Frontiers | Shedding New Light on Cancer Metabolism

文章推薦指數: 80 %
投票人數:10人

In addition to oncogene-driven metabolic reprogramming, the oncometabolites themselves alter cell signaling and are responsible for ... Articles CappelloAnnaRita UniversityofCalabria,Italy DomenicaScumaci DepartmentofClinicalandExperimentalMedicine,MagnaGræciaUniversityofCatanzaro,Italy AlessandraFerramosca UniversityofSalento,Italy Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract MetabolisminCancer ReprogrammedMetabolismasaCauseofCancerDevelopment TheInfluenceofTumorMicroenvironmentonEarlyMalignancy,Full-BlownTumor,andCancerStemCells TheMetabolismofCancerCellMetastasis TherapeuticImplicationsoftheMetabolicFlexibilityoftheTumorandItsCancerStemCells Conclusion AuthorContributions ConflictofInterest References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.Oncol.,31March2020 |https://doi.org/10.3389/fonc.2020.00409 SheddingNewLightonCancerMetabolism:AMetabolicTightropeBetweenLifeandDeath MatthiasLäsche,GünterEmonsandCarstenGründker* DepartmentofGynecologyandObstetrics,UniversityMedicineGöttingen,Göttingen,Germany SincetheearliestfindingsofOttoWarburg,whodiscoveredthefirstmetabolicdifferencesbetweenlactateproductionofcancercellsandnon-malignanttissuesinthe1920s,muchtimehaspassed.Heexplainedtheincreasedlactatelevelswithdysfunctionalmitochondriaandaerobicglycolysisdespiteadequateoxygenation.Meanwhile,wecametoknowthatmitochondriaremaininsteadfunctionalincancercells;hence,metabolicdrift,ratherthanbeinglinkedtodysfunctionalmitochondria,wasfoundtobeanactiveactofdirectresponseofcancercellstocellproliferationandsurvivalsignals.ThismetabolicdriftbeginswiththeuseofsugarsandthefulloxidativephosphorylationviathemitochondrialrespiratorychaintoformCO2,anditthenleadstotheformationoflacticacidviapartialoxidation.Inadditiontooncogene-drivenmetabolicreprogramming,theoncometabolitesthemselvesaltercellsignalingandareresponsiblefordifferentiationandmetastasisofcancercells.Theaberrantmetabolismisnowconsideredamajorcharacteristicofcancerwithinthepast15years.However,theproliferatinganabolicgrowthofatumoranditsspreadtodistalsitesofthebodyisnotexplainablebyalteredglucosemetabolismalone.Sinceatumorconsistsofmalignantcellsanditstumormicroenvironment,itwasimportantforustounderstandthebilateralinteractionsbetweentheprimarytumoranditsmicroenvironmentandtheprocessesunderlyingitssuccessfulmetastasis.Weheredescribethemainmetabolicpathwaysandtheirimplicationsintumorprogressionandmetastasis.Wealsoportraythatmetabolicflexibilitydeterminesthefateofthecancercellandultimatelythepatient.Thisflexibilitymustbetakenintoaccountwhendecidingonatherapy,sincesingularcancertherapiesonlyshiftthemetabolismtoadifferentalternativepathandcreateresistancetothemedicationused.AswithOttoWarburginhisdays,weprimarilyfocusedonthemetabolismofmitochondriawhendealingwiththisscientificquestion. MetabolisminCancer Themetabolicplasticityandcontext-dependentdiversityofitsphenotypecharacterizecanceranditsdevelopmentintotumorsandmetastases.Inthiscontext,sixhallmarksofcancermetabolismhavebeendescribed(1,2),whichinclude:(1)increaseduptakeofglucoseandaminoacidsfromtumormicroenvironmentandconcomitantdeliveryoflactateandprotonstotumorcells;(2)increaseoftheglycolysispathway,thepentosephosphatepathway(PPP),andthetricarboxylicacid(TCA)cycleintermediatestobuildandsustaintheaberrantproliferationofcancercells;(3)amoremechanicaluptakeofnutrientsviaphagocytosis,entosis,andmicro-andmacropinocytosis;(4)increasedneedandutilityofnitrogenderivativesandtheirconversiontonucleotides(pyrimidines,purines),non-essentialaminoacids,andpolyamines;(5)changesinmetabolite-drivengeneregulationby,forinstance,methylation,acetylationandsuccinylation;and(6)bilateralmetabolicinteractionthroughtheexchangeofnutrientsandaminoacidsortheinfluenceofgrowthfactorsorenvironmentalconditions,suchashypoxiaorredoxstressonthemicroenvironmentortheirinfluenceonmetabolismandthedifferentsignalinglevelsofcancercells.Becauseofthecomplexity,thecancermetabolismcharacteristicsmentionedaboveoccurinvaryingdegreesandcontextsofmanydifferenttypesofcancer;therefore,theycanbeonlyroughlydefinedandarenotconclusiveintheirnumberorform. Nearly100yearsago,OttoWarburg(3–5)discoveredthefirstmetabolicdifferencesbetweennormalandcancercells.Sincethen,theknowledgeofthecorrelationsofmetabolismofcancercellsassociatedwiththeirenvironmentalhealthytissueandtheimpactofthesecorrelationsonthedegreeofcelltumorgrowthandmetastaticspreadinghasgrownconstantlyandhasadoptedanunimaginedcompleximageoverthelast15years.Warburgandhisfollowingscientificcolleaguesstartedfromthenowrefutedassumptionthatthechangeinglucoseconsumptionandtheaggravatedincreaseinacidifyingthetumor-microenvironmentwereduetoirreversiblemitochondrialdamage(4).Todayweknowthatcancercells,duetotherequirementsforexaggeratedproliferationandtheresultingincreasedneedformetabolites,activelyputforwardadvancingthepathofglycolysis,usuallyassociatedwiththepathwayofoxidativecitratecyclecatabolism(6).However,why,allofasudden,docancercells“changetheirmind”?Whyaretheyusingaerobicglycolysis,andwhyaretheynotalsousingthecitricacidcycle,giventhatthelatter,whencomparedtoglycolysis,whichproducesonlytwomoleculesofATPpermoleculeofglucose,resultsin36or38moleculesofATPandGTP,respectivelythroughtheelectrontransportchain(ETC)? Oneexplanationisgivenbythefactthatitiswrong,unlikeOttoWarburgunderstood,thatcancerdependsonaerobicglycolysisonlyasit,nexttoglycolysis,treadtheoxidativepathofmitochondriaacrossETCforabout5–15%oftheglucoseflow.Ontheonehand,itiscorrecttosaythatneoplasiacanariseasacauseofdysfunctionalmitochondria;otherwise,thismeansnotthatoncogenicdevelopmentissolelyglycolysis-dependent(1);rather,themetabolicdrifttoaerobicglycolysisisduetotherapidlyproliferatingneoplasiameetingitsmetaboliclimits.Hypoxiaincreasesinthecoreofthedevelopingtumor(Figure1).Hypoxiaup-regulatesthetranscriptionoftargetgenesrelatedtothehypoxiaresponseelement(HRE)(likegenescodingforerythropoiesis,glycolysis,andangiogenesis)throughthestabilizedhypoxia-induciblefactor1-alpha(HIF-1α),translocatingtothenucleusandbindingHIF-1βtoanactivecomplex.Thisoccursviathecell'soxygensensor,thehypoxia-inducibleprolylhydroxylaseprotein2(PHD2),leadingtohigherexpressionlevelsofglycolyticenzymeswhichisresponsiblefortheuptakeofnutrients,essentiallyglucose(Figure2A).Enzymesfortheapparent“waste”productlactate—thelactatetransporterproteinsMCTs,whichacceleratethereleaseoftheglycolysisproduct(7,8)—showhigherexpressionlevelsaswell(Figure2B).Theseenzymesinclude,forinstance,hexokinase2(HK2),phosphofructokinase1(PFK1),aldolaseA(ALDOA),phosphoglyceratekinase1(PGK1),pyruvatekinase(PK),andlactatedehydrogenaseA(LDH-A).Inaddition,tumorigenesisshowsamuchhigherutilizationofdifferentmetabolitesnexttoglucose,whichisduetothestrongcellgrowthanddivision.Augmentedaerobicglycolysisgivesthedevelopingtumortheopportunitytoquicklygeneratethemetabolicbricksrequiredforcellassemblyanddivision.Energy,nucleotides(non-essential),andessentialaminoacids,polyamines,fattyacids,andreductiveequivalents(Figure2C)aresupportingcellproliferationanditsneedforphospholipidsfortheconstructionofmembranes,mitochondria,lysosomes,andsoon.Thisproductionworksthroughvariousways,whichwewilldiscussinmoredetailinthelatercontextofthisreview(9–13). FIGURE1 Figure1.Phenotypicevolutioninhypoxia/hypoglycemia-exposedmetastaticcancerandtheaccompanyingdriftinenergymetabolism.