter,allowsonetoassesswhetheraPólya oraPoissonshouldbeusedformodelingfrequency. Onemightargue-whynotjustfitthefrequencydatainthefirstplace? Theproblemwithfrequencydataisthatitisinformation-poor.Ifwe knowwheneventsoccurred,wecansummarizehowmanyoccurredineach timeinterval,butthereverseisnotpossible.Thus,byfittingdistributions totimebetweeneventswearemakingthemostoftheavailabledataand aremorereadilyabletodeterminewhetheraPoissonorPólya processismoreappropriate. ModelRisk functionsaddedtoMicrosoftExcelfortheParetodistributionofthe SecondKind VosePareto2 generatesrandomvaluesfromthisdistributionforMonte Carlosimulation,orcalculatesapercentileifusedwitha U parameter. VosePareto2Object constructsadistributionobjectforthisdistribution. VosePareto2Prob returnstheprobabilitydensityorcumulativedistributionfunctionfor thisdistribution. VosePareto2Prob10 returnsthelog10oftheprobabilitydensityorcumulativedistribution function. VosePareto2Fit generatesvaluesfromthisdistributionfittedtodata,orcalculates apercentilefromthefitteddistribution. VosePareto2FitObject constructsadistributionobjectofthisdistributionfittedtodata. VosePareto2FitP returnstheparametersofthisdistributionfittedtodata. Paretodistributionofthesecondkindequations ©VoseSoftware™2017. ReferenceNumber:M-M0354-A ModelRisk MonteCarlosimulationinExcel.Learnmore Tamara Addingriskanduncertaintytoyourprojectschedule.Learnmore Navigation Riskmanagement RiskmanagementintroductionWhatarerisksandopportunities?PlanningariskanalysisClearlystatingriskmanagementquestionsEvaluatingriskmanagementoptionsIntroductiontoriskanalysisThequalityofariskanalysisUsingriskanalysistomakebetterdecisions ExplainingamodelsassumptionsStatisticaldescriptionsofmodeloutputsSimulationStatisticalResultsPreparingariskanalysisreportGraphicaldescriptionsofmodeloutputsPresentingandusingresultsintroductionStatisticaldescriptionsofmodelresults Meandeviation(MD)RangeSemi-varianceandsemi-standarddeviationKurtosis(K)MeanSkewness(S)ConditionalmeanCustomsimulationstatisticstableModeCumulativepercentilesMedianRelativepositioningofmodemedianandmeanVarianceStandarddeviationInter-percentilerangeNormalizedmeasuresofspread-theCofV Graphicaldescriptionssofmodelresults ShowingprobabilityrangesOverlayinghistogramplotsScatterplotsEffectofvaryingnumberofbarsSturgesruleRelationshipbetweencdfanddensity(histogram)plotsDifficultyofinterpretingtheverticalscaleStochasticdominancetestsRisk-returnplotsSecondordercumulativeprobabilityplotAscendinganddescendingcumulativeplotsTornadoplotBoxPlotCumulativedistributionfunction(cdf)Probabilitydensityfunction(pdf)CrudesensitivityanalysisforidentifyingimportantinputdistributionsParetoPlotTrendplotProbabilitymassfunction(pmf)OverlayingcdfplotsCumulativePlotSimulationdatatableStatisticstableHistogramPlotSpiderplotDeterminingthewidthofhistogrambarsPlottingavariablewithdiscreteandcontinuouselementsSmoothingahistogramplot Riskanalysismodelingtechniques MonteCarlosimulation MonteCarlosimulationintroductionMonteCarlosimulationinModelRisk SimulationResultsSimulationSettingsPrecisioncontrol FilteringsimulationresultsOutput/InputWindowSimulationProgresscontrolRunningmultiplesimulationsRandomnumbergenerationinModelRiskRandomsamplingfrominputdistributionsHowmanyMonteCarlosamplesareenough? Gettingsufficientaccuracyforthemean Probabilitydistributions