Frontiers | Apoptotic Tumor Cell-Derived Extracellular Vesicles ...
文章推薦指數: 80 %
Cells undergoing apoptosis produce heterogeneous populations of membrane ... Cell (2000) 100:57–70. doi:10.1016/S0092-8674(00)81683-9. ThisarticleispartoftheResearchTopic TheImmunomodulatoryPropertiesofExtracellularVesiclesfromPathogens,ImmuneCellsandNon-ImmuneCells Viewall 12 Articles Articles ShoheiHori TheUniversityofTokyo,Japan NaohiroSeo MieUniversity,Japan AiKotani TokaiUniversityIseharaHospital,Japan Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract Introduction:Apoptosis,andtheOnco-RegenerativeNiche(ORN) Apo-EVsandApoptoticBodies Apo-EVProductionMechanisms CargoesandFunctionalActivities ConclusionandFuturePerspectives AuthorContributions ConflictofInterestStatement Funding References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData PERSPECTIVEarticle Front.Immunol.,23May2018 |https://doi.org/10.3389/fimmu.2018.01111 ApoptoticTumorCell-DerivedExtracellularVesiclesasImportantRegulatorsoftheOnco-RegenerativeNiche ChristopherD.Gregory*and IanDransfield MedicalResearchCouncilCentreforInflammationResearchattheUniversityofEdinburgh,TheQueen’sMedicalResearchInstitute,Edinburgh,UnitedKingdom Cellsundergoingapoptosisproduceheterogeneouspopulationsofmembranedelimitedextracellularvesicles(Apo-EVs)whichvarynotonlyinsize—fromtensofnanometerstoseveralmicrons—butalsoinmolecularcompositionandcargo.Apo-EVscarryavarietyofpotentiallybiologicallyactivecomponents,includingsmallmolecules,proteins,andnucleicacids.LargerformsofApo-EVs,commonlytermed“apoptoticbodies,”cancarryorganelles,suchasmitochondriaandnuclearfragments.Moleculesdisplayedonthesurfaceofextracellularvesicles(EVs)cancontributesubstantiallytotheirsize,aswellastheirfunctions.Thusfar,relativelylittleisknownofthefunctionalsignificanceofApo-EVsapartfromtheirrolesinfragmentationofdyingcellsandindicatedimmunomodulatoryactivities.Here,wediscussEVproductionbydyingtumorcellsandconsiderthepossiblerolesofApo-EVsinacelldeath-drivensectorofthetumormicroenvironmentknownastheonco-regenerativeniche(ORN).Weproposethattumor-derivedApo-EVsaresignificantvehiclesoftheORN,functioningascriticalintercellularcommunicatorsthatactivateoncogenictissuerepairandregenerationpathways.WehighlightimportantoutstandingquestionsandsuggestthatApo-EVsmayharbornoveltherapeutictargets. Introduction:Apoptosis,andtheOnco-RegenerativeNiche(ORN) Inadditiontoitsactivitiesindevelopmentalsculptingandadulttissueinvolution,apoptosisisrenownedforitscapacitytoregulatetissueturnoverandhomeostasisinwhich,simplistically,theexpansionofcellpopulationsisbalancedbyregulatedcelldeath(andviceversa).Incancer,thisbalancebetweencellgainandcelllossbecomesdysregulated,resultinginaccumulationoftumorcellsandnetgrowthofneoplastictissues(Figure1).Byeffectingcontrolledcelldeletion,apoptosisimposesabrakeononcogenesis,alogicalconceptthathaslongbeenprovenandiswidelyaccepted.Indeed,inhibitionofthetumorsuppressorfunctionofapoptosisledtothecategorizationofanewclassofoncogenes—BCL2beingtheprototypicmember—thatcouldpromotecellsurvivalthroughsuppressionofapoptosisandtherebyimposeanoncogenicimbalanceonthecellbirth/celldeathequation(1).Furthermore,theapoptosiseffectorprotease,caspase-8,ismutatedinmultiplecancertypesandthesurvivalpathwayPI3K/Akt/mTORisdysregulatedfrequentlyintumors(2).Bycontrast,pro-apoptoticregulatorssuchasp53andBIM(3)amongothershavefirmlyestablishedtumor-suppressiverolesforapoptosis.Fortheseandotherreasons,thecapacitytoevadeapoptosishasbecomeawell-acceptedhallmarkofcancer(4). FIGURE1 Figure1.Left:oncogenicextracellularvesicle(EV)networksintheonco-regenerativeniche(ORN).SchematicrepresentationoftheORNillustratingthepotentialrolesofApo-EVsfromdyingtumorcells(Apo)inprovidingoncogenicsignalstoneighboringcellsintheniche,exemplifiedbymacrophages(M),viabletumorcells(Tu),andendothelialcells(E).WeproposethatApo-EVstargetsuchcellsandmodulatecellularfunctions,includingmacrophagepolarizationtowardareparativephenotype(M2-likeactivationstate),promotionoftumorcellsurvivalandproliferation,andangiogenesis.EVsfromviablecells(Via-EVs)oftumorandstromalcelloriginalsoseemlikelytoparticipateintheseprocesses.Right:mechanismsofcelltargetingandmodulationby(Apo)-EVs.ExamplesofpossiblemodesofinteractionofApo-EVswithtargetcellsthatmayleadtomodulationofcellularfunctionswithorwithouttransferofintactEVcargoes(biologicallyactivecargoesrepresentedbysmallredcircles).1.Membranefusion(receptor-dependentor-independent)permitstransferofEVcargoestocytosoliclocations.2.DockingofEVsthroughreceptor–ligandinteractionmayactivateintracellularsignalingpathwaysintheabsenceofcargotransfer.Ligandssuchasphosphatidylserine(PtdSer)(green)exposedatEVsurfacesmayinteractdirectlyorindirectlywithtargetcellreceptors(examplesinthecaseofPtdSerincludingBAI1,TIM-4,Stabilin2,Axl,Mer,aswellasintegrinsαvβ3andαvβ5).3.Endocyticpathways(includingphagocytosis)resultinginlysosomaldegradationofcargoesarealsolikelytomodulatecellularfunctionssuchasthroughmetabolitesupplyandviareceptorligation.4.PutativeendocyticuptakeofEVswithoutlysosomaldegradation.WeproposethatApo-EVcargoesaretransferredintacttomultipleintracellularcompartmentsviathistypeofpathway. However,setoppositeitstumorsuppressorfunctions,theapoptosismachinerycanendowdyingcellswiththeabilitytostimulateproliferationofneighboringcells,eitheraspartofdevelopmentalprogrammesorintissuerepairandregenerationinadulttissues(5–9).Highlevelsofapoptosisarecommonlyassociatedwithpoorprognosisinmultiplecancertypes(10–17)andexpressionofpro-apoptoticeffectormoleculessuchasactiveCaspase-3andBaxcancorrelatewithaggressivedisease(18,19).Furthermore,low-levelactivationoftheapoptosisprogrammecanpromotegenomicinstabilityandoncogenictransformation(20). Emergingevidencesuggestsstronglythatbothconstitutiveandtherapy-inducedapoptosiscanengenderpro-oncogenicresponsesthatenhancetumorgrowthandcausepost-therapeuticrelapse(21–24).Inthisscenario,tumor-cellapoptosisitselfpromotesimbalanceinthecellbirth/celldeathequationthatultimatelyfavorsnettumorgrowth.SuchregenerativeeffectsofapoptosisinthecontextofthetumormicroenvironmentledoneofustoproposerecentlytheconceptoftheORN:atumor-promotingnetworkoftumorcells,stromalcells,andimmunecellswhich,togetherwithassociatedextracellularcomponents,includingEVs,solublefactorsandmatrixmolecules,isorchestratedbytumor-cellapoptosis(Figure1)(25,26).Wespeculatethatpervasiveapoptotictumorcell-derivedsignalsintheORNprovideimportantpathwaysfortumorgrowth,metastasisandtopost-therapeuticrelapse.Here,weconsiderthepotentialrolesofapoptotictumorcell-derivedEVsinprovidingsuchsignals. Apo-EVsandApoptoticBodies ItisbecomingincreasinglyclearthatEVsareimportantintercellularcommunicationvehiclesinthetumormicroenvironment,shuttlinganarrayofbiologicallyactivemoleculesreciprocallybetweentumorandnon-tumorcells,modulatingthedevelopmentofprimarytumorsandmetastases.WeproposethatApo-EVs—aswellasEVsgeneratedinviablecellsrespondingtotheirapoptoticneighbors—areimportantelementsoftheORN(Figure1).EVproductionisawell-establishedhallmarkofapoptosis,asissurfaceblebbing(zeiosis)oftheplasmamembraneincellsrespondingtoapoptosisstimuli.BlebsmaybeimportantprecursorstoApo-EVs,butitremainsuncleartowhatextenttheprocessofsurfaceblebbingisrelatedmechanisticallytotheproductionofApo-EVs.Here,weusetheterm“Apo-EV”toencompassallclassesofsubcellularvesiclesproducedasaconsequenceofapoptosis.Theseincludesmall(~50–1,000nm)aswellaslargervesicles(1toseveralmicronsindiameter),oftenreferredtoas“apoptoticbodies,”whichharborcaspase-modifiedautoantigens,nuclearremnantscontainingcondensedchromatin,andwell-definedorganelles,suchasmitochondriaandendoplasmicreticulum.AmongthesmallervesiclesarelikelytobeexosomesofendosomalpathwayoriginandbuddingplasmamembraneEVsalsoknownasmicrovesiclesorectosomes(27).AswithallEVs,thesizeofApo-EVsmatters—notonlyinrelationtowhatmolecularandorganellecargoescanbecarriedbutalsowithrespecttothespecificcontributionofmolecularcargoes,suchascellsurfaceproteins,tooverallEVsize(Figure2).WhileApo-EVsareundoubtedlyheterogeneousbothinsizeandcontent(28),theunderlyingcausesofthisheterogeneityremainobscure. FIGURE2 Figure2.Considerationsofvesicularcargoesinrelationtoextracellularvesicle(EV)sizes.SchematicrepresentationsofApo-EVsof~500nm(left)and50nm(right)areshownwithdelimitinglipidbilayer(green),asmallmitochondrion(brown),ribosomes(gray),andexamplesofsurfaceproteinsalldrawnapproximatelytoscale.Notethesignificantpotentialimpactofsurfacemoleculesizeontotalvesiclesizeinthecaseofsmallvesiclesdisplayingrelativelylargesurfacemolecules[measurementandrepresentationofcellsurfaceproteinsadaptedfromRef.(29)]. Apo-EVProductionMechanisms Duringapoptosis,caspase-dependentcleavage,andactivationofRho-activatedkinase,ROCKIaltersactomyosincontractility,resultinginmembraneblebbing(30).BlebbingoccursindependentlyofalteredK+andCl−channelactivitythatresultsinincreasedK+permeabilityandthereductionofcellvolumethataccompaniesapoptosis.Instead,blebformationoccursasaconsequenceofdetachmentoftheplasmamembranefromtheactincortexandincreasedhydrostaticpressuregeneratedbytheactomyosinsystem(31).Asaconsequence,thereisrapidlocalinfluxofcytosolicmaterialand“ballooning”ofthemembrane,resultinginblebenlargement.Althoughcytoskeletalproteinsarelackinginnewlyformedblebs,asblebbingprogresses,thereisreassemblyofthecorticalcytoskeletonunderneaththemembrane.TreatmentofcellswiththeROCKinhibitorY-27632reducesboththeformationofapoptoticbodiesandthecapacityforapoptotic-cellclearance(32).FormationofsmallApo-EVsmayalsoberegulatedthroughsimilarROCK-dependentmechanisms(33),asareEVsgeneratedbyavarietyoftumorcelltypes(34). Ithasbeenwidelyassumedthattheplasmamembraneofapoptoticcells,apoptoticblebs,andApo-EVsaremolecularlyhomogeneous,displayingbroadlysimilarchanges,suchasphosphatidylserine(PtdSer)exposure.However,thereisevidencethatapoptoticbodiesexhibitlossofmembraneintegritythatallowslimitedmolecularexchange(35),whichmayallowselectivereleaseofmoleculesthatareabletomodulateinnateinflammatorymechanisms.Proteinreleasefromapoptoticbodies,particularlyofnucleosomalhistones,wasreducedfollowinginhibitionofactivityofeitherROCKormyosinATPase(35).Lossofmembranepermeabilitymaybephasedasapoptosisprogresses,priortothecatastrophiclossofmembraneintegrityduringsecondarynecrosis.FormationofApo-EVsandgraduallossofmembranepermeabilitycouldrepresentamechanismtoprovidetransientprotectionofproteinsfromlocalproteolyticdegradationand/orclearance,potentiallyallowingsignalsrelatingtocellulardemisetobedisseminateddistally,forexampletootherpartsofthetumormicroenvironmentandtometastaticsites. Studiesoftherecognitionandphagocytosisofapoptoticcellshaverevealedpotentiallycontrastingrolesformembraneblebbingandtheformationofapoptoticbodies.Formationofapoptoticblebsmaypromotephagocytosisofapoptoticcells.Compromisedapoptoticcelluptakefollowinginhibitionofblebbing(36)couldbepartiallyreversedbyadditionofthePtdSeropsonin,MFG-E8.OtherphospholipidbindingproteinssuchasC1qhavebeendemonstratedtobindavidlytoapoptoticblebsandC1qbindstoneuronalblebs,actingtoaugmentphagocytosisbymicroglia(37).ROCK-dependenthigh-densityopsonizationofapoptoticblebscouldgenerateatopologythatpromotesphagocyterecognition,providinganexplanationforwhylow-levelPtdSerexposureisnotsufficienttosignalphagocytosisofviablecells.Thus,membraneblebbinglikelyfacilitatesmaintenanceofself-toleranceandsuppressionofantitumorimmunitythroughdirecteffectsonapoptoticcellclearance.Otherphenomenarelatedtovesiculationduringapoptosishavealsobeennotedrecently.Followingthedescriptionofapoptopodia—fineprotuberancesfromapoptoticcellsthatappeartobeinvolvedinthereleaseoflargervarietiesofApo-EVs(>1µm)(38)—EVproductionfromcertainapoptoticcelltypeshasbeenobservedtoinvolvefragmentationofmembraneprotrusionsresemblingbeadsonastring(39).Whilethesignificanceoftheseobservationshasnotbeenfullyelucidated,theyprovidecluesastothemoleculareventsunderlyingtheproductionofApo-EVsandtheircargoloadingpreferences.Intriguingly,Apo-EVsproducedfrombeadedapoptopodiawerefoundtobedepletedofnuclearcomponentsincludinghistonesandnuclearDNA(39)thatarewell-knownconstituentsofapoptoticbodies(40). CargoesandFunctionalActivities WhileEVsostensiblyofnon-apoptoticcelloriginshavebeenthesubjectofintenseresearchincancerbiologyinrecentyears,thebiologyofApo-EVsremainslessclear.FollowingonfromseminalworkshowingthatglioblastomaEVscarryRNAandproteincargoeshavingtumorgrowth-promotingpropertiesandutilityasdiagnosticbiomarkers(41),awealthofevidencenowimplicatesEVsinregulatingtumorgrowthandmetastaticspreadthroughcontrolofangiogenesis,drugresistance,andantitumorimmunity.Furthermore,therolesofEVsinintercellularcommunicationinthetumormicroenvironmentarebecomingbetterdefined.Takingsomerecentexamples,inmurinemelanoma,tumorcell-derivedexosomeshavebeenreportedtopromotetheaccumulationofpro-tumormacrophagesviatheirabilitytoeducatemesenchymalstromalcellswhich,liketumor-associatedmacrophages,areabletopromotemalignantdiseaseviamultiplemodes,includinggrowthfactorproduction,suppressionofantitumorimmunityandangiogenesis(42).EVsfromcirculatingtumorcellsarealsogeneratedunderconditionsofshearflow.TheseEVsmayplayimportantrolesinestablishingthemetastaticnicheinthelungthroughinteractionwiththelungvasculatureandrapidlyaccumulatingmyeloidcells(whichphagocytosethem)(43).ItisnoteworthythatEVsprovideanintercellularsignalingmechanismtotransferdrugresistancetosusceptiblecells.Forexample,transferofresistancetothemulti-receptortyrosinekinaseinhibitordrug,Sunitinibcanbeachievedbyalong,non-codingRNA(lncARSA)whichactsbycompetingforbindingtomir-34andmir-449topromoteAXLandc-METexpressioninrenalcellcarcinomacellsbycarriageinexosomesandtransfertosusceptiblecells,therebypropagatingresistance(44).Intriguingly,EVsisolatedfromcancer-associatedfibroblastsareabletoalterthemetabolicprofileofpancreatictumorcellsthatinteractwith,andinternalizethem(45).MetabolicreprogrammingbyEVsinvolvedinhibitionofoxidativephosphorylationbymitochondriaresultinginpromotionofglycolysisandglutamine-dependentreductivecarboxylation(46)intherecipienttumorcells.Furthermore,EVswerefoundtobecapableoftransferringmultiplemetabolicconstituentsincludingaminoacids,lipids,citrate,andpyruvateamongothers,totumorcellsendowingthemwiththecapacitytogrowinnutrient-deficientmediainvitro(45).TheseresultsstronglysupportthenotionthatEVsinthetumormicroenvironmentprovidetumorcellswithcriticalmetabolicsignalsandconstituentswhichpermitgrowthoftumorclonesunderconditionsofstresssuchashypoxiaandnutrientdeprivation. TheextenttowhichApo-EVs—includingthelargervariety,apoptoticbodies—canperformsimilarlydiversefunctionstotheirnon-apoptoticcounterpartsawaitsdetailedclarification.However,severalstudieswouldtendtosuggestthatApo-EVsrepresentfarmorethanbiological“wastedisposal”units.WesupportthedefinitionofApo-EVsasthoseEVs,regardlessofsizeorcargo,thatareproducedasaconsequenceofactivationoftheapoptosiseffectormachinery(suchasexecutionercaspaseactivation)andthatultimatelyresultsincelldeath.Thus,activeApo-EVproductionpresagescelldeathandamajorchallengefortheallocationoffunctionalpropertiestoApo-EVsspecificallywillbetheirdiscriminationfromEVsproducedbycellsactivatedbyother(forexample,stress)pathways,includingthoseenroutetoapoptosis.LikeallEVs,Apo-EVsareovertlyheterogeneousasillustratedbytheirsizeprofilealone,which,rangesfromaround30nmtoseveralmicrons(47,48).TowhatextentsizeofApo-EVsrelatestofunctionalpropertiesislargelyunknown,althoughsmallEVs(30–100nm,whichtheauthorstermed“exosome-like”)producedbyvascularendothelialcellsdownstreamofcaspase-3activationwerefoundtobedistinctfromtheirlargercounterparts(microvesiclesandapoptoticbodies)bothincargocompositionandbiologicalfunction(48).Vascularendothelialcell-derivedapoptoticbodiescarryhistonesandothernuclearproteinsaswellasabundantmarkersoforganellesincludingmitochondria,endoplasmicreticulum,andribosomes(48),confirmingobservationsofapoptoticbodycargoesinothersystems.Bycontrast,theexosome-likeEVswerefoundtobeenrichedinlysosomal,basementmembraneandextracellularmatrixproteins(48).Intriguingly,certainhallmarkproteinsofexosomes,includingTSG101,CD9,andCD81,weremissingfromtheexosome-likeEVswhereasothers,notablyfibronectin,synteninandtranslationallycontrolledtumorprotein(TCTP)werepresent.Critically,exosome-likeEVswerefoundtobeimmunogenic,incontrasttoapoptoticbodies(48),confirmingthepresumptionthatthelatter,asmajorremnantsofapoptoticcells,aregenerallytolerogenic. TheserecentstudiesextendearlierinvestigationsdemonstratingthesegregationofnuclearcomponentsintogranularandvesicularstructuresandextrusionfromthecellinEV-likestructuresandapoptoticbodies(49–54).Strikingly,DNAandRNAfromapoptoticcellshavebeendescribedassegregatingintonon-overlappingvesicularentities,addingtothecomplexityofApo-EVheterogeneity.Itiswellestablishedthattheblebsofapoptoticcellsurfacesharborantigensofcommonsignificanceinautoimmunedisease,includingtheribonucleoproteinsLaandRoandnucleosomalDNA(55).Theimmunogenicityofexosome-likeEVsfromapoptoticendothelialcellsaddsafurtherdimensiontothisphenomenon.Thus,theC-terminalfragment(LG3)ofthebasementmembranecomponentPerlecancarriedbytheexosome-likeEVsishighlyimmunogenicandmayberesponsiblefortheproductionofautoantibodiesthatcanseverelycompromisesuccessfulrenaltransplantation(48).Substantialfurtherinvestigationsarewarrantedinordertoclarifythedifferentialcapacityofapoptoticcellsandtheirderivedvesiclestomodulatetoleranceandimmunity. Besidesimmuno-regulatoryproperties,Apo-EVshaveadditionalfunctionalattributesbased,likeotherEVclasses,ontheirabilitytotransferbioactivemoleculesto“target”cells.Forexample,apoptoticbodies(1–4µm)derivedfrommatureendothelialcellshavebeenshowntostimulatetheproliferationanddifferentiationofcirculatingendothelialprogenitorcells(56).Indeed,Apo-EVsofendothelialcellorigincarryavarietyofbiologicallyactivecomponentsinadditiontotheaforementionedimmunogenicPerlecanLG3,includingTCTP,whichcaninhibitapoptosisinvascularsmoothmusclecells(57).Apo-EVsmayalsoallowthetransferofintactorganellesbetweencells.Inthiscontext,itisnoteworthythatmitochondrialtransferviaEVsmayrepresentanimportantresponsetostressfulconditionsasexemplifiedbythetransferofintactmitochondriafromastrocytestoneuronsinordertoprovidesurvivalsignalsduringtheischemicconditionsofstroke(58).OneofthemostintriguingcargoesofApo-EVsisgenomicDNAsinceithasbeenshownthatapoptoticbodiesareabletomediatethehorizontaltransferofDNAbetweensomaticcells.WhilethedetailsofthemodesoftransferandfundamentalrolesofApo-EVs(versustheremnantsofapoptoticcells)havenotbeenstudied,DNAfromapoptoticcellscanundoubtedlybetransferredtoneighboringcellsincludingtumorcells,endothelialcells,fibroblasts,andmacrophagesleadingtoapoptoticcell-derivedgeneexpressionintherecipientcells.Innormalphysiology,cellsareprotectedbyaDNAdamageresponserequiringDNAseII,Chk2,andp53/p21,anddeficiencyinp53andp21canultimatelyrendermurineembryonicfibroblastsoncogenicfollowingtransferofDNAfromapoptoticcellsharboringc-mycorH-Rasoncogenesincombinationwithadrugresistancegene(59–61).TheseresultshavesignificantimplicationsnotonlyforgenomicstabilityandheterogeneityoftumorcellsbutalsofortheacquisitionofaberrantDNAbynon-tumorcellcomponentsoftheORN,notablyendothelialcells,macrophagesandfibroblasts,allofwhichhaveknowncapacitytoengulfapoptoticcellsandbodies.SuchgeneticchangesintheORNcouldprovideimportantpro-oncogenicsignalseveniftheresultant“exogenous”geneexpressionistransient. ConclusionandFuturePerspectives