4. Basic Digital Circuits
文章推薦指數: 80 %
An alternative design for the 3-input NAND gate uses CMOS transistors as building blocks, as shown in Figure 4.2. This circuit needs only 6 transistors, ...
« 3.MethodofLogicalEffort
::
Contents
::
5.CombinationalLogic »
4.BasicDigitalCircuits¶
Digitalcircuitsarecompositionsoflogicgates.Asmallnumberof
digitalcircuitsoccurfrequentlyinlargerdigitaldesigns,suchas
multiplexers,encoders,decoders,andmemoryelements.Inthis
chapter,weusethemethodoflogicaleffortto
studythosebasicdigitalcircuitsthatserveasbuildingblocksfor
theconstructionoflargerdigitalsystems.
4.1.LogicGates¶
InSectionLogicGates,weintroducelogicgates
withoneandtwoinputs.Often,weneedgateswithmorethan2
inputs,orwishtodesignnewlogicgatesforspecificlogicfunctions
ortimingbehavior.Inthefollowingwestudythedesignand
characterizationoflogicgatesaselementarybuildingblocksfor
digitalcircuits.
4.1.1.LogicGateswithMultipleInputs¶
AssumewedesignadigitalcircuitandneedaNANDgatewith3inputs.
Wemayassemblethe3-inputNANDgateusing2-inputNAND
gatesandaninverterasbuildingblocks,
seeFigure4.1.UsingBooleanalgebra,itis
straightforwardtoshowthatthiscircuitimplementsthelogic
function\(Y=\overline{A\,B\,C}.\)Thereareseveralproblems
withthisimplementation,though.First,thedelayfrominputs
\(A\)and\(B\)to\(Y\)islargerthanfrominput
\(C.\)Suchasymmetriescanbeconfusingwhendesigninglarger
circuitswithdelayconstraints.Second,thedelayofthelongest
pathislargerthannecessary,and,third,theCMOSimplementation
needs10transistors,whichisalsomorethannecessary.
Figure4.1:3-inputNANDgatebuiltfrom2-inputNANDgates.
Analternativedesignforthe3-inputNANDgateusesCMOStransistors
asbuildingblocks,asshowninFigure4.2.This
circuitneedsonly6transistors,andissymmetricw.r.t.itsinputs.
Output\(Y\)is0onlyifallinputsare1.
A=0
B=0
C=0
Figure4.2:CMOScircuitof3-inputNANDgateandinteractiveswitchmodel.
ThecircuittopologyinFigure4.2extendsto
\(n\)-inputNANDgatesfor\(n\ge2\):compose\(n\)pMOS
transistorsinparalleland\(n\)nMOStransistorsinseries.[1]TheseriescompositionofthenMOStransistorsdetermines
theon-resistanceofthepull-downpath.Thelargernumberofinputs,
thesmallerthepull-downcurrentand,hence,thelargerthedelayof
thegate.Themodeloflogicaleffortreflects
thisdependenceofdelayonthenumberofinputsinthelogicaleffort
ofthegate.Thematched\(n\)-inputNANDgateincreasesthe
widthofthenMOStransistorstomatchthedrivecurrentofthe
referenceinverter.Increasingthetransistorwidthsreducesthe
on-resistanceattheexpenseofincreasingtheinputcapacitanceof
thegate.Thistransistorsizingdoesnotsolvetheproblemthatthe
delayincreaseswithincreasingnumbersofinputs.Itmerelyshifts
theburdenfromthegateitselftoitsdriver.
Todeterminethelogicaleffortandparasiticdelayofthe3-input
NANDgate,wesizethetransistorstomatchtheoutputcurrentofthe
referenceinverter.Figure4.3showsthematched3-input
NANDgatewithtransistorwidths.Whenallinputsare1,allthree
nMOStransistorsareswitchedon.Theseriesofon-resistancessums
toatotalof\(3R_n(nand).\)Tobeequaltoon-resistance
\(R_n(inv)\)ofthereferenceinverter,weneedtotriplethe
widthsofthenMOStransistorsoftheNANDgate,\(W_n(nand)=3
W_n(inv)=3.\)IfoneoftheNANDinputsis0,thenonepMOS
transistorisswitchedon.Tomatchtheon-resistanaceofthe
referenceinverter,weassignthesamewidth\(W_p(nand)=
W_p(inv)=2\)tothepMOStransistorsoftheNANDgate.Ifmorethan
oneNANDinputis0,thentheparallelcompositionofpMOStransistors
hasaloweron-resistancethanforasingleinput.Thecorresponding
pull-updelayissmallerifonlyoneinputis0.Therefore,using
normalizedpMOSwidthsof2unitsmatchesthereferenceinverterin
theworstcasewhenthepull-updelayoftheNANDgateislargest.
Figure4.3:Matched3-inputNANDgate.
Thematched3-inputNANDgateenablesustodeterminethelogical
effortofa3-inputNANDgatebymeansofthenormalizedinput
capacitances.Eachinput,e.g.input\(A,\)drivestwoparallel
gatecapacitancesofonepMOSandonenMOStransistor:
\[C_{in}(A)=W_p(A)+W_n(A)=2+3=5\,.\]
Therefore,thelogicaleffortofthe3-inputNANDgateis
\[g_{nand3}=\frac{C_{in}(A)}{C_{in}(inv)}=\frac{5}{3}\]
perinput.Notethatthelogicaleffortofthe3-inputNANDgateisby
\(1/3\)largerthanthelogicaleffortofthe2-inputNANDgate.
Furthermore,wedeterminetheparasiticdelayofthe3-inputNANDgate
bycalculatingthenormalizedoutputcapacitance:
\[C_{out}(nand3)=W_p(A)+W_p(B)+W_p(C)+W_n(A)=3\cdot2+3=9\,.\]
Thus,theparasiticdelayofa3-inputNANDgateis
\[p_{nand3}=\frac{C_{out}(nand3)}{C_{out}(inv)}=\frac{9}{3}=3\,.\]
Wefindthattheparasiticdelayofthe3-inputNANDgateisbyone
delayunitlargerthanthatofthe2-inputNANDgate.
ForNANDgateswith\(n\)inputs,thematchedgatehasnMOS
transistorsofwidth\(n\)andpMOStransistorsofwidth2.
Therefore,thelogicaleffortofthe\(n\)-inputNANDgateis
(1)\[g_{nandn}=\frac{n+2}{3}\]
perinput,andhasparasiticdelay
(2)\[p_{nandn}=\frac{n\cdot2+n}{3}=n\,.\]
Thelargerthenumberofinputs\(n,\)thelargerthelogical
effortandtheparasiticdelayoftheNANDgate.Asaconsequence,
themoreinputsthegatehas,thesloweritis,or,fromthecircuit
designerperspective,themoreeffortweneedtoinvestinthedriver
circuittokeepthepathdelaylow.
Thedesignofan\(n\)-inputNORgateprocedesanalogouslytothe\(n\)-inputNANDgate.