DistributionsintroductionProbabilitycalculationsinModelRiskSelectingtheappropriatedistributionsforyourmodelListofdistributionsbycategoryDistributionfunctionsandtheUparameterUnivariatecontinuousdistributions BetadistributionBetaSubjectivedistributionFour-parameterBetadistributionBradforddistributionBurrdistributionCauchydistributionChidistributionChiSquareddistributionContinuousdistributionsintroductionContinuousfitteddistributionCumulativeascendingdistributionCumulativedescendingdistributionDagumdistributionErlangdistributionErrordistributionErrorfunctiondistributionExponentialdistributionExponentialfamilyofdistributionsExtremeValueMinimumdistributionExtremeValueMaximumdistributionFdistributionFatigueLifedistributionGammadistributionGeneralizedExtremeValuedistributionGeneralizedLogisticdistributionGeneralizedTrapezoidUniform(GTU)distributionHistogramdistributionHyperbolic-SecantdistributionInverseGaussiandistributionJohnsonBoundeddistributionJohnsonUnboundeddistributionKernelContinuousUnboundeddistributionKumaraswamydistributionKumaraswamyFour-parameterdistributionLaplacedistributionLevydistributionLifetimeTwo-ParameterdistributionLifetimeThree-ParameterdistributionLifetimeExponentialdistributionLogGammadistributionLogisticdistributionLogLaplacedistributionLogLogisticdistributionLogLogisticAlternativeparameterdistributionLogNormaldistributionLogNormalAlternative-parameterdistributionLogNormalbaseBdistributionLogNormalbaseEdistributionLogTriangledistributionLogUniformdistributionNoncentralChisquareddistributionNoncentralFdistributionNormaldistributionNormaldistributionwithalternativeparametersMaxwelldistributionNormalMixdistributionRelativedistributionOgivedistributionPareto(firstkind)distributionPareto(secondkind)distributionPearsonType5distributionPearsonType6distributionModifiedPERTdistributionPERTdistributionPERTAlternative-parameterdistributionReciprocaldistributionRayleighdistributionSkewNormaldistributionSlashdistributionSplitTriangledistributionStudent-tdistributionThree-parameterStudentdistributionTriangledistributionTriangleAlternative-parameterdistributionUniformdistributionWeibulldistributionWeibullAlternative-parameterdistributionThree-ParameterWeibulldistribution Univariatediscretedistributions DiscretedistributionsintroductionBernoullidistributionBeta-BinomialdistributionBeta-GeometricdistributionBeta-NegativeBinomialdistributionBinomialdistributionBurntFingerPoissondistributionDelaportedistributionDiscretedistributionDiscreteFitteddistributionDiscreteUniformdistributionGeometricdistributionHypergeoMdistributionHypergeometricdistributionHypergeoDdistributionInverseHypergeometricdistributionLogarithmicdistributionNegativeBinomialdistributionPoissondistributionPoissonUniformdistributionPolyadistributionSkellamdistributionStepUniformdistributionZero-modifiedcountingdistributionsMoreonprobabilitydistributions StabledistributionsCreatingyourowndistributions CreatingyourowndistributionsMethod1-usingknowncdfpdforpmfMethod2-usingknowndataMethod3-usingknownpointsonacurve HowtoreadprobabilitydistributionequationsParametricandnon-parametricdistributions Multivariatedistributions MultivariatedistributionsintroductionDirichletdistributionMultinomialdistributionMultivariateHypergeometricdistributionMultivariateInverseHypergeometricdistributiontype2NegativeMultinomialdistributiontype1NegativeMultinomialdistributiontype2MultivariateInverseHypergeometricdistributiontype1MultivariateNormaldistribution