Whileitisclearthatthebreakdownofapoptoticcellsintomembrane-boundedfragmentsofbroadsizerangesvariesbetweendifferentcelltypes,thefullextentofthefunctionalpropertiesofApo-EVsremainsunknown.Ithasbeenreportedthatformationof“bite-sized”apoptoticbodiescanaidinthephagocyticclearanceofdyingcells(36).Thismaybeimportantfortheapoptotic-cellclearanceprocessesofso-callednon-professional(i.e.,non-macrophage)phagocytes.However,macrophagesandotherphagocyteshaveovertcapacitytoengulfwholeapoptoticcellsrapidly(62).WeproposethatthemostimportantfunctionofApo-EVsinthecontextofcanceristhepropagationofintercellularsignalsoffundamentalimportancetotheORN.Understandingtheirmodesofinteractionwithrecipientcells,theirmechanismsofinternalizationandintracellularprocessingwillbecrucialtounderstandingfullythephysiologicalandpathologicalattributesofApo-EVs.Todate,virtuallynothingisknownoftheseprocesses,althoughitmaybeexpectedthatsomeclearance/engulfmentmechanismsofapoptoticcellsandApo-EVswillprovetosharemolecularcomponents(Figure1).ItisnoteworthyinthiscontextthatPtdSerexposedonEVsisinvolvedintheiruptakebytargetcellsexpressingPtdSerreceptorssuchasTIM-4,knownforphagocytosisofapoptoticcells(63).AcriticalquestioniswhetherendocytosedorphagocytosedApo-EVcargoisnecessarilydegradedbylysosomes,asisgenerallyassumed.Thus,thetargetingmechanismsofApo-EVsalongwiththedestiniesoftheircargoesrequiredetailedclarification. Pro-inflammatoryextracellularvesicles(EVs)areproducedbymacrophagesrespondingtoATPviaP2X7receptors.IthasbeenreportedrecentlythatthisresultsinNLPR3inflammasomeactivationinhumanmacrophages,whichconsequentlyundergovesicle-mediatedunconventionalsecretionofIL-1β(64).Conversely,alveolarmacrophage-derivedEVshavebeenshowntosuppressairwayinflammation(65).Thus,thevesicularintercommunicationthatresultsfromtissuedamageislikelytoinvolveavariedmixofvesiclepopulations,includingpro-andanti-inflammatory,derivednotonlyfromdyingcellsbutalsofromtheirresponsiveneighborsorrecruitedphagocytes(Figure1).SincetheORNrepresentsasectorofthetumormicroenvironmentengagedindysregulated,celldeath-driventissuerepairandregeneration,itseemslikelythattheintercellularcommunicationssoachievedbyEVsoftheORNwillprovetooverlapwiththoseinhealingorchronicwounds.Futureworkaimedatidentifyingtheunderlyingmechanismsmayyieldnovelmoleculartargetsforbothcancerandwoundtreatments. AuthorContributions Bothauthorsplannedandco-wrotethemanuscript. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Funding Theauthors’researchisfundedbyBloodwiseandtheMedicalResearchCouncil(UK). References 1.KorsmeyerSJ.Bcl-2initiatesanewcategoryofoncogenes:regulatorsofcelldeath.Blood(1992)80:879–86. GoogleScholar 2.WesthoffMA,MarschallN,DebatinKM.Novelapproachestoapoptosis-inducingtherapies.AdvExpMedBiol(2016)930:173–204.doi:10.1007/978-3-319-39406-0_8 PubMedAbstract|CrossRefFullText|GoogleScholar 3.DelbridgeAR,PangSH,VandenbergCJ,GrabowS,AubreyBJ,TaiL,etal.RAG-inducedDNAlesionsactivateproapoptoticBIMtosuppresslymphomagenesisinp53-deficientmice.JExpMed(2016)213(10):2039–48.doi:10.1084/jem.20150477 PubMedAbstract|CrossRefFullText|GoogleScholar 4.HanahanD,WeinbergRA.Thehallmarksofcancer.Cell(2000)100:57–70.doi:10.1016/S0092-8674(00)81683-9 CrossRefFullText|GoogleScholar 5.BergmannA,StellerH.Apoptosis,stemcells,andtissueregeneration.SciSignal(2010)3:re8.doi:10.1126/scisignal.3145re8 PubMedAbstract|CrossRefFullText|GoogleScholar 6.VrizS,ReiterS,GalliotB.Celldeath:aprogramtoregenerate.CurrTopDevBiol(2014)108:121–51.doi:10.1016/B978-0-12-391498-9.00002-4 PubMedAbstract|CrossRefFullText|GoogleScholar 7.FuchsY,StellerH.Livetodieanotherway:modesofprogrammedcelldeathandthesignalsemanatingfromdyingcells.NatRevMolCellBiol(2015)16:329–44.doi:10.1038/nrm3999 PubMedAbstract|CrossRefFullText|GoogleScholar 8.Perez-GarijoA,StellerH.Spreadingtheword:non-autonomouseffectsofapoptosisduringdevelopment,regenerationanddisease.Development(2015)142:3253–62.doi:10.1242/dev.127878 PubMedAbstract|CrossRefFullText|GoogleScholar 9.DabrowskaC,LiM,FanY.Apoptoticcaspasesinpromotingcancer:implicationsfromtheirrolesindevelopmentandtissuehomeostasis.AdvExpMedBiol(2016)930:89–112.doi:10.1007/978-3-319-39406-0_4 PubMedAbstract|CrossRefFullText|GoogleScholar 10.LeonciniL,DelVecchioMT,MeghaT,BarbiniP,GalieniP,PileriS,etal.Correlationsbetweenapoptoticandproliferativeindicesinmalignantnon-Hodgkin’slymphomas.AmJPathol(1993)142:755–63. PubMedAbstract|GoogleScholar 