The\(n\)-inputNORgatehas\(n\)parallelnMOStransistors
and\(n\)pMOStransistorsinseries.Thematched\(n\)-input
NORgatehasnMOStransistorsofwidth\(W_n=1\)andpMOS
transistorsofwidth\(W_p=2n.\)Asaresulteachinputofthe
\(n\)-inputNORgatehaslogicaleffort
\[g_{norn}=\frac{2n+1}{3}\,,\]
andtheparasiticdelayofthegateis
\[p_{norn}=\frac{n\cdot1+2n}{3}=n\,.\]
Forexample,a3-inputNORgatehaslogicaleffort\(g_{nor3}=
7/3\)perinputandparasiticdelay\(p_{nor3}=3.\)Thelogical
effortofan\(n\)-inputNORgateislargerthanthelogicaleffort
ofan\(n\)-inputNANDgate.Thus,ifwehavethechoiceto
implementthelogicofacircuitpathwithNANDgatesorNORgates,
wecommonlypreferNANDgates,becausetheytendtoyieldlowerpath
delays.
4.1.2.Tree-StructuredLogicGates¶
Whenthenumberofinputsoflogicgatesislarge,tree-structured
gatesoffersuperiorperformancecomparedtoCMOSgates.Asa
concreteexample,considera16-inputNANDgate.Thelogicaleffort
ofaCMOSNANDgatewithapull-downnetworkof16nMOStransistorsin
seriesis\(g_{nand16}=6\)accordingtoEquation(1),
andtheparasiticdelayis\(p_{nand16}=16\)accordingto
Equation(2).Figure4.4showsanalternative,
tree-structuredimplementationthatuses2-inputNANDgatesand
invertersasbuildingblocks.Thetreehasapathlogicaleffortof
\(G=g_{nand2}^4g_{inv}^3=3.16,\)andapathparasiticdelay
of\(P=4p_{nand2}+3p_{inv}=11.\)Thetreestructure
improvesbothquantities.
Figure4.4:Atree-structured16-inputNANDgateusing2-inputNANDgatesand
invertersasbuildingblocks.
ThetreestructureoftheNANDcircuitisinspiredbyBooleanalgebra,more
succinctlytheassociativityoftheANDoperation:
\[(A\cdotB)\cdotC=A\cdot(B\cdotC)\,.\]
Associativityimpliesthatwecanparenthesizeanexpressionanyway
wewantto.Wemayevenomittheparenthesesaltogetherbecause,
mathematically,theparenthesizationdoesnotaffectthevalueofthe
expression.Fromtheperspectiveofthecircuitdesigner,however,
parenthesesexpressanevaluationorder.Forexample,givena
binaryANDoperationand8operands\(A_0,A_1,\ldots,A_7,\)
therearemanydifferentevaluationorders.Oneofthemcorrespondsto
theleft-skewedparenthesization
\[(((((((A_0\cdotA_1)\cdotA_2)\cdotA_3)\cdotA_4)\cdotA_5)\cdotA_6)\cdotA_7)\,,\]
whichgroupstheoperationssuchthatall7ANDoperationsmustbe
executedoneaftereachother.Thecorrespondingcircuithasa
depthof7operations.Incontrast,thetree-structured
parenthesizationyieldstheminimumdepthof\(\log_28=3\)
operations:
\[(((A_0\cdotA_1)\cdot(A_2\cdotA_3))\cdot((A_4\cdotA_5)\cdot(A_6\cdotA_7)))\,.\]
Figure4.5showsthecorrespondingcircuits.Wenotethat
thetreestructureisasymptoticallyoptimal,i.e.foralargeenough
numberofinputs\(n,\)noothercircuittopologyhasadepth
smallerthan\(\log_2n,\)uptoconstantfactors.Theconstants
dependonthenumberofinputsofthebuildingblocks.Forexample,
ifwereplacesubtreesofthree2-inputANDgateswithone4-inputAND
gate,thedepthofthetree-structuredANDgateinFigure4.5
decreasesfrom3to2levels.
Figure4.5:Left-skewed(a)andtree-structured(b)conjunctionof8inputswith7binaryANDoperators.
Givenatree-structured\(n\)-inputANDgate,weobtainan
\(n\)-inputNANDgatebycomplementingtheoutput.The16-input
NANDgateinFigure4.4implementseach2-inputANDgateof
thetreewitha2-inputCMOSNANDcircuitfollowedbyaninverter.To
complementtheoutput,weomittheinverterattherootofthetree.
The3-inputNANDgateinFigure4.1isanexampleofan
unbalancedNANDtree,wherethenumberofinputsisnotapowerof
2.Incontrast,thetreesinFigure4.4andFigure4.5
arebalanced,becauseeachpathfrominputtooutputhasthesame
depth,ornumberofgates.
4.1.3.AsymmetricGates¶
Anasymmetricgatehasinputswithdifferentlogicalefforts.
Asymmetricgatesrequireadditionalattentionfromthecircuit
designer,butfacilitatefastercircuitsifusedappropriately.The
asymmetrymaybecausedbythecircuittopologyorbydeliberate
transistorsizingtoreducethedelayofthecriticalpath.We
designamajoritygatetomotivateasymmetriccircuittopologies,
andthendiscusshowtotradelogicaleffortbetweeninputs.
MajorityGate¶
ThemajorityoperationisaternaryBooleanoperation,
cf.majorityfunction:
(3)\[M(A,B,C)=AB+AC+BC\,.\]
Intermsofatruthtablethemajorityoperationisspecifiedas:
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
1
Asthenamesuggests,theoutputofthemajorityoperationisthe
valuethatoccursmoreoftenininputs\(A,\)\(B,\)and
\(C.\)Theinverting3-inputmajoritygateinFigure4.6computesthecomplement\(Y=\overline{M}.\)
A=0
B=0
C=0
Figure4.6:SymmetricCMOScircuitofinverting3-inputmajoritygateandinteractiveswitchmodel.
Wecharacterizethedelayofthemajoritygatebyderivingitslogical
effortandparasiticdelay.Themajoritygatehassixarms,each
ofwhichisaseriescompositionoftwotransistors.Tomatchthe
on-resistancesofthereferenceinverter,wemakethetransistorsin
eacharmofthemajoritygatetwiceaswideasthoseofthereference
inverter.Thus,asshowninFigure4.7,allpMOS
transistorshavewidth\(W_p=4\)andallnMOStransistorshave
width\(W_n=2.\)Thesetransistorwidthsmatchthereference
inverterforallcombinationsofinputvalues,exceptwhenallinput
valuesareequal.Inthiscaseallthreearmsofeitherpull-upor
pull-downnetworkareswitchedon,suchthattheparallelcomposition
yieldsathreetimessmallerequivalenton-resistance.Weclassify
theseinputcombinationsasexceptionallyfast,analogoustothe
exceptionalinputcombinationsoftheNANDorNORgates.
Figure4.7:Matchedinvertingmajoritygate.
EachinputofthemajoritygatedrivestwopMOSandtwonMOS
transistors.Therefore,allthreeinputs\(A,\)\(B,\)and
\(C\)havelogicaleffort
\[g_M(A)=g_M(B)=g_M(C)=\frac{2W_p+2W_n}{C_{in}(inv)}=4\,.\]
Thenormalizedoutputcapacitanceofthemajoritygateconsistsof
threepMOSandthreenMOStransistors.Therefore,theparasiticdelay
ofthemajoritygateis
\[p_{M}=\frac{3W_p+3W_n}{C_{out}(inv)}=6\,.\]
ComparedtoaNANDorNORgate,themajoritygateisrelativelyslow.