Moreonprobabilitydistributions Approximatingonedistributionwithanother ApproximationstotheInverseHypergeometricDistributionNormalapproximationtotheGammaDistributionNormalapproximationtothePoissonDistributionApproximationstotheHypergeometricDistributionStirlingsformulaforfactorialsNormalapproximationtotheBetaDistributionApproximationofonedistributionwithanotherApproximationstotheNegativeBinomialDistributionNormalapproximationtotheStudent-tDistributionApproximationstotheBinomialDistribution Normal_approximation_to_the_Binomial_distributionPoisson_approximation_to_the_Binomial_distribution NormalapproximationtotheChiSquaredDistributionRecursiveformulasfordiscretedistributionsNormalapproximationtotheLognormalDistributionNormalapproximationstootherdistributions Correlationmodelinginriskanalysis ModelingcorrelationintroductionRankordercorrelationandcorrelationmatricesConditionallogicArchimedeancopulas-ClaytonFrankandGumbelEllipticalcopulas-NormalandTDirectionofacopulaCorrelationinModelRiskCopulasinModelRiskEnvelopemethodLookuptablesCopulas CommonmistakeswhenadaptingspreadsheetmodelsforriskanalysisMoreadvancedriskanalysismethods SIDsModelingwithobjectsModelRiskdatabaseconnectivityfunctionsPK/PDmodelingValueofinformationtechniquesSimulatingwithordinarydifferentialequations(ODEs)Optimizationofstochasticmodels ModelRiskoptimizationextensionintroductionOptimizationSettingsDefiningSimulationRequirementsinanOptimizationModelDefiningDecisionConstraintsinanOptimizationModelOptimizationProgresscontrolDefiningTargetsinanOptimizationModelDefiningDecisionVariablesinanOptimizationModelOptimizationResults Summingrandomvariables AggregatedistributionsintroductionAggregatemodeling-Panjer'srecursivemethodAddingcorrelationinaggregatecalculationsSumofarandomnumberofrandomvariablesMomentsofanaggregatedistributionAggregatemodelinginModelRiskAggregatemodeling-FastFourierTransform(FFT)methodHowmanyrandomvariablesadduptoafixedtotalAggregatemodeling-compoundPoissonapproximationAggregatemodeling-DePril'srecursivemethod Testingandmodelingcausalrelationships TestingandmodelingcausalrelationshipsintroductionTypesofmodelstoanalyzedata Stochastictimeseries TimeseriesintroductionTimeseriesinModelRiskAutoregressivemodelsThielinequalitycoefficientEffectofaninterventionatsomeuncertainpointintimeLogreturnofaTimeSeriesMarkovChainmodelsSeasonaltimeseriesBoundedrandomwalkTimeseriesmodelinginfinanceBirthanddeathmodelsTimeseriesmodelswithleadingindicatorsGeometricBrownianMotionmodelsTimeseriesprojectionofeventsoccurringrandomlyintime Simulationforsixsigma ModelRisk'sSixSigmafunctionsVoseSixSigmaCpVoseSixSigmaCpkLowerVoseSixSigmaProbDefectShiftVoseSixSigmaLowerBoundVoseSixSigmaKVoseSixSigmaDefectShiftPPMUpperVoseSixSigmaDefectShiftPPMLowerVoseSixSigmaDefectShiftPPMVoseSixSigmaCpmVoseSixSigmaSigmaLevelVoseSixSigmaCpkUpperVoseSixSigmaCpkVoseSixSigmaDefectPPMVoseSixSigmaProbDefectShiftLowerVoseSixSigmaProbDefectShiftUpperVoseSixSigmaYieldVoseSixSigmaUpperBoundVoseSixSigmaZupperVoseSixSigmaZminVoseSixSigmaZlower Modelingexpertopinion ModelingexpertopinionintroductionSourcesoferrorinsubjectiveestimationDisaggregationDistributionsusedinmodelingexpertopinionAsubjectiveestimateofadiscretequantityIncorporatingdifferencesinexpertopinionsModelingopinionofavariablethatcoversseveralordersofmagnitudeMaximumentropy