11.TormanenU,EerolaAK,RainioP,VahakangasK,SoiniY,SormunenR,etal.Enhancedapoptosispredictsshortenedsurvivalinnon-smallcelllungcarcinoma.CancerRes(1995)55:5595–602. PubMedAbstract|GoogleScholar 12.StammlerG,SauerbreyA,ZintlF,VolmM.Apoptoticindex,Fasandbcl-2ininitialandrelapsedchildhoodacutelymphoblasticleukaemia.Apoptosis(1997)2:377–83.doi:10.1023/A:1026405707823 PubMedAbstract|CrossRefFullText|GoogleScholar 13.SymmansWF,CangiarellaJF,SymmansPJ,CohenJM,YeeHT,BennettG,etal.Apoptoticindexfromfineneedleaspirationcytologyasacriteriontopredicthistologicgradeofnon-Hodgkin’slymphoma.ActaCytol(2000)44:194–204.doi:10.1159/000326360 PubMedAbstract|CrossRefFullText|GoogleScholar 14.DworakowskaD,JassemE,JassemJ,KarmolinskiA,DworakowskiR,WirthT,etal.Clinicalsignificanceofapoptoticindexinnon-smallcelllungcancer:correlationwithp53,mdm2,pRbandp21WAF1/CIP1proteinexpression.JCancerResClinOncol(2005)131:617–23.doi:10.1007/s00432-005-0010-7 PubMedAbstract|CrossRefFullText|GoogleScholar 15.HilskaM,CollanYU,VJOL,KossiJ,HirsimakiP,LaatoM,etal.Thesignificanceoftumormarkersforproliferationandapoptosisinpredictingsurvivalincolorectalcancer.DisColonRectum(2005)48:2197–208.doi:10.1007/s10350-005-0202-x PubMedAbstract|CrossRefFullText|GoogleScholar 16.SunB,SunY,WangJ,ZhaoX,WangX,HaoX.Extent,relationshipandprognosticsignificanceofapoptosisandcellproliferationinsynovialsarcoma.EurJCancerPrev(2006)15:258–65.doi:10.1097/01.cej.0000198896.02185.68 PubMedAbstract|CrossRefFullText|GoogleScholar 17.BoderJ,AbdallaF,ElfagiehM,BuhmeidaA,CollanY.ApoptoticactivityinLibyanbreastcancer.WorldJSurgOncol(2012)10:102.doi:10.1186/1477-7819-10-102 PubMedAbstract|CrossRefFullText|GoogleScholar 18.HuQ,PengJ,LiuW,HeX,CuiL,ChenX,etal.Elevatedcleavedcaspase-3isassociatedwithshortenedoverallsurvivalinseveralcancertypes.IntJClinExpPathol(2014)7:5057–70. PubMedAbstract|GoogleScholar 19.BaireyO,ZimraY,ShaklaiM,OkonE,RabizadehE.Bcl-2,Bcl-X,Bax,andBakexpressioninshort-andlong-livedpatientswithdiffuselargeB-celllymphomas.ClinCancerRes(1999)5:2860–6. PubMedAbstract|GoogleScholar 20.IchimG,LopezJ,AhmedSU,MuthalaguN,GiampazoliasE,DelgadoME,etal.LimitedmitochondrialpermeabilizationcausesDNAdamageandgenomicinstabilityintheabsenceofcelldeath.MolCell(2015)57:860–72.doi:10.1016/j.molcel.2015.01.018 PubMedAbstract|CrossRefFullText|GoogleScholar 21.LiF,HuangQ,ChenJ,PengY,RoopDR,BedfordJS,etal.Apoptoticcellsactivatethe“phoenixrising”pathwaytopromotewoundhealingandtissueregeneration.SciSignal(2010)3:ra13.doi:10.1126/scisignal.2000634 CrossRefFullText|GoogleScholar 22.HuangQ,LiF,LiuX,LiW,ShiW,LiuFF,etal.Caspase3-mediatedstimulationoftumorcellrepopulationduringcancerradiotherapy.NatMed(2011)17:860–6.doi:10.1038/nm.2385 PubMedAbstract|CrossRefFullText|GoogleScholar 23.FordCA,PetrovaS,PoundJD,VossJJ,MelvilleL,PatersonM,etal.OncogenicpropertiesofapoptotictumorcellsinaggressiveBcelllymphoma.CurrBiol(2015)25:577–88.doi:10.1016/j.cub.2014.12.059 PubMedAbstract|CrossRefFullText|GoogleScholar 24.LauberK,HerrmannM.Tumorbiology:withalittlehelpfrommydyingfriends.CurrBiol(2015)25:R198–201.doi:10.1016/j.cub.2015.01.040 PubMedAbstract|CrossRefFullText|GoogleScholar 25.GregoryCD,FordCA,VossJJ.Microenvironmentaleffectsofcelldeathinmalignantdisease.AdvExpMedBiol(2016)930:51–88.doi:10.1007/978-3-319-39406-0_3 PubMedAbstract|CrossRefFullText|GoogleScholar 26.GregoryCD,PatersonM.Anapoptosis-driven‘onco-regenerativeniche’:rolesoftumour-associatedmacrophagesandextracellularvesicles.PhilosTransRSocLondBBiolSci(2018)373:1–9.doi:10.1098/rstb.2017.0003 PubMedAbstract|CrossRefFullText|GoogleScholar 27.LynchC,PanagopoulouM,GregoryCD.Extracellularvesiclesarisingfromapoptoticcellsintumors:rolesincancerpathogenesisandpotentialclinicalapplications.FrontImmunol(2017)8:1174.doi:10.3389/fimmu.2017.01174 PubMedAbstract|CrossRefFullText|GoogleScholar 28.TuriakL,MisjakP,SzaboTG,AradiB,PalocziK,OzohanicsO,etal.Proteomiccharacterizationofthymocyte-derivedmicrovesiclesandapoptoticbodiesinBALB/cmice.JProteomics(2011)74:2025–33.doi:10.1016/j.jprot.2011.05.023 PubMedAbstract|CrossRefFullText|GoogleScholar 29.BarclayAN,BrownM,LawSKA,McKnightA,TomlinsonM,vanderMerwePA.TheLeucocyteAntigenFactsbook.London:AcademicPress(1997). GoogleScholar 30.ColemanML,SahaiEA,YeoM,BoschM,DewarA,OlsonMF.Membraneblebbingduringapoptosisresultsfromcaspase-mediatedactivationofROCKI.NatCellBiol(2001)3:339–45.doi:10.1038/35070009 PubMedAbstract|CrossRefFullText|GoogleScholar 31.CharrasGT,YarrowJC,HortonMA,MahadevanL,MitchisonTJ.Non-equilibrationofhydrostaticpressureinblebbingcells.Nature(2005)435:365–9.doi:10.1038/nature03550 PubMedAbstract|CrossRefFullText|GoogleScholar 