Oneoptionforreducingthelogicaleffortandparasiticdelayofthe
majoritygateistransistorsharing.ObserveinFigure4.7thatthetwopMOStransistorsthatoneinputdrivesinthe
pull-upnetworkareindistinctarms.Thepull-downnetworkexhibits
thesamestructureonlywithnMOStransistors.Iftwoarmsshareone
transistor,wecanreducethelogicaleffortbyreducingthenumberof
transistorsfromtwotoone.Thisdoesnotworkforallinputs
simultaneously.AsshowninFigure4.8,ifwesharethetransistorsofinput\(A,\)we
cannotalsosharethetransistorsofinputs\(B\)and\(C\)
acrossarmswithoutalteringthelogicfunction.However,sharingthe
transistorsofinput\(A\)reducesitslogicaleffort,andalso
theparasiticdelayoftheentiregate.
A=0
B=0
C=0
Figure4.8:Asymmetricinverting3-inputmajoritygatewithtransistorsharingandinteractiveswitchmodel.
Sharingthetransistorsofinput\(A,\)asshownin
Figure4.8,doesnotaffectthe
transistorwidthsofthematchedmajoritygate.Apathfromsupply
railtooutputconsistsofaseriescompositionoftwotransistors,
eitherinthepull-uporpull-downnetwork,justlikein
Figure4.7.Theexceptionalcase,whenallthree
inputvaluesareequal,hasalargerequivalenton-resistancethanthe
gateinFigure4.7,butisstillfasterthanthe
regularcase.Thus,thematchedversionofthemajoritygatein
Figure4.8hastransistorwidths
\(W_p=4\)and\(W_n=2.\)Whilethelogicaleffortsof
inputs\(B\)and\(C\)remainunchanged,transistorsharing
halvesthelogicaleffortofinput\(A\):
\[\begin{eqnarray*}
g_{Masym}(A)&=&\frac{W_p+W_n}{C_{in}(inv)}\=\2\,,\\
g_{Masym}(B)=g_{Masym}(C)&=&\frac{2W_p+2W_n}{C_{in}(inv)}\=\4\,.
\end{eqnarray*}\]Sincethelogicaleffortofinput\(A\)differsfromthelogical
effortofinputs\(B\)and\(C,\)themajoritygatein
Figure4.8isanasymmetricgate.
Incontrast,themajoritygateinFigure4.6isa
symmetricgate,becauseallinputshaveequallogicaleffort.
Ratherthancharacterizinganasymmetricgatebylistingthelogical
effortsforallinputs,itissometimessufficienttouseasingle
numberinstead.Thetotallogicaleffortisthesumofthe
logicaleffortsofallinputs.Forexample,thetotallogicaleffort
permitsaquantitativecomparisonofthesymmetricandasymmetric
majoritygates.Thesymmetricmajoritygatehastotallogicaleffort
\(g_{M}=g_{M}(A)+g_{M}(B)+g_{M}(C)=3\cdot4=12.\)
Transistorsharingreducesthetotallogicaleffortoftheasymmetric
gateto\(g_{Masym}=2+2\cdot4=10.\)
Sharingthetransistorsofinput\(A\)reducesnotonlythe
logicaleffortbutalsotheoutputcapacitanceand,thus,the
parasiticdelayoftheasymmetricmajoritygate:
\[p_{Masym}=\frac{2W_p+2W_n}{C_{out}(inv)}=4\,.\]
Notethatwecanconstructalternativegatedesignsbysharingthe
transistorsofinput\(B\)orofinput\(C.\)Theresulting
asymmetricgatesdonotreducetheoutputcapacitance,however.Only
sharingthetransistorsdrivenbyinput\(A\)reducesthe
parasiticdelay.Thus,ifwehavethechoice,weprefersharingthose
transistorsconnectedtotheoutputofthegateinorderto
reducetheparasiticdelayasaddedbenefit.
AsymmetricTransistorSizing¶
Theasymmetricmajoritygatesacrificesthesymmetryofthecircuit
topologyforareducedlogicaleffortofoneinputwithoutaffecting
thelogicaleffortoftheotherinputs.Thebenefitofthereduced
logicaleffortisareducedgatedelayforsignaltransitionsonthe
correspondinginput.Evenwithasymmetricgatetopology,inherentto
NANDandNORgatesforinstance,wecantradelogicaleffortbetween
inputsbytransistorsizing.Theresultingasymmetrymaybedesirable
tospeedupthecriticalpathofacircuit.
Asanexample,considerthe2-inputNANDgateinFigure4.9.Assumethatinput\(A\)iscritical,andwewishto
reduceitsdelay.Thus,ourgoalistominimizethelogicaleffortof
input\(A,\)whichmeanstoreduce\(g_{nand2}(A)\)from4/3
tothatofareferenceinverter\(g_{inv}=1.\)
Figure4.9:MatchedasymmetricNANDgatewithnMOSscalingfraction\(\alpha.\)
SincethematchedNANDgatehasnormalizednMOStransistorwidths
\(W_n(A)=W_n(B)=2,\)reducingwidth\(W_n(A)\)to1
reducestheinputcapacitanceofinput\(A\)asdesired.However,
ifallwedoisreducetheinputcapacitanceofinput\(A,\)the
gatebecomesmismatchedw.r.t.thereferenceinverter.Infact,
halvingthewidthofthenMOStransistordoublesitson-resistance,
whichresultsinasmalleroutputcurrent.Consequently,thegate
wouldbeslowerratherthanfasterasplanned.Toobtainadelay
reduction,weneedtoreducethelogicaleffort,i.e.wewishto
reducetheinputcapacitanceofinput\(A\)withoutchangingthe
equivalenton-resistanceofthepull-downnetwork.Transistorsharing
inthemajoritygatehasexactlythiseffect.
Incaseofthe2-inputNANDgate,wecanbalanceachangeofwidth
\(W_n(A)\)byacorrespondingchangeof\(W_n(B)\)sothatthe
pull-downnetworkoftheasymmetricNANDgateremainsmatchedtothe
referenceinverter.Morespecifically,matchinganasymmetric2-input
NANDgaterequiresthatequivalenton-resistance\(R_n(A)+
R_n(B)\)oftheseriescompositionofnMOStransistorsmustbeequalto
on-resistance\(R_n(inv)\)ofthereferenceinverter:
\[R_n(A)+R_n(B)=R_n(inv)\,.\]
Sincetheon-resistanceisindirectlyproportionaltothetransistor
width,weobtainthismatchingconstraintfortheasymmetricNANDgate:
\[\begin{split}\begin{eqnarray*}
\frac{1}{W_n(A)}+\frac{1}{W_n(B)}&=&\frac{1}{W_n(inv)}\\
\Leftrightarrow\qquadW_n(A)+W_n(B)&=&W_n(A)W_n(B)\,,
\end{eqnarray*}\end{split}\]
becausethereferenceinverterhasannMOStransistorofwidth
\(W_n(inv)=1.\)Wecanfulfillthisconstraintwithascaling
fraction\(\alpha,\)\(0.Forexample,for
\(n=3,\)function\(Y=A\oplusB\oplusC\)equals1if
thenumberof1-inputsis1or3.Thetruthtableshowsthe3-input
XORfunctionorodd-parityfunction.