Probabilitytheoryandstatistics ProbabilitytheoryandstatisticsintroductionStochasticprocesses StochasticprocessesintroductionPoissonprocess ThePoissonprocessDerivingthePoissondistributionfromtheBinomialTimetowaittoobservealphaeventsinaPoissonprocessSomePoissonmodelsEstimateofthemeannumberofeventsperperiodinaPoissonprocessEstimateoftheelapsedperiodtinaPoissonprocess Hypergeometricprocess ThehypergeometricprocessNumberinasamplewithaparticularcharacteristicinahypergeometricprocessNumberofhypergeometricsamplestogetaspecificnumberofsuccessesNumberofsamplestakentohaveanobservedsinahypergeometricprocessEstimateofpopulationandsub-populationsizesinahypergeometricprocess Thebinomialprocess ThebinomialprocessDistributionofthenumberofsuccessesswithgivennandpinabinomialprocessBinomialestimationofnwithsobservedandpknownEstimationofpwithsandnknowninabinomialprocessExampleofusingtheestimateofbinomialprobabilities Numerical_integration RenewalprocessesMixtureprocessesMartingalesEstimatingmodelparametersfromdata Thebasics Probabilityequations Probabilitydensityfunction(pdf)Probabilitymassfunction(pmf)Cumulativedistributionfunction(cdf) Probabilitytheoremsandusefulconcepts TheCentralLimitTheoremLeastSquaresLinearRegressionRankOrderCorrelationCoefficientTaylorseriesTchebysheffsRuleThestronglawoflargenumbersMarkovInequalityBinomialTheoremBayesTheorem Probabilityparameters StandarddeviationThemedianRawmomentsversuscentralmomentsVarianceVOthermoments(measuresofshape)ThemodeThemeanProbabilityparametersintroductionMean,standarddeviationandtheNormaldistribution Probabilityrulesanddiagrams VenndiagramsEventtreesProbabilityrulesanddiagramsintroductionBasicprobabilityrulesFaulttreesProbabilityeventnotationConditionalprobability ThedefinitionofprobabilityThebasicsofprobabilitytheoryintroduction Fittingprobabilitymodelstodata Fittingtimeseriesmodelstodata MultivariateTimeSeriesFittingUnivariateTimeSeriesFitting Fittingcorrelationstructurestodata MultivariateCopulaFittingBivariateCopulaFittingEmpiricalCopula FittinginModelRiskFittingprobabilitydistributionstodata FittingdistributionstodataMethodofMoments(MoM)CheckthequalityofyourdataKolmogorov-Smirnoff(K-S)StatisticAnderson-Darling(A-D)StatisticGoodnessoffitstatisticsTheChi-SquaredGoodness-of-FitStatisticDeterminingthejointuncertaintydistributionforparametersofadistributionUsingMethodofMomentswiththeBootstrapMaximumLikelihoodEstimates(MLEs)FittingadistributiontotruncatedcensoredorbinneddataCriticalValuesandConfidenceIntervalsforGoodness-of-FitStatisticsMatchingthepropertiesofthevariableanddistributionTransformingdiscretedatabeforeperformingaparametricdistributionfitDoesaparametricdistributionexistthatiswellknowntofitthistypeofvariable?CensoreddataFittingacontinuousnon-parametricsecond-orderdistributiontodataGoodnessofFitPlotsFittingasecondorderNormaldistributiontodataUsingGoodness-ofFitStatisticstooptimizeDistributionFittingInformationcriteria-SICHQICandAICFittingasecondorderparametricdistributiontoobserveddataFittingadistributionforacontinuousvariableDoestherandomvariablefollowastochasticprocesswithawell-knownmodel?FittingadistributionforadiscretevariableFittingadiscretenon-parametricsecond-orderdistributiontodataFittingacontinuousnon-parametricfirst-orderdistributiontodataFittingafirstorderparametricdistributiontoobserveddataFittingadiscretenon-parametricfirst-orderdistributiontodata