32.OrlandoKA,StoneNL,PittmanRN.Rhokinaseregulatesfragmentationandphagocytosisofapoptoticcells.ExpCellRes(2006)312:5–15.doi:10.1016/j.yexcr.2005.09.012 PubMedAbstract|CrossRefFullText|GoogleScholar 33.SapetC,SimonciniS,LoriodB,PuthierD,SampolJ,NguyenC,etal.Thrombin-inducedendothelialmicroparticlegeneration:identificationofanovelpathwayinvolvingROCK-IIactivationbycaspase-2.Blood(2006)108:1868–76.doi:10.1182/blood-2006-04-014175 PubMedAbstract|CrossRefFullText|GoogleScholar 34.LiB,AntonyakMA,ZhangJ,CerioneRA.RhoAtriggersaspecificsignalingpathwaythatgeneratestransformingmicrovesiclesincancercells.Oncogene(2012)31:4740–9.doi:10.1038/onc.2011.636 PubMedAbstract|CrossRefFullText|GoogleScholar 35.WickmanGR,JulianL,MardilovichK,SchumacherS,MunroJ,RathN,etal.Blebsproducedbyactin-myosincontractionduringapoptosisreleasedamage-associatedmolecularpatternproteinsbeforesecondarynecrosisoccurs.CellDeathDiffer(2013)20:1293–305.doi:10.1038/cdd.2013.69 PubMedAbstract|CrossRefFullText|GoogleScholar 36.OrlandoKA,PittmanRN.Rhokinaseregulatesphagocytosis,surfaceexpressionofGlcNAc,andGolgifragmentationofapoptoticPC12cells.ExpCellRes(2006)312:3298–311.doi:10.1016/j.yexcr.2005.09.012 PubMedAbstract|CrossRefFullText|GoogleScholar 37.FraserDA,PisalyaputK,TennerAJ.C1qenhancesmicroglialclearanceofapoptoticneuronsandneuronalblebs,andmodulatessubsequentinflammatorycytokineproduction.JNeurochem(2010)112:733–43.doi:10.1111/j.1471-4159.2009.06494.x PubMedAbstract|CrossRefFullText|GoogleScholar 38.PoonIK,ChiuYH,ArmstrongAJ,KinchenJM,JuncadellaIJ,BaylissDA,etal.Unexpectedlinkbetweenanantibiotic,pannexinchannelsandapoptosis.Nature(2014)507:329–34.doi:10.1038/nature13147 PubMedAbstract|CrossRefFullText|GoogleScholar 39.Atkin-SmithGK,TixeiraR,PaoneS,MathivananS,CollinsC,LiemM,etal.Anovelmechanismofgeneratingextracellularvesiclesduringapoptosisviaabeads-on-a-stringmembranestructure.NatCommun(2015)6:7439.doi:10.1038/ncomms8439 PubMedAbstract|CrossRefFullText|GoogleScholar 40.WickmanG,JulianL,OlsonMF.Howapoptoticcellsaidintheremovaloftheirowncolddeadbodies.CellDeathDiffer(2012)19:735–42.doi:10.1038/cdd.2012.25 PubMedAbstract|CrossRefFullText|GoogleScholar 41.SkogJ,WurdingerT,vanRijnS,MeijerDH,GaincheL,Sena-EstevesM,etal.GlioblastomamicrovesiclestransportRNAandproteinsthatpromotetumourgrowthandprovidediagnosticbiomarkers.NatCellBiol(2008)10:1470–6.doi:10.1038/ncb1800 PubMedAbstract|CrossRefFullText|GoogleScholar 42.LinLY,DuLM,CaoK,HuangY,YuPF,ZhangLY,etal.Tumourcell-derivedexosomesendowmesenchymalstromalcellswithtumour-promotioncapabilities.Oncogene(2016)35(46):6038–42.doi:10.1038/onc.2016.131 PubMedAbstract|CrossRefFullText|GoogleScholar 43.HeadleyMB,BinsA,NipA,RobertsEW,LooneyMR,GerardA,etal.Visualizationofimmediateimmuneresponsestopioneermetastaticcellsinthelung.Nature(2016)531:513–7.doi:10.1038/nature16985 PubMedAbstract|CrossRefFullText|GoogleScholar 44.QuL,DingJ,ChenC,WuZJ,LiuB,GaoY,etal.Exosome-transmittedlncARSRpromotessunitinibresistanceinrenalcancerbyactingasacompetingendogenousRNA.CancerCell(2016)29:653–68.doi:10.1016/j.ccell.2016.03.004 PubMedAbstract|CrossRefFullText|GoogleScholar 45.ZhaoH,YangL,BaddourJ,AchrejaA,BernardV,MossT,etal.Tumormicroenvironmentderivedexosomespleiotropicallymodulatecancercellmetabolism.Elife(2016)5:e10250.doi:10.7554/eLife.10250 PubMedAbstract|CrossRefFullText|GoogleScholar 46.MullenAR,WheatonWW,JinES,ChenPH,SullivanLB,ChengT,etal.Reductivecarboxylationsupportsgrowthintumourcellswithdefectivemitochondria.Nature(2011)481:385–8.doi:10.1038/nature10642 PubMedAbstract|CrossRefFullText|GoogleScholar 47.AkersJC,GondaD,KimR,CarterBS,ChenCC.Biogenesisofextracellularvesicles(EV):exosomes,microvesicles,retrovirus-likevesicles,andapoptoticbodies.JNeurooncol(2013)113:1–11.doi:10.1007/s11060-013-1084-8 PubMedAbstract|CrossRefFullText|GoogleScholar 48.DieudeM,BellC,TurgeonJ,BeillevaireD,PomerleauL,YangB,etal.The20Sproteasomecore,activewithinapoptoticexosome-likevesicles,inducesautoantibodyproductionandacceleratesrejection.SciTranslMed(2015)7:318ra200.doi:10.1126/scitranslmed.aac9816 PubMedAbstract|CrossRefFullText|GoogleScholar 49.BalajL,LessardR,DaiL,ChoYJ,PomeroySL,BreakefieldXO,etal.Tumourmicrovesiclescontainretrotransposonelementsandamplifiedoncogenesequences.NatCommun(2011)2:180.doi:10.1038/ncomms1180 PubMedAbstract|CrossRefFullText|GoogleScholar 50.HalickaHD,BednerE,DarzynkiewiczZ.SegregationofRNAandseparatepackagingofDNAandRNAinapoptoticbodiesduringapoptosis.ExpCellRes(2000)260:248–56.doi:10.1006/excr.2000.5027 PubMedAbstract|CrossRefFullText|GoogleScholar 51.BiggiogeraM,BottoneMG,PellicciariC.NuclearRNAisextrudedfromapoptoticcells.JHistochemCytochem(1998)46:999–1005.doi:10.1177/002215549804600903 PubMedAbstract|CrossRefFullText|GoogleScholar 