0
0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
0
0
1
1
0
1
0
1
1
0
0
1
1
1
1
Theodd-paritypropertysuggestsadesignforanXORCMOScircuit.To
buildan\(n\)-inputXORgate,weneed\(2^n\)armswith
\(n\)transistorseach.Halfofthearmsareinthepull-up
network,oneperminterm,andeachhasanoddnumberofcomplemented
inputs.Theotherhalfofthearmsareinthepull-downnetwork.For
eachcombinationofinputvalues,exactlyonearmisswitchedon.
Figure4.16showstheCMOScircuitfora3-input
XORgate.Wheneveryoutoggleoneoftheinputsoutput\(Y\)
toggles,becausechangingoneinputchangestheparityfromoddto
evenorviceversa.
A=0
B=0
C=0
Figure4.16:CMOScircuitof3-inputXORgateandinteractiveswitchmodel.
Thematched3-inputXORgatehaspMOStransistorsofwidth\(W_p
=6\)andnMOStransistorsofwidth\(W_n=3.\)Eachofthesix
inputs\(A,\)\(\overline{A},\)\(B,\)
\(\overline{B},\)\(C,\)and\(\overline{C}\)drivestwo
pMOSandtwonMOStransistors,resultinginalogicaleffortof
\(g_{xor3}=6\)perinput.TheoutputisconnectedtofourpMOS
andfournMOStransistors,thatcontributetotheoutputcapacitance
andparasiticdelay\(p_{xor3}=12.\)Sincethegatetopology
generalizesto\(n\)inputs,wefindthatthe\(n\)-input
XORgatehaslogicaleffort
\[g_{xorn}=\frac{2^{n-2}\cdot2n+2^{n-2}\cdotn}{3}=n2^{n-2}\]
perinput.Theparasiticdelayofthe\(n\)-inputXORgate
amountsto
\[p_{xorn}=\frac{2^{n-1}\cdot2n+2^{n-1}\cdotn}{3}=n2^{n-1}\,.\]
Theexponentialgrowthofbothlogicaleffortandparasiticdelayin
thenumberofinputs\(n\)limitstheapplicabilityofthisCMOS
circuittosmall\(n.\)Forlargernumbersofinputs
tree-structuredtopologiesbasedon2-input
XORgatesasbuildingblocksarefaster.
AsymmetricXORGates¶
WecanreducethelogicaleffortandparasiticdelayoftheXORgate
bytransistorsharing.Noticein
Figure4.16thateachinputdrivestwopMOSand
twonMOStransistors.Iftwoarmsshareonetransistor,wecanreduce
thelogicaleffortofthecorrespondinginput.Sharingdoesnotwork
forallinputssimultaneously.AsshowninFigure4.17wesharethetransistorsofinputs\(A\)and
\(\overline{A}\)toreducetheirlogicaleffortsandtheparasitic
delayoftheentiregate.Then,wecanalsosharethetransistorsof
inputs\(C\)and\(\overline{C},\)butnotthoseofinputs
\(B\)and\(\overline{B}\)withoutalteringthelogic
function.
A=0
B=0
C=0
Figure4.17:AsymmetricCMOScircuitof3-inputXORgateandinteractiveswitchmodel.
TomatchtheXORgate,observethatanypathfromsupplytooutput
consistsofaseriescompositionof3transistors,justlikeanarmin
Figure4.16.Therefore,sharingtransistors
doesnotaffectthetransistorwidthsofthematchedgate.Likethe
symmetricXORgate,allpMOStransistorsofthematchedgatehave
width\(W_p=6\)andallnMOStransistorswidth\(W_n=3.\)
Asaresult,theXORgateinFigure4.17is
asymmetric.Thelogicaleffortsofinputs\(A,\)
\(\overline{A},\)\(C\)and\(\overline{C}\)are
\[g_{xor3asym}(A)=g_{xor3asym}(\overline{A})=g_{xor3asym}(C)=g_{xor3asym}(\overline{C})=\frac{W_p+W_n}{3}=3\,,\]
whilethelogicaleffortsofinputs\(B\)and\(\overline{B}\)remain
unchangedcomparedtothesymmetricdesign:
\[g_{xor3asym}(B)=g_{xor3asym}(\overline{B})=\frac{2Wp+2W_n}{3}=6\,.\]
Sharingthetransistorsconnectedtotheoutputofthegatehalvesthe
outputcapacitance,andtherefore,theparasiticdelayofthe
asymmetricXORgateis
\[p_{xor3asym}=\frac{2W_p+2W_n}{3}=6\,.\]
TheasymmetricXORgatehassmallertotallogicaleffortandsmaller
parasiticdelaythanthesymmetricgate.
XORGatesandDuality¶
Thesymmetric2-inputXORgateinFigure4.15violatesthe
principleofduality,becausethepull-upandpull-downnetworksare
notdualsofeachother.Inthissection,weusethe2-inputXOR
gatetodemonstratethatdualityisasufficientbutnotanecessary
propertyofCMOSgates.
Recallthetruthtableofthe2-inputXORgate,\(Y=A\oplusB\):
0
0
0
0
1
1
1
0
1
1
1
0
TheSOPnormalformfortheXORfunctionis
\[Y=\overline{A}B+A\overline{B}\,.\]
Interpretthisequalityas\(Y=1\)if\(A=0\)AND\(B=1\)
ORif\(A=1\)AND\(B=0.\)Negatepredicates\(B=1\)
and\(A=1\)to\(\overline{B}=0\)and\(\overline{A}=0,\)
tosimplifytheargumentfortheswitchmodelofpMOStransistors.
Then,weobtaintheequivalentXORlogic:
\(Y=1\)if(\(A=0\)AND\(\overline{B}=0\))ORif(\(\overline{A}=0\)AND\(B=0\)).
TheBooleanexpressionconsistsofANDandORoperations,which
translatesdirectlyintotheseries-parallelpull-upnetworkin
Figure4.18(a).Giventhepull-upnetwork,
wecanderivethepull-downnetworkbyformingthedual,asshownin
Figure4.18(b).Wetransformtheparallel
armsofthepull-upnetworkintoaseriescompositionofparallelnMOS
transistors.Theinteractiveswitchmodelenablesyoutoverifythe
truthtableoftheXORgate.
A=0
B=0
Figure4.18:2-inputXORgate:(a)pull-upnetworkderivedfromlogicfunction,(b)thepull-downnetworkisthedualofthepull-upnetwork,and(c)interactiveswitchmodel.
TheXORgateinFigure4.18hasthesame
pull-upnetworkasouroriginalXORgateinFigure4.15,up
totheorderofthepMOSgateinputs.However,thepull-downnetworks
aredifferent.ToarriveattheXORgateinFigure4.15,
considerthetruthtableoftheXORgateagain,nowwiththegoalto
derivethepull-downnetworkfromthelogicfunction.Weseethat
\(Y=0\)if\(A=0\)AND\(B=0\)ORif\(A=1\)AND
\(B=1.\)TofittheswitchmodelofnMOStransistors,negatethe
predicates\(A=0\)and\(B=0\)to\(\overline{A}=1\)and
\(\overline{B}=1,\)andwefindtheXORlogic:
\(Y=0\)if(\(\overline{A}=1\)AND\(\overline{B}=1\))ORif(\(A=1\)AND\(B=1\)).