(A)Inthestateofnormoxia/normoglycemia,theconditionthatresemblestheenvironmentintumorsclosetothevascularsystemandlinedbyouterproliferatingtissue(C),ATPisproducedthroughthecommonlyusedenergymetabolismpaths,withthemajorpartofATPsuppliedbyoxidativephosphorylation(OxPhos).Enzymes,whicharerelatedtometastasisarelowexpressed;andthereisonlyasmalltendencyofcellstoinvadethesurroundingtissue.(B)Inthestateofhypoxia/hypoglycemia,theconditionwhichresemblestheenvironmentintumorsdistanttothevascularsystemandsurroundedbyrestingtissue(C),oxidativephosphorylation(OxPhos),reducedbyalowerproteincontent(possiblyinducedasaresultofastrongdownregulationoftranscription),isgreatlydiminishedandautophagyfullyactivated.ATPispredominantlyproducedthroughglycolysis.Enzymes,whicharerelatedtometastasis,showahighexpressionlevel;andthereisahightendencytoinvadethesurroundingtissue.AMPK,AMP-activatedproteinkinase;ATP,adenosinetriphosphate;BCAA's,branched-chainaminoacids;EAA's,essentialaminoacids;EMT,epithelial-mesenchymaltransition;GLUT's,glucosetransporters;OxPhos,oxidativephosphorylation;TCA,tricarboxylicacidcycle. FIGURE2 Figure2.Metabolic-regulatoryrelationshipsincancercells.Relationshipsbetweeninfluxesandeffluentsofmetabolitesincancercells,individualmetabolicpathwaysofenergyproductionandproductionofprecursormoleculesforbiosynthesisoflipids,nucleotides,andmacromoleculesformembranesandorganelles,NADPHforproductionofreducingequivalentsandthecontrolofalltheseinteractionsbyappropriatesignalingpathways.Signalingmoleculesaremarkedgreen,participatingenzymesblueandmaincatabolicandanabolicpathwaysred.Signalingmolecules:AKT,proteinkinaseB;AMPK,AMP-activatedproteinkinase;β-catenin,cadherin-associatedprotein;c-Myc,MYC;HIF-1α,hypoxia-induciblefactor,subunit1α;mTOR,Mammaliantargetofrapamycin;p53,tumorsuppressorp53;PI3K,phosphoinositide3-kinase;PTEN:phosphataseandtensinhomolog;ROS:reactiveoxygenspecies;ULK1,Unc-51-likeautophagy-activatingkinase;VEGF:vascularendothelialgrowthfactor.Metabolicenzymes:α-KG-DH,α-ketoglutaratedehydrogenase;CPT-1/2,carnitinepalmitoyltransferase1/2;FH,fumaratedehydrogenase;G6PD(H),glucose-6-phosphatedehydrogenase;GDH,glutamatedehydrogenase;GLS,glutaminase;GSH,glutathione(reducedform);GSSG,glutathione(oxidizedform);GSSG-R,GSSG-reductase;HK,hexokinase;IDH1/2,isocitratedehydrogenase1/2;LACS,long-chainacyl-coenzymeA(CoA)synthetase;LDHA/B,lactatedehydrogenaseA/B;ME1,malicenzyme1;NADP+/NADPH,nicotinamideadeninedinucleotidephosphate(oxidized/reducedform);PDH,pyruvatedehydrogenase;PD(H)K,pyruvatedehydrogenasekinase;PEPCK,phosphoenolpyruvatecarboxykinase[GTP-dependent];PFK1/2,phosphofructokinase1/2;PHDs,Prolyl4-hydroxylasedioxygenases;PKM2,pyruvatekinasetypeM2;SDH,succinatedehydrogenase.Transporterproteins:ASCT2/SN2,glutaminetransporter;Glut-1,glucosetransportertype1,alsoerythrocyte/brainhexosefacilitator(gene:SLC2A1);Glut-2,glucosetransportertype2(gene:SLC2A2);MCT1/4,monocarboxylatetransporter1/4(gene:SLC16A1/3).Metabolites:α-KG,α-ketoglutarate;BCAA's,branched-chainaminoacids;EAA's,essentialaminoacids;OAA,oxaloacetate;PEP,phosphoenolpyruvate.Others:HRE,hypoxia-response-element.CharactersA–U:(A)glycolyticenzymesup-regulatedbyhypoxia;(B)lactateefflux;(C)synthesispathwaysbranchedofffromglycolysispath;(D)NADPHproducingpathways;(E)PFK2activitystimulatedbyVEGF;(F)autophagyregulation;(G)extracellularuptakeofnutrientsviamacropinocytosis;(H)glucoseuptake;(I)glutaminemetabolism;(J)oxidativephosphorylation;(K)reductiveNADPHproduction;(L)citrateascentralmetabolite;(M)citratereductiontoacetyl-CoA;(N)acetatederivedacetyl-CoAsynthesis;(O)proteinglycosylationviahexosaminesynthesis;(P)glycolysisfluxcontrollingPKM2activity;(Q)oftenmutatedenzymesandtheresultingoncometabolitesintheTCAcycle;(R)stabilizationofHIF-α;(S)NADPHproductionthroughoxidativedecarboxylationcatalyzedbyME1;(T)ROS-mediatedPTENinactivationandHIF-αstabilization;(U)suppressionofPDHviaPDHKleadingtotheshiftfromOXPHOStoglycolysis. Furthermore,concerningATPasanenergycarrier,theunfinishedglucoseoxidationwithlactateastheend-productoffersadecisivegrowthbenefit.Althoughglycolysisproducesonly6%oftheATPpermolglucosewhencomparingittotheoutcomethroughtheKrebscycleandETC,itisabouttwoordersofmagnitudesfasterasaresultofthemuchfasterchemicalreaction(14,15).Whilenotefficientlyenoughinutilizingthesugar,itisquiteworthyfortheaberrantproliferation,anditproducesfastenergy. Glycolysisandtheresultingmetabolismpathways,likepentosephosphatepathway(PPP)orone-carbon(folate)cycle(Figure2D),offerthebenefitofproducingsufficientreductiveforceswithNAD(P)Handglutathionetoneutralizereactiveoxygenspecies(ROS).ROSare,forexample,thehyperoxideanion(O2·−),thehydroxylradical(HO·),orthehydrogenperoxide(H2O2),resultingfromtherapidmetabolism,whichwould,ifnoteliminated,depolarizethemitochondrialmembraneandleadtoapoptosis.However,thesesameROSarecriticallyimportantintheinitiationphaseoftumorigenesisastheyprovidethesomaticorgermlinemutations,likeinthefumaratehydratase(FH),succinatedehydrogenase(SDH),orisocitratedehydrogenase(IDH1/2)genes,necessarytopromotetumorigenesis(16). Furthermore,glucoseuptakeregulation,lactateexcretion,andincreasedtumormicroenvironmentacidificationthroughthemonocarboxylatetransporters(MCTs)(Figure2B)alsoareresponsiblefortumorsurvival(17–19).Thetumordevelopmentisthereforedependentoninfluencingthemicroenvironmenttoprovidetheneededsignalingandmetabolicfueltokeeptheaberrantmetabolismgoing,contributingtotheevasionofthesurveillingimmunesystem.Onlyrecently,thetumormicroenvironmentresearchhasbecomemoreattentivetotheirgreatvalue.Theinfluenceofthedevelopingtumoronitsmicroenvironmentorviceversaisarelationshipcharacterizedessentiallybytheaggressivenessoftumordevelopmentanditsabilitytopromotemetastasis.Forthetumortomakeitswaythroughthebodyandtoproliferatewithoutbeingaffectedbytheimmunesystem,itiscrucialforittobecapableoffurthergrowthdespiteadverseconditionsinitsdevelopment,suchasincreasinghypoxia,glucosedeprivation,lackofaminoandfattyacids,andfatalhyper-acidification.Asresearchhasrecentlyrevealed,cancercells,intheirentiredevelopment,alwaysmoveonanarrowmetabolicridgebetweenlifeanddeath,whichiscrucialforapatient'ssurvival. Depletedfromoxygenandglucosesupplyduringitsgrowthandwiththediffusioncoefficientofglucosebeingfargreaterthanthatofoxygen,theinnercoreofthedevelopingtumorgetsincreasinglyhypoxicandhypoglycemic.Essentialnutrients,too,likeglutamine,importantforthenitrogencontainingmoleculesderivedfromthem,significantlydecreaseinthenutrientbalance(Figure1B).However,thetumorescapestheselimitingconditionsbystimulatingthemicroenvironmenttodeveloptheso-calledtumormicro-vascularizationorneo-vascularization.Theendothelialdevelopmentneedsthestimulusofthevascularendothelialgrowthfactor(VEGF)toformanddiversifynewbloodvesselsthatgrowtowardthetumorandprovideitwiththenecessarybuildingmaterials(Figure1C).Inductionbyanimportantenzymeoftheenergymetabolism,thephosphofructokinase-2/fructose-2,6-bisphosphatase3(PFKFB3)thatcatalyzesphosphorylationoffructose-6-phosphatetoformfructose-2,6-bisphosphatestimulatedbyVEGF(Figure2E),drivesangiogenesisandthemigrationoftheendotheliabyregulatingthevasculatureofstressfibers(20,21).IncreasinglactatesecretionbyenhancedglycolysispromotesangiogenesisthroughHIF1αactivationandVEGFreceptor2(VEGFR-2)up-regulation(22). Lacticacidosis,ahighlactateconcentrationatacidicpH,rescuesthecancerouscellsfromcelldeaththreatenedbyglucosewithdrawal(18).NoglucosemeansnoglycolysisandnoPPP.Fattyandaminoacidssustainenergymetabolism,buttheyarenotabletosustainPPP,essentialfortumorsurvival.Cancercellschangetoasleepingmode.MaybeitcomestoaG0/G1phasearrest,possiblyviatheup-regulationandstabilizationoftheG1/Stransitioninhibitorp27andthedown-regulationanddestabilizationofSkp2.Skp2isamemberoftheSCFcomplex.P27recognizesit,andafteritispoly-ubiquitinatedandproteolysed.Thereby,lacticacidosisactivatesautophagy[(18,23,24);Figures1B,2F].Autophagy,namelythebreakdownandutilizationofcell-derivedproteinsandorganelles,providesthetumorwithmetabolitesforsurvivalindeprivedglucoseconditions.Ifre-vascularizationofthetumorissuccessful,thecellsofthetumorbud,precedingtheproliferativetipofthetumor,mayinvolveatransitiontoincreasedmigrationandinvasion,assumingmesenchymalstructuresinitiatingtheso-called“metastaticcascade”orepithelial-mesenchymaltransition(EMT). Theresultingphenotypicandmetabolicplasticityofdevelopingmalignanciesrequiresfunctionalinteractionwiththenon-malignantconstituentsofthemicroenvironmentofthetumor.Amongothers,cancerstemcells(CSCs)existwithaself-renewingpotentialresponsibleforthelocalprogressionandresurgenceofthetumor.Theyshow,exceptforthoseofovariantumors,apredominantlyglycolyticmetabolism.Themicroenvironmentofthetumor—specifically,thatoftheso-calledtumor-associatedfibroblasts(TAFs)—isreprogrammedforglycolysisandthussupportMCT-4transporter-drivenlactatesecretionintothetumormilieuand,viatheMCT-1transporter-driveningestionoflactate,thetransporttotheoxidativemetabolismwithinthemitochondriaofthemalignantcells.ManyothertumorsinduceautophagywithintheTAFsandthusexploitthegeneratedalanineavailabilitythroughtheextracellularuptakeofproteinsviaso-calledmacropinocytosis(Figure2G)—abehaviorsimilartoparasitism.Metaboliccompetitionwithimmuneeffectorcellsfornutrients,withdeprivedavailability,isalsooneofthereasonsforinadequateimmunesurveillanceoftumorprogressionbyimmunesystemeffectorcellsthatresemblecancercellsintheirmetabolism. Metabolicrewiringpromotestumorigenesis,ontheonehandbytheincreaseduptakeofglucose(Figures1A,B,2H),ontheotherhandviatheglutaminemetabolism(Figures1A,B,2I).Thiscontributes,inanoxidativemanner,totheenergyproductioninthecitratecycleandsubsequentETC(Figures1A,B,2J)or,inareductiveway,tofattyacidandcholesterolsynthesisviatheproductionofNADPH(Figure2K),maintainingredoxhomeostasis(25–28).Themetabolicallyflexibleuseofothercarbonsources,suchaslactate,glycine,serine,oracetate,ortheflexiblechangeofuseofglycolysis,OxPhos,andfattyacidoxidationasanenergysourcedemonstratetheimmenseplasticityoftheresponseofcancercellstotheever-changingenvironmentalconditionswithintheirtumormicroenvironment(29–33).ReversibilityoftheTCAcycleandvariousmitochondrialanapleroticcircuitsprovidetherequiredadaptationofmetabolism(34,35).CitrateisoneoftheseimportantcentralmetabolitesthatisoxidativelyconvertedinTCAasafuel(Figure2L)andreductivelybytransferringanacetylresiduefromthecitratetocoenzymeAbymeansofATPcitratelyase(ACLY)andtoacetyl-coenzymeA(acetyl-CoA)(Figure2M).TheenzymeACLYusedhereisspecificofcancercellsandisnotexpressedbynormalcellproliferation.Theacetylatingreactionsareusingacetyl-CoA,regulatingtranscriptionandcytoplasmicprocesses,suchasautophagy,inadditiontoitsuseinfattyacidandcholesterolsynthesis(35–40).