52.BiggiogeraM,BottoneMG,MartinTE,UchiumiT,PellicciariC.StillimmunodetectablenuclearRNPsareextrudedfromthecytoplasmofspontaneouslyapoptoticthymocytes.ExpCellRes(1997)234:512–20.doi:10.1006/excr.1997.3657 PubMedAbstract|CrossRefFullText|GoogleScholar 53.BiggiogeraM,BottoneMG,PellicciariC.Nuclearribonucleoprotein-containingstructuresundergosevererearrangementduringspontaneousthymocyteapoptosis.Amorphologicalstudybyelectronmicroscopy.HistochemCellBiol(1997)107:331–6.doi:10.1007/s004180050118 PubMedAbstract|CrossRefFullText|GoogleScholar 54.ScovassiAI,BottoneMG,BiggiogeraM,PellicciariC.Dynamicrelocationofnuclearproteinsduringtheexecutionphaseofapoptosis.BiochemPharmacol(2008)76:1440–50.doi:10.1016/j.bcp.2008.06.005 PubMedAbstract|CrossRefFullText|GoogleScholar 55.Casciola-RosenLA,AnhaltG,RosenA.Autoantigenstargetedinsystemiclupuserythematosusareclusteredintwopopulationsofsurfacestructuresonapoptotickeratinocytes.JExpMed(1994)179:1317–30.doi:10.1084/jem.179.4.1317 PubMedAbstract|CrossRefFullText|GoogleScholar 56.HristovM,ErlW,LinderS,WeberPC.Apoptoticbodiesfromendothelialcellsenhancethenumberandinitiatethedifferentiationofhumanendothelialprogenitorcellsinvitro.Blood(2004)104:2761–6.doi:10.1182/blood-2003-10-3614 PubMedAbstract|CrossRefFullText|GoogleScholar 57.SiroisI,RaymondMA,BrassardN,CailhierJF,FedjaevM,HamelinK,etal.Caspase-3-dependentexportofTCTP:anovelpathwayforantiapoptoticintercellularcommunication.CellDeathDiffer(2011)18:549–62.doi:10.1038/cdd.2010.126 PubMedAbstract|CrossRefFullText|GoogleScholar 58.HayakawaK,EspositoE,WangX,TerasakiY,LiuY,XingC,etal.Transferofmitochondriafromastrocytestoneuronsafterstroke.Nature(2016)535:551–5.doi:10.1038/nature18928 PubMedAbstract|CrossRefFullText|GoogleScholar 59.HolmgrenL,SzelesA,RajnavolgyiE,FolkmanJ,KleinG,ErnbergI,etal.HorizontaltransferofDNAbytheuptakeofapoptoticbodies.Blood(1999)93:3956–63. PubMedAbstract|GoogleScholar 60.BergsmedhA,SzelesA,HenrikssonM,BrattA,FolkmanMJ,SpetzAL,etal.Horizontaltransferofoncogenesbyuptakeofapoptoticbodies.ProcNatlAcadSciUSA(2001)98:6407–11.doi:10.1073/pnas.101129998 PubMedAbstract|CrossRefFullText|GoogleScholar 61.BergsmedhA,EhnforsJ,KawaneK,MotoyamaN,NagataS,HolmgrenL.DNaseIIandtheChk2DNAdamagepathwayformageneticbarrierblockingreplicationofhorizontallytransferredDNA.MolCancerRes(2006)4:187–95.doi:10.1158/1541-7786.MCR-05-0262 PubMedAbstract|CrossRefFullText|GoogleScholar 62.SavillJ.Theinnateimmunesystem:recognitionofapoptoticcells.In:GregoryCD,editor.ApoptosisandtheImmuneResponse.NewYork:Wiley-Liss(1995).p.341–69. GoogleScholar 63.FrenchKC,AntonyakMA,CerioneRA.Extracellularvesicledockingatthecellularport:extracellularvesiclebindinganduptake.SeminCellDevBiol(2017)67:48–55.doi:10.1016/j.semcdb.2017.01.002 PubMedAbstract|CrossRefFullText|GoogleScholar 64.ValimakiE,CyprykW,VirkanenJ,NurmiK,TurunenPM,EklundKK,etal.Calpainactivityisessentialforatp-drivenunconventionalvesicle-mediatedproteinsecretionandinflammasomeactivationinhumanmacrophages.JImmunol(2016)197(8):3315–25.doi:10.4049/jimmunol.1501840 PubMedAbstract|CrossRefFullText|GoogleScholar 65.HanCZ,JuncadellaIJ,KinchenJM,BuckleyMW,KlibanovAL,DrydenK,etal.Macrophagesredirectphagocytosisbynon-professionalphagocytesandinfluenceinflammation.Nature(2016)539:570–4.doi:10.1038/nature20141 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:extracellularvesicles,apoptosis,inflammationandcancer,tumormicroenvironment,angiogenesis,tissuerepairandregeneration,macrophageactivation,tumorbiology Citation:GregoryCDandDransfieldI(2018)ApoptoticTumorCell-DerivedExtracellularVesiclesasImportantRegulatorsoftheOnco-RegenerativeNiche.Front.Immunol.9:1111.doi:10.3389/fimmu.2018.01111 Received:07March2018;Accepted:03May2018;Published:23May2018 Editedby: ShoheiHori,TheUniversityofTokyo,Japan Reviewedby: AiKotani,TokaiUniversityIseharaHospital,JapanNaohiroSeo,MieUniversity,Japan Copyright:©2018GregoryandDransfield.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightownerarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:ChristopherD.Gregory,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1The Hallmarks of Cancer | Request PDF - ResearchGate
February 2000; Cell 100(1):57-70 ... In 2000, Hanahan and Weinberg generalized the hallmarks of c...
- 2The Hallmarks of Cancer - Cell Press
Review| Volume 100, ISSUE 1, P57-70, January 07, 2000 ... There are more than 100 distinct types ...
- 3Cancer Immunotherapy: Chapter 27. Tumor-associated ...
Cell. 2000;100:57– 70. Hanamoto H, Nakayama T, Miyazato H, et al. Expression of CCL28 by ReedSter...
- 4How cell death shapes cancer - Nature
Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different ge...
- 5Frontiers | Apoptotic Tumor Cell-Derived Extracellular Vesicles ...
Cells undergoing apoptosis produce heterogeneous populations of membrane ... Cell (2000) 100:57–7...