ThisBooleanexpressiontranslatesdirectlyintotheseries-parallel
pull-downnetworkinFigure4.19(a).Deriving
thedualofthepull-downnetworkyieldsthepull-upnetworkin
Figure4.19(b).
A=0
B=0
Figure4.19:2-inputXORgate:(a)pull-downnetworkderivedfromlogicfunction,(b)thepull-upnetworkisthedualofthepull-downnetwork,and(c)interactiveswitchmodel.
TheXORgateinFigure4.19hasthesame
pull-downnetworkasouroriginalXORgateinFigure4.15,
butadifferentpull-upnetwork.However,wearriveattheXORgate
designinFigure4.15bycombiningthepull-upnetworkof
Figure4.18withthepull-downnetworkof
Figure4.19.Thisdesignsavesawireand
issimplerthanthedesignswithdualnetworks,becausethefourarms
areindependent.Furthermore,theXORgatedemonstratesthatCMOS
gatesdonotnecessarilyhavepull-upandpull-downnetworksthatare
dualsofeachother.The3-inputXORgatesandthemajoritygate
areexamplesofCMOSgateswhosepull-upandpull-downnetworksare
notdualseither.
XORCMOSCircuits¶
The2-inputXORgateinFigure4.15requirescomplementedand
uncomplementedinputs.Infact,wemayspecifythisCMOSgateasa
logicfunctionoffourinputs,XOR\((A,B,C,D),\)withthe
additionalconstraints\(C=\overline{A}\)and\(D=
\overline{B},\)thatthedrivingcircuithastoobey.Theinput
specificationdistinguishestheXORgatefromotherCMOSgates,the
NANDandNORgatesforexample.The2-inputNANDandNORgateshave
twoinputsnotonlybecausetheyrealizebinarylogicfunctionsbut
alsointermsofthenumberofinputwiresthattheirCMOS
implementationshave.Incontrast,wedefinetheXORgateasabinary
logicfunction,drawtheXORgatesymbolwithtwo
inputs,butourCMOSgateinFigure4.15requiresfourinputs.The
reasonisthatthereexistsno2-inputCMOSgateforthe2-inputXOR
logicfunction,becauseCMOSgatescanimplementmonotonically
decreasingfunctionsonly.Hence,implementinga2-inputXORlogic
gaterequiresaCMOScircuitratherthanaCMOSgate.Inthis
section,wediscussseveralCMOSimplementationsofthe2-inputXOR
logicgate.
WebeginwithastraightforwardextensionoftheCMOSgatein
Figure4.15.Toobtaina2-inputXORgate,wegeneratethe
complementsofinputs\(A\)and\(B\)bymeansofinverters.
TheresultingimplementationoftheXORlogicgateisshownin
Figure4.20.
Figure4.20:2-inputXORgatewithinputinverters.
Ifwewishtousethe2-inputXORgateinFigure4.20asa
buildingblockfortheconstructionoflargercircuits,weneedto
characterizeitsdelayasafunctionoftheelectricaleffort.Since
theXORlogicgateconsistsofinvertersandanXORCMOSgate,wecan
scaletheinvertersandtheXORCMOSgateindependentlytominimize
itsdelay.SincetheXORcircuitisareconvergingbranch,wecould
applythe2d-analysismethodtodeterminethe
scalefactorsforagivenelectricaleffort.However,acloselook
revealswhya2d-analysismaynotyieldthefastestdesign.First,
noticethatthecircuitissymmetricininputs\(A\)and
\(B,\)ifweuseasymmetricXORCMOSgate.Thus,thecircuithas
onepathofinterest,sayfrominput\(A\)tooutput\(Y.\)
Assumetheinverterhasinputcapacitance\(C_1.\)TheXORCMOS
gateimposesaloadofonepMOSandonenMOSgatecapacitanceoneach
legofaforkdrivenbyinput\(A.\)Let\(C_2\)betheinput
capacitanceofinputs\(A\)and\(\overline{A}\)oftheXOR
CMOSgate,thenourXORcircuitincludesa1-forkwithequalloads,as
showninFigure4.21.
Figure4.21:Thepathofinterestof2-inputXORgateinFigure4.20
includesa1-forkwithequalloads.
Recallthatweshouldavoid1-forks,butletusignorethislessonfor
amoment.Instead,weinsistonminimizingthedelayofthepathfrom
inputtooutputinFigure4.21givenelectricaleffort\(H.\)
Noticethatthecircuitdoesnotpermitequalizingthedelaysofthe
legsofthefork.Instead,thepaththroughtheinverterlegaddsthe
inverterdelaytothedelaythroughtheXORCMOSgate.Thus,allwe
candobygatesizingistominimizethedelayoftheslowerlegwith
theinverter.Thisleavesuswiththeoptimizationproblemofhow
muchinputcapacitancetoassigntotheon-pathinverterversusthe
off-pathXORCMOSgate.Asdiscussedinforkdesign,weintroducefactor\(\alpha\)inrange\(0<
\alpha<1\)tosplittheinputcapacitancebetweentheinverterand
theXORCMOSgate:
\[C_1=\alphaC_{in}\,,\qquadC_2=(1-\alpha)C_{in}\,,\]
suchthat\(C_1+C_2=C_{in}.\)Then,thestageefforts
oftheinverterandtheXORCMOSgateare:
\[f_{inv}=g_{inv}h_{inv}=g_{inv}\,\frac{C_2}{C_1}=\frac{1-\alpha}{\alpha}\,,\qquadf_{xor2}=g_{xor2}h_{xor2}=g_{xor2}\,\frac{HC_{in}}{C_2}=2\,\frac{H}{1-\alpha}\,.\]
Now,thelowerlegoftheforkhasdelay
\[D_l=f_{xor2}+p_{xor2}=2\,\frac{H}{1-\alpha}+4\,,\]
andtheupperleghasdelay
\[D_u=(f_{inv}+p_{inv})+(f_{xor2}+p_{xor2})=\frac{1-\alpha}{\alpha}+2\,\frac{H}{1-\alpha}+5\,,\]
where\(D_u=(f_{inv}+p_{inv})+D_l.\)Wecanminimize
\(D_u\)bysettingthederivative\(dD_u/d\alpha\)tozero,
andfind
\[\alpha=\frac{\sqrt{2H}-1}{2H-1}\,.\]
ThuswhenusingtheXORlogicgateaspartofalargercircuit,wecan
choose\(\alpha\)dependingonelectricaleffort\(H\)to
minimizeitsdelay.
IfwewishtominimizethedelayoftheXORlogicgatefurther,we
couldmaketheXORCMOSgateasymmetricsuchthatthelogicaleffort
ofthecomplementedinput\(\overline{A}\)issmallerthanthat
oftheuncomplementedinput,soastospeedupthepaththroughthe
inverterleg.Alternatively,wemayrecallourlessonthata2-fork
ispreferabletoa1-fork.Hence,oursecondattemptforanXORlogic
gateuses2-forkstogeneratethecomplementedanduncomplemented
inputs,asshowninFigure4.22.