α2-macroglobulin(α2M*),onceactivated,forexample,signalsthroughtheglycoprotein78(GRP78)viathetumorand,inadditiontoactivatingtheAKTpathway,regulatesglucose-dependentACLYandacetate-dependentacetyl-CoAsynthetase(ACSS2),theacetyl-CoAsynthesis(Figure2N),andsubsequenthistoneacetylationtoinducetumorgrowth(41). Thehexosaminebiosynthesispathway(HBP)isattheinterfaceofmanyprocessesincancerdevelopment.Itisverymuchdependentonthenutritionalstatusofcancercells,especiallytheglucoseandglutaminesupply,aswellasothermetabolitesofothermetabolicpathwayssuchasfattyacid(acetyl-CoA)ornucleotide(UTP)metabolism.TheHBPbranchesofffromtheglycolyticpathwayattheleveloffructose-6-phosphate,anditsmetabolicendproducturidinediphosphateN-acetylglucosamine(UDP-GlcNAc)mediatesmanydownstreamglycosylationstepsviaitsdownstreamproteinO-GlcNAc-transferase(OGT)andthestructuralchangesoftheproteinsandlipidsthatareinvolvedinprocessesthataffectcellsignaling,generegulation,andEMT(Figure2O).TheresultingprocessesaresovariedandcomplexthatwerefertoAkellaetal.(42)foranextensivesummary. Theso-calleduronicacidorglucuronatepathwaybranchesofffromtheglycolyticpathwayatthelevelofglucose-6-phosphateviaglucose-1-phosphatewithitskeyenzyme—UDP-glucose-6-dehydrogenase(UGDH)—transformingUDP-glucosetoUDP-glucuronicacidthroughactivatedEGFRsignaling.ThecancercellneedsUDP-glucuronicacidtoproducepolysaccharides,likehyaluronicacid—anextracellularmatrixcomponentinepithelialtissues.HyaluronicacidactivatescellsurfacereceptorstriggeringEMT,beingresponsibleforthepoorclinicaloutcome(43,44).pUGDHreactswithhumanantigenR(HuR),transformingUDP-glucose(UDP-Glc)toUDP-glucuronicacid(UDP-GlcUA);attenuationofUDP-glucose-derivedinhibitionofHuRassociatingwithSNAI1mRNAincreasestheSNAI1mRNA-stability.AugmentedSNAILdrivesepithelial-mesenchymaltransition,tumorcellmigrationandlungcancermetastaticdissemination.Tyrosine473phosphorylationofUGDHgoesinhandwithmetastasisandadevastatingprognosisforpatientswithlungcancer(45).Unlikemetabolitesaccumulatingbecauseofcancer-causinggeneticalterationsinmetabolicenzymes,normallypromotingtumorprogression,UDP-Glcislimitingtumorigenesis(46,47). Movingfromneoplasia,throughmalignancytodistantmetastasisandrestingcancerstemcells,thecancercellre-orientsitsmetabolismanditsassociatedphenotypicde-differentiationseveraltimestosurviveintheever-changingmicroenvironmentandmaintainsteadyproliferationor,inthecaseofcancerstemcells,survivetransientsenescencetore-metastasizeandproliferateinthepresenceofadequatemicro-environmentalconditions.Withmetastaticseeding(dissemination)causedbytheepithelial-mesenchymaltransition(EMT),thecancercellsgainanincreasedmigratoryandinvasivepotentialandassociatedcytoskeletalmodificationsfortherequiredmotilityofthespreadingtumor. Thecancercellregulatesevolutionarilyhighlyconservedgenes,suchastheeukaryotictranslationinitiationfactors5Bor2[eIF5B(2)](48),orthedimericisoform2ofpyruvatekinase(PKM2)[(49);Figure2P],whicharewidelyneededinhumanembryogenesis.Theyareobligatoryforde-differentiationfromthetumor'scelloforiginandthereorganizationofcentralcarbonmetabolism. ReprogrammedMetabolismasaCauseofCancerDevelopment