FittingdistributionstodataTechnicalsubjects ComparisonofClassicalandBayesianmethods ComparisonofclassicandBayesianestimateofNormaldistributionparametersComparisonofclassicandBayesianestimateofintensitylambdainaPoissonprocessComparisonofclassicandBayesianestimateofprobabilitypinabinomialprocessWhichtechniqueshouldyouuse?ComparisonofclassicandBayesianestimateofmean"time"betainaPoissonprocess Classicalstatistics EstimatingthemeanbetaofanExponentialdistributionNormalapproximationtothebinomialmethodofestimatingaprobabilityp Bayesian Bootstrap TheBootstrapLinearregressionparametricBootstrapTheJackknifeMultiplevariablesBootstrapExample2:DifferencebetweentwopopulationmeansLinearregressionnon-parametricBootstrapTheparametricBootstrapBootstrapestimateofprevalenceEstimatingparametersformultiplevariablesExample:ParametricBootstrapestimateofthemeanofaNormaldistributionwithknownstandarddeviationThenon-parametricBootstrapExample:ParametricBootstrapestimateofmeannumberofcallsperhouratatelephoneexchangeTheBootstraplikelihoodfunctionforBayesianinferenceMultiplevariablesBootstrapExample1:Estimateofregressionparameters Bayesianinference Examples UninformedpriorsConjugatepriorsPriordistributionsBayesiananalysiswiththresholddataBayesiananalysisexample:genderofarandomsampleofpeopleInformedpriorSimulatingaBayesianinferencecalculationHyperparametersHyperparameterexample:Micro-fracturesonturbineblades Numericalintergation ConstructingaBayesianinferenceposteriordistributioninExcelBayesiananalysisexample:TigersinthejungleMarkovchainMonteCarlo(MCMC)simulationIntroductiontoBayesianinferenceconceptsBayesianestimateofthemeanofaNormaldistributionwithknownstandarddeviationBayesianestimateofthemeanofaNormaldistributionwithunknownstandarddeviationDeterminingpriordistributionsforcorrelatedparametersImproperpriorsTheJacobiantransformationSubjectivepriorbasedondataTaylorseriesapproximationtoaBayesianposteriordistributionBayesiananalysisexample:TheMontyHallproblemDeterminingpriordistributionsforuncorrelatedparametersSubjectivepriorsNormalapproximationtotheBetaposteriordistributionBayesiananalysisexample:identifyingaweightedcoinBayesianestimateofthestandarddeviationofaNormaldistributionwithknownmeanLikelihoodfunctionsBayesianestimateofthestandarddeviationofaNormaldistributionwithunknownmeanDeterminingapriordistributionforasingleparameterestimateSimulatingfromaconstructedposteriordistribution AnalyzingandusingdataintroductionDataObjectVoseprobabilitycalculationBayesianmodelaveraging Miscellaneous ExcelandModelRiskmodeldesignandvalidationtechniques UsingrangenamesformodelclarityColorcodingmodelsforclarityComparewithknownanswersCheckingunitspropagatecorrectlyStressingparametervaluesModelValidationandbehaviorintroductionInformalauditingAnalyzingoutputsViewrandomscenariosonscreenandcheckforcredibilitySplitupcomplexformulas(megaformulas)BuildingmodelsthatareefficientComparingpredictionsagainstrealityNumericalintegrationComparingresultsofalternativemodelsBuildingmodelsthatareeasytocheckandmodifyModelerrorsModeldesignintroduction AboutarrayfunctionsinExcel RISKANALYSISSOFTWARE RiskanalysissoftwarefromVoseSoftwareModelRisk-riskmodelinginExcel ModelRiskfunctionsexplained VoseCopulaOptimalFitandrelatedfunctionsVoseTimeOptimalFitandrelatedfunctionsVoseOptimalFitandrelatedfunctionsVoseXBoundsVoseCLTSumVoseAggregateMomentsVoseRawMomentsVoseSkewnessVoseMomentsVoseKurtosisVoseAggregatePanjerVoseAggregateFFTVoseCombinedVoseCopulaBiGumbelVoseCopulaBiClaytonVoseCopulaBiNormalVoseCopulaBiTVoseKendallsTauVoseRiskEventVoseCopulaBiFrankVoseCorrMatrixVoseRankVoseValidCorrmatVoseSpearmanVoseCopulaDataVoseCorrMatrixUVoseTimeSeasonalGBMVoseMarkovSampleVoseMarkovMatrixVoseThielUVoseTimeEGARCHVoseTimeAPARCHVoseTimeARMAVoseTimeDeathVoseTimeAR1VoseTimeAR2VoseTimeARCHVoseTimeMA2VoseTimeGARCHVoseTimeGBMJDMRVoseTimePriceInflationVoseTimeGBMMRVoseTimeWageInflationVoseTimeLongTermInterestRateVoseTimeMA1VoseTimeGBMVoseTimeGBMJDVoseTimeShareYieldsVoseTimeYuleVoseTimeShortTermInterestRateVoseDominanceVoseLargestVoseSmallestVoseShiftVoseStopSumVoseEigenValuesVosePrincipleEsscherVoseAggregateMultiFFTVosePrincipleEVVoseCopulaMultiNormalVoseRunoffVosePrincipleRAVoseSumProductVosePrincipleStdevVosePoissonLambdaVoseBinomialPVosePBoundsVoseAICVoseHQICVoseSICVoseOgive1VoseFrequencyVoseOgive2VoseNBootStdevVoseNBootVoseSimulateVoseNBootPairedVoseAggregateMCVoseMeanVoseStDevVoseAggregateMultiMomentsVoseDeductVoseExpressionVoseLargestSetVoseKthSmallestVoseSmallestSetVoseKthLargestVoseNBootCofVVoseNBootPercentileVoseExtremeRangeVoseNBootKurtVoseCopulaMultiClaytonVoseNBootMeanVoseTangentPortfolioVoseNBootVarianceVoseNBootSkewnessVoseIntegrateVoseInterpolateVoseCopulaMultiGumbelVoseCopulaMultiTVoseAggregateMultiMCVoseCopulaMultiFrankVoseTimeMultiMA1VoseTimeMultiMA2VoseTimeMultiGBMVoseTimeMultBEKKVoseAggregateDePrilVoseTimeMultiAR1VoseTimeWilkieVoseTimeDividendsVoseTimeMultiAR2VoseRuinFlagVoseRuinTimeVoseDepletionShortfallVoseDepletionVoseDepletionFlagVoseDepletionTimeVosejProductVoseCholeskyVoseTimeSimulateVoseNBootSeriesVosejkProductVoseRuinSeverityVoseRuinVosejkSumVoseTimeDividendsAVoseRuinNPVVoseTruncDataVoseSampleVoseIdentityVoseCopulaSimulateVoseSortAVoseFrequencyCumulAVoseAggregateDeductVoseMeanExcessPVoseProb10VoseSpearmanUVoseSortDVoseFrequencyCumulDVoseRuinMaxSeverityVoseMeanExcessXVoseRawMoment3VosejSumVoseRawMoment4VoseNBootMomentsVoseVarianceVoseTimeShortTermInterestRateAVoseTimeLongTermInterestRateAVoseProbVoseDescriptionVoseCofVVoseAggregateProductVoseEigenVectorsVoseTimeWageInflationAVoseRawMoment1VosejSumInfVoseRawMoment2VoseShuffleVoseRollingStatsVoseSpliceVoseTSEmpiricalFitVoseTimeShareYieldsAVoseParametersVoseAggregateTrancheVoseCovToCorrVoseCorrToCovVoseLLHVoseTimeSMEThreePointVoseDataObjectVoseCopulaDataSeriesVoseDataRowVoseDataMinVoseDataMaxVoseTimeSME2PercVoseTimeSMEUniformVoseTimeSMESaturationVoseOutputVoseInputVoseTimeSMEPoissonVoseTimeBMAObjectVoseBMAObjectVoseBMAProb10VoseBMAProbVoseCopulaBMAVoseCopulaBMAObjectVoseTimeEmpiricalFitVoseTimeBMAVoseBMAVoseSimKurtosisVoseOptConstraintMinVoseSimProbabilityVoseCurrentSampleVoseCurrentSimVoseLibAssumptionVoseLibReferenceVoseSimMomentsVoseOptConstraintMaxVoseSimMeanVoseOptDecisionContinuousVoseOptRequirementEqualsVoseOptRequirementMaxVoseOptRequirementMinVoseOptTargetMinimizeVoseOptConstraintEqualsVoseSimVarianceVoseSimSkewnessVoseSimTableVoseSimCofVVoseSimPercentileVoseSimStDevVoseOptTargetValueVoseOptTargetMaximizeVoseOptDecisionDiscreteVoseSimMSEVoseMinVoseMinVoseOptDecisionListVoseOptDecisionBooleanVoseOptRequirementBetweenVoseOptConstraintBetweenVoseSimMaxVoseSimSemiVarianceVoseSimSemiStdevVoseSimMeanDeviationVoseSimMinVoseSimCVARpVoseSimCVARxVoseSimCorrelationVoseSimCorrelationMatrixVoseOptConstraintStringVoseOptCVARxVoseOptCVARpVoseOptPercentileVoseSimValueVoseSimStopPrecisionControlFunctionsVoseAggregateDiscreteVoseTimeMultiGARCHVoseTimeGBMVRVoseTimeGBMAJVoseTimeGBMAJVRVoseSIDGeneralizedParetoDistribution(GPD)GeneralizedParetoDistribution(GPD)EquationsThree-PointEstimateDistributionThree-PointEstimateDistributionEquationsVoseCalibrate ModelRiskinterfaces IntegrateDataViewerStochasticDominanceLibraryCorrelationMatrixPortfolioOptimizationModelCommonelementsofModelRiskinterfacesRiskEventExtremeValuesSelectDistributionCombinedDistributionAggregatePanjerInterpolateViewFunctionFindFunctionDeductOgiveAtRISKmodelconverterAggregateMultiFFTStopSumCrystalBallmodelconverterAggregateMonteCarloSplicingDistributionsSubjectMatterExpert(SME)TimeSeriesForecastsAggregateMultivariateMonteCarloOrdinaryDifferentialEquationtoolAggregateFFTMoreonConversionMultivariateCopulaBivariateCopulaUnivariateTimeSeriesModelingexpertopinioninModelRiskMultivariateTimeSeriesSumProductAggregateDePrilAggregateDiscreteExpert ModelRiskintroductionBuildingandrunningasimpleexamplemodelDistributionsinModelRiskListofallModelRiskfunctionsCustomapplicationsandmacros Tamara-projectriskanalysis IntroductiontoTamaraprojectriskanalysissoftwareLaunchingTamaraImportingascheduleAssigninguncertaintytotheamountofworkintheprojectAssigninguncertaintytoproductivitylevelsintheprojectAddingriskeventstotheprojectscheduleAddingcostuncertaintytotheprojectscheduleSavingtheTamaramodelRunningaMonteCarlosimulationinTamaraReviewingthesimulationresultsinTamaraUsingTamararesultsforcostandfinancialriskanalysisCreating,updatinganddistributingaTamarareportTipsforcreatingaschedulemodelsuitableforMonteCarlosimulationRandomnumbergeneratorandsamplingalgorithmsusedinTamaraProbabilitydistributionsusedinTamaraCorrelationwithprojectscheduleriskanalysis Pelican-enterpriseriskmanagement IntroductiontoPelicanenterpriseriskmanagementsystem ModelRiskCloudsystem ModelRiskCloudintroductionGettingyoursoftwarereadyStartingModelRiskCloudUploadingariskanalysismodelCreatinganewscenariofortheriskanalysismodelRunningaMonteCarlosimulationofthemodelUploadingaSID(SimulationImportedDatafile)BuildingariskanalysismodelthatusesSIDsViewingtheMonteCarloresultsfromasimulationrunAdministrator'suseofModelRiskCloudPreparingariskanalysismodelforuploadtoModelRiskCloud ModelRiskResultViewer ModelRiskResultsViewer EnterpriseRiskManagementsoftware(ERM) Learnmoreaboutourenterpriseriskanalysismanagementsoftwaretool,Pelican
延伸文章資訊
- 1Pareto distribution - Wikipedia
- 2What Is the Pareto Principle—aka the Pareto Rule or 80/20 ...
The Pareto Principle states that 80% of consequences come from 20% of the causes. · The principle...
- 3柏拉圖分布- 維基百科,自由的百科全書
柏拉圖分布(Pareto distribution)是以義大利經濟學家維爾弗雷多·柏拉圖命名的。 是從大量真實世界的現象中發現的冪定律分布。這個分布在經濟學以外,也被稱為布拉德福 ...
- 4Pareto Distribution Definition - Statistics How To
The Pareto Principle is derived from the Pareto distribution and is used to illustrate that many ...
- 5Pareto Distribution - Corporate Finance Institute
The Pareto Distribution is used in describing social, scientific, and geophysical phenomena in so...