Figure4.22:2-inputXORgatewith2-forkinputs.
WecananalyzethisXORcircuitwithour2d-analysismethod.ThepathofinterestisshowninFigure4.23,witheffortdelay\(d_1\)assignedtotheinvertersof
the2-fork,andeffortdelay\(d_2\)fortheXORCMOSgate.
Figure4.23:Thepathofinterestofthe2-inputXORgateinFigure4.22includesa2-forkwithequalloads.
The2d-analysisenablesustoexpresseffortdelay\(d_2\)asa
functionof\(d_1\):
\[d_2=2H\Bigl(\frac{4}{d_1^2}+\frac{1}{d_1+1}\Bigr)\,,\]
suchthatthepatheffortdelaybecomes
\[D=d_1+d_2=d_1+\frac{8H}{d_1^2}+\frac{2H}{d_1+1}\,.\]
Minimizingthepatheffortdelaybysettingthederivative\(\partialD/\partiald_1\)tozeroyieldsthepolynomialin\(d_1\):
\[d_1^5+2d_1^4+(1-2H)d_1^3-16Hd_1^2-32Hd_1-16H\,.\]
Foragivenelectricaleffort\(H,\)wedeterminedelay
\(d_1\)byfindingthepositiverealrootofthepolynomial.
Then,theminimumdelayoftheXORlogicgateis\(\hat{D}=d_1
+d_2+P,\)where\(P=2p_{inv}+p_{xor2}=6.\)
Figure4.28belowcomparesthedelaysofthetwoXOR
gateswith1-forkand2-forkinputsasafunctionofelectricaleffort
\(H.\)Notunexpectedly,forall\(H\)the2-forkdesignis
fasterthanthe1-forkdesign.Furthermorethe1-forkdesignslows
downmuchmorerapidlythanthe2-forkdesignforincreasing
\(H.\)
Thespeeddifferencebetweenthe1-forkand2-forkXORgatedesigns
motivatesthesearchforevenfasterXORgatecircuits.Inthe
following,wepresentthreealternativedesigns.Webeginwiththe
reconvergingNANDcircuitinFigure4.24ontheleft.
UsingBooleanalgebra,itisstraightforwardtoverifythatthis
circuitimplementsthe2-inputXORfunction.Duringourstudyof
reconvergingbranches,wehave
identifiedthe2-forkstylemodificationinFigure4.24ontherightassuperiorbecauseitisfaster.Thecomparison
ofthedelaysinFigure4.28showsthatthe
reconvergingNANDcircuitisslowerthanthe2-forkXORgatecircuit
upto\(H=47.\)Forlargerelectricalefforts,thereconverging
NANDcircuitisfaster.
Figure4.24:Thereconvergingbranchcircuit
implementsa2-inputXORgate(left).The2-forkstyle(right)
yieldsafastercircuit.
SinceNANDgateshavenotonlyarelativelysmalllogicaleffortbut
alsosmallparasiticdelaycomparedtoother2-inputgates,a2-level
NANDcircuitisanothertopcontenderforanXORgate.Again,wemay
usea1-forkorthe2-forkshowninFigure4.25to
generatethecomplementedanduncomplementedinputs.The2-forkis
fasterthanthe1-fork,asusual.TheresultingXORcircuithasfour
stagesonthe2-inverterleg,sothatweexpectthiscircuittobe
bettersuitedforlargerelectricalefforts.
Figure4.25:A2-levelNANDcircuitwith2-forkinputsimplementsa2-inputXORgate.
Todeterminetheminimumdelayasafunctionofelectricaleffort
\(H,\)weapplythe1d-analysismethodwith
effortdelay\(d\)assignedtothegatesasshownin
Figure4.26.The1d-analysisofthecircuit
yieldsthepolynomial
\[d^5+\frac{1}{2}d^4-\frac{8}{9}Hd^2-\frac{16}{9}Hd-\frac{8}{9}H\,.\]
Givenelectricaleffort\(H,\)thepositiverealrootofthe
polynomalequalseffortdelay\(d,\)forwhichthecircuithas
minimumpathdelay\(\hat{D}=4d+6.\)
Figure4.28plots\(\hat{D}\)overelectrical
effort\(H.\)Weseethatthe2-forkXORgateisfasterupto
\(H=14.\)For\(H\ge15,\)the4-stageNANDcircuitis
faster.
Figure4.26:Pathofinterestof2-levelNANDcircuitwith2-forkinputs.
Compoundgatesenableustoimplementtwo-levellogicinacompact
fashion.Thus,wemayimplementanXORgateusingOAIorAOIcompound
gates.Figure4.27showsontheleftanXORcircuitdesignbased
onanOAIgate.ThiscircuitusesaNANDgatethatbehaveslikethe
inverterofa1-forkdrivingtheOAIgate.Thiscircuitisindeed
slowerthanthemorecomplexversionontherightofFigure4.27
thatusesa2-forkstructureattheinputsandaAOIgate.
Figure4.27:2-inputXORgatebasedonanOAIcompoundgate(left),andwith2-forkinputsandanAOIcompoundgate(right).
WeanalyzetheAOIcircuitusinga2d-analysis,
byassigningeffortdelay\(d_1/2\)totheNANDgateandthe
inverterintheupperlegandeffortdelay\(d_1+2\)tothelower
legofthefork,andeffortdelay\(d_2\)totheAOIgate.Then,
the2d-analysispermitsexpressing\(d_1\)asafunctionof
\(d_2.\)Minimizingthepatheffortdelaybysettingits
derivativew.r.t.\(d_1\)tozeroyieldspolynomial
\[d_1^5+4d_1^4+(4-2H)d_1^3-\frac{160}{9}Hd_1^2-\frac{640}{9}Hd_1-\frac{640}{9}H\,.\]
Givenelectricaleffort\(H,\)thepositiverealrootsofthe
polynomialyieldminimumpathdelay\(\hat{D}=d_1+d_2+
16/3,\)whichisplottedinFigure4.28asafunctionof
\(H.\)WefindthattheAOIcircuithascompetitivedelays
xacrosstherangeof\(H,\)butforno\(H\)istheAOIcircuit
thefastestXORgate.
Figure4.28:MinimumdelaysofXORcircuitsoverelectricaleffort.
ThecomparisoninFigure4.28suggeststhatthefastestXOR
implementationdependsonelectricaleffort\(H.\)Inparticular,
amongthestudiedalternatives,the2-forkXORcircuitof
Figure4.22isfastestfor\(H<12,\)whereasfor
\(H\ge12,\)thetwo-levelNANDcircuitofFigure4.25isfastest.
XNORGates¶
TheXNORgateisverysimilartotheXORgate.Logically,theXNOR
gateproducesthecomplementoftheXORgate.Thus,an\(n\)-input
XNORgateimplementstheeven-parityoperation,whichoutputs1if
thenumberofinputswithvalue1iseven.Thetruthtablebelow
showstheXNORfunctionfor\(n=3,\)\(Y=\overline{A\oplusB
\oplusC},\)whichequals1ifthenumberof1-inputsis0or2.
0
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
0
TheCMOSimplementationofa2-inputXNORgateisshownin
Figure4.29.Likethe2-inputXORgate,it
consistsoffourarms.Thepull-upandpull-downnetworksarenot
dualsofeachother.NoteworthyisthefactthatXORandXNORCMOS
gateshavethesametopology.Inparticular,wedonotneedanoutput
invertertoimplementthecomplement,asrequiredfortheANDandOR
gates.
A=0
B=0
Figure4.29:CMOScircuitforXNORgateandinteractiveswitchmodel.
SincethetopologyoftheXNORgateequalsthatoftheXORgate,both
logicaleffortandparasiticdelayoftheXNORgateareequaltothose
oftheXORgate:
\[g_{xnor2}=2\,,\qquadp_{xnor2}=4\,.\]
XNORgateswithmorethantwoinputscanbeconstructedanalogousto
theXORgate.AlsoanalogoustotheXORlogicgatearethedesign
issuesofCMOScircuitsfora2-inputXNORlogicgate.
4.1.6.SkewedGates¶
Whenoptimizingacircuitforspeed,wemaywantthefalling
transitionofasignalfromhightolowvoltagetobefasterthanthe
risingtransitionfromlowtohighvoltageorviceversa.Inthis
section,wediscussskewedgateswhosecriticaltransitionis
fasterthanthenoncriticaltransition.Incontrast,CMOSgates
withequalrisingandfallingdelaysareunskewedornormal-skew
gates.WedistinguishbetweenHI-skewgatesandLO-skew
gates.InaHI-skewgatetherisingoutputtransitionisthe
faster,criticaltransition,andinLO-skewgatesthefallingoutput
transitioniscritical.
DesignandAnalysis¶
Wecanskewagatebytransistorsizing.Forexample,considerthe
matched2-inputNANDgateinFigure4.30(a).By
definition,thetransistorsofthematchedNANDgatearesizedto
provideequaldrivecurrentsfortherisingandfallingtransitions.
Furthermore,thedrivecurrentsareequaltothoseofthereference
inverter.Sincethedelayofagatedependsonitsdrivecurrent,the
risingandfallingdelaysareequalifthemagnitudesofthedrive
currentsofthecorrespondingtransitionsareequal.Thekeyinsight
fordesigningaskewedgateistoshrinkthetransistorsintheCMOS
networkthatdrivestheuncriticaltransition.Forexample,ifwe
wishtospeeduptherisingtransitionoftheNANDgate,weshrink
thenMOStransistorsofthepull-downnetwork.Theeffectisthatthe
pMOStransistorsdeliverthesamedrivecurrentasthematchedNAND
gateontherisingtransition,butsmallernMOStransistorsreducethe
logicaleffortofthegate,resultinginafastertransition.For
example,theHI-skewNANDgateinFigure4.30(b)
halvesthewidthsofthenMOStransistorscomparedtothematchedNAND
gatetospeeduptherisingtransition.
Figure4.30:Skewinga2-inputNANDgate:(a)matchedgate,(b)HI-skewgate,(c)down-scaledgate.
TocharacterizethedelayoftheHI-skewNANDgate,wedetermineits
logicaleffortandparasiticdelay.However,duetotheunmatched
transistorsizes,logicaleffortandparasiticdelaydifferforthe
risingandfallingtransitions.Weuse\(g_u\)and\(p_u\)to
denotethelogicaleffortandparasiticdelayoftherisingoutput
transitiondrivenbythepull-upnetwork,and\(g_d\)and
\(p_d\)forthefallingoutputtransitiondrivenbythepull-down
network.Thenthedelaysoftherisingandfallingtransitionsof
askewedgateare:
\[\begin{eqnarray}
d_u&=&g_uh+p_u\,,\\
d_d&=&g_dh+p_d\,,\\
\end{eqnarray}\]where\(h\)istheelectricaleffortofthegate.
Weconsidertherisingoutputtransitionfirst.Theoutputofa
2-inputNANDgatetransitionsfrom0to1ifinitiallybothinputs
\(A\)and\(B\)are1,andoneoftheinputsswitchesfrom1
to0.ThecorrespondingpMOStransistorinthepull-upnetworkdrives
theoutput.WhichoneofthetwopMOStransistorsswitchesdoesnot
matterinthisexample,becausetheNANDgateissymmetric.Sincethe
widthofthepMOStransistorsoftheHI-skewgateequalsthewidthin
thematchedNANDgate,bothgatesproducethesamedrivecurrent.
Furthermore,becausethematchedNANDgatehasthesamepull-updrive
currentasthereferenceinverter,weconcludethattheHI-skewgate
hasthesamepull-updrivecurrentasthereferenceinverter.Now,
recallourdefinitionofthelogicaleffortofaCMOSgateasthe
ratioofitsinputcapacitancetothatofthereferenceinverter,
assumingthattheCMOSgateissizedtodeliverthesamedrivecurrent
asthereferenceinverter.Sincethedrivecurrentsareequal,the
logicaleffort\(g_u\)oftherisingtransitionoftheHI-skew
gateistheratiooftheinputcapacitanceoftheHI-skewgateandthe
inputcapacitanceofthereferenceinverter.Accordingto
Figure4.30(b),eachinputhasinputcapacitance
\(C_{in}(hi)=W_p+W_n=3,\)because\(W_p=2\)and
\(W_n=1,\)sothat
\[g_u=\frac{C_{in}(hi)}{C_{in}(inv)}=\frac{3}{3}=1\,.\]
Shrinkingthepull-downtransistorsoftheHI-skewgateretainsthe
drivecurrentthroughthepull-upnetworkwhilereducingtheinput
capacitance.Asaresultlogicaleffort\(g_u=1\)isless
thanthelogicaleffortofthematchedgate\(g_{nand2}=4/3.\)
Similarly,theparasiticdelayoftherisingtransitionoftheHI-skew
gateis
\[p_u=\frac{C_{out}(hi)}{C_{out}(inv)}=\frac{2\cdot2+1}{3}=\frac{5}{3}\,.\]
Wefindthatparasiticdelay\(p_u\)islessthanthatofthe
matchedgate\(p_{nand2}=2.\)
Next,wedetermine\(g_d\)and\(p_d\)ofthefalling
transitionoftheHI-skewgate.Toapplythedefinitionoflogical
effort,weconstructthedown-scaledNANDgateshownin
Figure4.30(c).Thedown-scaledgatehasthe
samenMOStransistorwidthsastheHI-skewgate,sothattheirdrive
currentsareequal.Wehalvethewidthofthepull-uptransistors,so
thatthedown-scaledgateisascaledversionofthematchedNANDgate
withscalefactor\(\gamma=1/2.\)Now,wecanarguethatthe
HI-skewNANDgatehasthesamepull-downdrivecurrentasthematched
NANDgatescaledby\(\gamma=1/2,\)whichinturnhasthesame
pull-downdrivecurrentasareferenceinverterscaledby
\(\gamma=1/2.\)Therefore,thelogicaleffortofthefalling
transitionoftheHI-skewgateistheratiooftheinputcapacitance
oftheHI-skewgateandtheinputcapacitanceofthescaledreference
inverter:
\[g_d=\frac{C_{in}(hi)}{\gammaC_{in}(inv)}=\frac{3}{\frac{1}{2}\cdot3}=2\]
foreachinput.Thecostofthereducedlogicaleffort\(g_u=
1\)oftherisingtransitionisanincreasedlogicaleffort\(g_d
=2\)ofthefallingtransition,comparedto\(g_{nand2}=4/3\)of
thenormal-skewgate.Analogously,theparasiticdelayofthefalling
transitionoftheHI-skewgateis
\[p_d=\frac{C_{out}(hi)}{\gammaC_{out}(inv)}=\frac{5}{\frac{1}{2}\cdot3}=\frac{10}{3}\,.\]
Therisingandfallinglogicaleffortsandparasiticdelaysare
relatedthroughscalefactor\(\gamma\)ofthedown-scaledmatched
gate:\(g_u=\gammag_d\)and\(p_u=\gammap_d.\)Notice
thatscalefactor\(\gamma=2\)isalsothescalefactorbywhich
weshrankthepull-downnMOStransistorsoftheHI-skewgatetobegin
with.Thisobservationsimplifiesthedesignandanalysisofaskewed
gatebasedthemodeloflogicaleffort.Belowistheprocedureto
designandanalyzeaHI-skewgate;theprocedurefora
LO-skewgatecanbeviewedasdual:
Chooseascalefactor\(\gamma\)forthenMOStransistorsofthe
pull-downnetworkofthematchedgate.
Thelogicaleffort\(g_u\)oftherisingtransitionisthe
ratiooftheinputcapacitanceoftheHI-skewgateandthe
referenceinverter.Thefallingtransitionhaslogicaleffort
\(g_d=g_u/\gamma.\)
Theparasiticdelay\(p_u\)oftherisingtransitionisthe
ratiooftheoutputcapacitanceoftheHI-skewgateandthe
referenceinverter.Thefallingtransitionhasparasiticdelay
\(p_d=p_u/\gamma.\)
TofacilitateacomparisonbetweenaHI-skewandnormal-skewgates,
weusetheaverageoftherisingandfallingquantities:
\[g_{hi}=\frac{g_u+g_d}{2}\,,\qquadp_{hi}=\frac{p_u+p_d}{2}\,.\]
Theaverageprovidesanaccuratemeasureofthetransitiondelayofa
gateovertime.Whenthegateisinoperationaspartofalarger
circuit,halfofalloutputtransitionsarerisingandtheotherhalf
arefallingtransitions.FortheHI-skewNANDgateinFigure4.30,theaveragelogicaleffortis\(g_{hi}=3/2\)andthe
averageparasiticdelay\(p_{hi}=5/2.\)Thus,althoughour
HI-skewNANDgatehasafasterrisingtransitionthantheunskewed
gate,bothaveragelogicaleffortandparasiticdelayarelargerthan
\(g_{nand2}=4/3\)and\(p_{nand2}=2\)oftheunskewed
gate.
FastSkewedGates¶
OurobservationthattheHI-skewNANDgatehasalargeraveragedelay
thantheunskewedNANDraisesthequestionwhetheraskewedgate
existsthatisfasterthanitsunskewedversion.Thisisthecase
indeed.TheLO-skew2-inputNORgateinFigure4.31(b)
hasasmalleraveragelogicaleffortandsmalleraverage
parasiticdelaythanthenormal-skewNORgate.
Figure4.31:Skewinga2-inputNORgate:(a)matchedgate,(b)LO-skewgate,(c)up-scaledgate.
TheLO-skewNORspeedsupthefallingtransitionbyshrinkingthe
pull-uppMOStransistors.InFigure4.31,wescalethepMOS
transistorsofthematchedNORgatewithfactor\(\gamma=3/4\)
toobtaintransistorwidth\(W_p=3.\)SincethenMOS
transistorsareunchangedcomparedtothematchedNORgate,thedrive
currentofthefallingtransitionthroughthepull-downnetworkofthe
LO-skewgateisthesameasthepull-downdrivecurrentofthematched
NORgateandthereferenceinverter.Therefore,thelogicaleffortof
thefallingtransitionis\(g_d=C_{in}(lo)/C_{in}(inv)=
4/3.\)Thelogicaleffortoftherisingtransitionisthen\(g_u
=g_d/\gamma=16/9.\)Notethat\(g_u\)istheratioofthe
inputcapacitancesoftheLO-skewgateandthe\(\gamma\)-scaled
referenceinverter,and\(\gamma=3/4\)isequaltothescalefactorof
theup-scaledmatchedNORgateinFigure4.31(c).
TheaveragelogicaleffortoftheLO-skewNORgateis\(g_{lo}=
14/9,\)whichislessthanthelogicaleffort\(g_{nor2}=5/3\)of
thenormal-skewgate.Similarly,wefindtheparasiticdelays
\(p_d=5/3\)and\(p_u=20/9.\)Theaverageparasiticdelay
of\(p_{lo}=35/18\)unitsislessthantheparasiticdelay
\(p_{nor2}=2\)ofthenormal-skewNORgate.
Weconcludethatforallelectricalefforts\(h,\)theaverage
delayoftheLO-skewNORgate,\(d_{lo}(h)=(14/9)h+35/18,\)
isslightlylessthanthedelayofthenormal-skewNORgate,
\(d_{nor2}(h)=(5/3)h+2.\)Wecanformulateaminimization
problemtodeterminescalefactor\(\gamma\)fortheLO-skewNOR
gatesuchthattheaveragedelayassumesitsminimum.Usingcalculus,
wefindthatscalefactor
\[\gamma=\frac{1}{2}\sqrt{\frac{h+2}{h+1}}\]
minimizestheaveragedelayifitischosenasafunctionof
electricaleffort\(h.\)For\(h\ge1,\)therangeof
\(\gamma\)isverysmall,\(1/2B\)or
\(A\leB,\)arecommonlyimplementedwithanarithmetic
circuit.However,fortwospecialcases,
equalitycomparisonandequalitytozero,simplercircuitsexist.
4.2.1.EqualitytoZero¶
Givenan\(n\)-bitsignal\(A,\)wewishtodeterminewhether
\(A=0\)istrueorfalse.Equality\(A=0\)istrue,if
foreachsignal\(A_i,\)\(0\lei
延伸文章資訊
- 174VHC27 Triple 3-Input NOR Gate - Mouser Electronics
The VHC27 is an advanced high speed CMOS 3-Input. NOR Gate fabricated with silicon gate CMOS tech...
- 2Logic NOR Gate Tutorial
Transistor NOR Gate. A simple 2-input logic NOR gate can be constructed using RTL Resistor-transi...
- 3CMOS three-input NOR3 gate - TAMS
The three-input NOR3 gate uses three p-channel transistors in series between VCC and gate-output,...
- 4Single 3-Input Positive-NOR Gate - Texas Instruments
Single 3-Input Positive-NOR Gate ... Logic Diagram (Positive Logic) ... Implications of Slow or F...
- 5MC14025B: Triple 3-Input NOR Gate - Onsemi
MC14025B: Triple 3-Input NOR Gate ... The B Series logic gates are constructed with P and N chann...