Neoplasia,ormalignantprecursorcell,developsfromacellthathaslostitsnormaldifferentiationcharacterandinvolvementinthesurroundingmicroenvironmentofitshostorgan.Variousfactorscanleadtocancer. Researchonthebiochemicalfactors,whichcausethespreadingofthemalignancy,hasresultedinremarkableprogressconcerningtherelativetreatmentmethods;however,theemergenceofresistanceunfortunatelystillposessignificantsetbacksintherapy.Inadditiontothesurgicalmethodsofcurativetherapy,resection,transplantation,andablation,thevariousmethodsofchemotherapy,radiationorphototherapy(50),anti-angiogenicdrugs(51–53)andthe“naturalkiller”(NK)cell-basedimmunotherapy(54)areavailable.However,allofthesemethodsareintrinsictothefactthatthetherapyoftumorigenesis,dependingonthecontext,leadstoresistancetotheseformsoftreatmentandultimatelytometastasis,andthepatientisdeprivedoflong-termgoodprognosisofbothhistotalanddisease-freesurvivalrates. Whileitistruethatmutagenesisisfirstlycausingcancerviathealterationofthegeneticmaterialbymutagenicsubstancesorradiation,thisalterationissufficienttocausecanceronlyifthemitochondria—thepowerorganellesofthecell—aredamaged.Theknockdownorknockoutofautophagy-relatedgenessuchasAtg5andAtg7ensuringmitochondrialfitnessbyremovingdefectivemitochondriathroughmitophagyimpairsthisspecialformofautophagocytosis(37,55–57). Reactiveoxygenspecies,calledROSforshort,arefreeoxygenradicals,which,bytheirrelease,causedamagetothemoleculesessentialforthefunctionsofthecell,suchasDNA,RNA,andamultiplicityofproteinsandlipids.Theaccumulationoftheoncometabolitessuccinate,fumarateand/or2-hydroxyglutarate[whichinhibitα-ketoglutarate(α-KG)—dependentenzymes,liketheJumonjidomain-containing(JMJ),histonelysinedemethylases(JHLDM),andten-eleventranslocation(TET)methylcytosinedioxygenasesregulatingbothgeneexpressionattheepigeneticlevelandtheexpressionofoncogenictranscriptionalprograms]blocksterminaldifferentiation(8,58–62). Germlineorsomaticmutationscausetheaccumulationoftheseoncometabolites.Correspondingtoit,thesuccinatedehydrogenasecomplexiron-sulfursubunitB(SDHB),thefumaratehydratase(FH),andthecytosolicisocitratedehydrogenase[NADP(+)]1(IDH1),orthemitochondrialisocitratedehydrogenase[NAD(+)]2(IDH2),areinvolved[(16);Figure2Q].Aloss-of-function(LOF)mutationinSDHBandFHorgain-of-function(GOF)mutationinIDH1andIDH2leadtoanincreaseinthecytosolicconcentrationsofsuccinateandfumarateontheonehandand2-hydroxyglutarateontheotherhand,respectively(61).FumarateandsuccinateactivateKelch-likeECH-associatedprotein1(KEAP1)throughanon-enzymaticpost-translationalproteinmodificationcalled“succinylation,”whichinturnactivatestheoncogenictranscriptionfactor—namelytheerythroid-derivednuclearfactor2(NRF2orNFE2)(63).Incontrast,2-hydroxyglutaratemodulatestheα-ketoglutarate-dependentactivityofprolylhydroxylases1and2(PHD1,2)andthefollowinghypoxia-induciblefactorsubunit1α(HIF-1α)stabilization(Figure2R),thuspromotingthetransformationofthedevelopingmalignancy(7,8).Expressionlevelsoftransketolase(TKT)—anantagonistofα-KG—could,forinstance,regulatethemetabolicswitchthroughHIF-1αandPDH2viatheα-KG-dependentdioxygenasesignalingandthetranscriptionofSDHandFHtocontrolbreastcancermetastasis(64).Theconcomitantoncogenesignalingpromotesthemitogen-activatedproteinkinase(MAPK)cascade(65),epidermalgrowthfactorreceptor(EGFR)signaling(66),andenhancedprotectionagainsttheoncogene-drivenmitochondrialoutermembranepermeabilization(MOMP),mitochondrialpermeabilitytransition(MPT),senescence,andtheregulatedcelldeath(RCD)(67–70). Theepithelial-mesenchymaltransition(EMT)isalsodependentondown-regulationofsuccinatedehydrogenaseandthesubsequentaccumulationofsuccinateinbreastcancerprogressionandrepresentsSDHasapotentialkeyregulatorofEMT[(71);Figure2Q].Down-regulationofsuccinatedehydrogenaseB(SDHB)iscommonincentralnervoussystem(CNV)—hemangioblastoma(72).Isocitratedehydrogenase1(IDH1)(Figure2Q)—mutanthumangliomasshowahighdependenceoflactateandglutamatebecauseoftheresultingdeficitinα-ketoglutarate(α-KG).TheaccompanyingneuronalcellsandastrocytesinthemicroenvironmentaresupplyingthemwiththesenutrientstoreplenishtheTCAcycle(73). Asmentionedinthe“MetabolisminCancer”sectionofthisreview,tumorprogressionisassociatedwiththerewiringofcancermetabolism.InadditiontoincreasedglycolysisandtheincreaseduseofPPPunderhypoxicconditions,astheyalsooccurincellswithmitochondrialdefects,thereisarealignmenttoothermetabolicpathways.Thisrealignmentincludesreductiveglutaminemetabolism(Figures1A,B,2I)—themainsourceofcytosoliccitrate[(26,74,75);Figure2L].Serinemetabolism(Figure2D)isalsoimportantforlipidsynthesisandthemaintenanceofredoxhomeostasisthroughtheproductionofreducingequivalents,responsibleforasmuchas50%ofcellularNADPHproduction(29,76).Thisoccursviathemitochondrialserinehydroxymethyltransferase2(SHMT2)andthecytosolicSHMT1,whichsynthesizefromtetrahydrofolate(THF)andglycine5,10-methenyl-THFandfurtherviathe5,10-methylene-THFdehydrogenase1and2(L)(MTHFD1/2/2L),5,10-methylene-THF(alsocalledone-carbonorfolatecycle).Asetofreductive-oxidativeconversionsleadstoavarietyofTHFsubtypesthatarerequiredforpurines,thymidine,andS-adenosylmethionine(SAM)biosynthesis(77).Thelatterisanimportantsubstrateforgene-regulatorymethylationreactions. Viathereversibleoxidativedecarboxylationof(S)-malatetopyruvate[(S)-malate+NAD(P)+↔pyruvate+CO2+NAD(P)H],performedbymeansofthecytosolicmalicenzyme1(ME1)—alsocalledmalatedehydrogenase—whichcombinesglycolysiswiththeTCAcycle,NAD(P)HisalsoobtainedinPDACsandhighlyproliferatingbreastcancer[(27,78);Figure2S].Cancercellstakeupextracellularcitratefromthebloodviatheplasmamembranecitrate-transportingprotein(pmCiC)thatsupportsboththecancercellmetabolismandtheproliferationofcancercellsthroughbothitsdeliverytotheglutamateandTCAmetabolismorforfattyacidsynthesis[(79);Figure2C].Similarly,acetoacetate,whichisderivedfromacetyl-CoA,enhancesoncogenesisthroughelevatingtheactivityofBRAFkinase,whichresultsinincreasedMAPKsignaling(80,81). Furthermore,slightlyincreasedROSlevelsstimulateproliferationbyinactivatingtumorsuppressorproteinssuchasthephosphataseandtensinhomologPTENorstabilizingHIF1α[(82,83);Figure2T].Theymanageandcontrolmitochondrialbiogenesisanditsmetabolism(84,85).TheseslightlyincreasedROSlevelsarise,forexample,asasideeffectthroughtheover-expressionofATPaseinhibitoryfactor1(ATPIF1)andtheresultinglimitationofATPproductionafterthedimerizationoftheETCcomplexVintheinnermitochondrialmembrane(86,87).However,evenwhenROS-derivedsenescenceoccurs,thismayparadoxicallyresultinincreasedproliferationviacell-extrinsicsecretionofmitogenicfactorstoneighboringcells(88,89). Inthedevelopmentoftheresistanceofthecancercellintoregulatedcelldeath(RCD),themitochondrialtransmembranepotential(Δψm)andthus,glycolysisincreaseinsometumors(90).Increasedlevelsofglutathione(GSH)preventtheoxidationandtranslocationofcytochromeCfromthemitochondriaintothecytoplasm,thuspreventingMOMPandapoptosis(91).Anti-oxidative,reducingequivalentsaredeliveredthroughglycolysisandreductiveglutaminecarboxylation[(76,92,93);Figures2D,I]. Furthermore,duetothelowROSlevels,hormesis—alreadyformulatedbyParacelsus—occurs,togetherwiththepromotionofautophagy,whichisreminiscentofischemicpreconditioning(94–96).Inadditiontoglycolysis,adequateATPsupplybythemitochondriaensuresoptimalCa2+homeostasisandlimitedmitochondrialpermeabilitytransition(MPT)(86,97).TheresultingglucosedeprivationcausesevenachangeofglycolysistoOxPhosand,throughmitochondrialelongationandmitophagy,theremovalofdysfunctionalcomponentsthankstoboththeinhibitionofdynamin1-likeprotein(DNM1L)andthecreationofamitochondrialnetwork(98,99). Theheterogeneitybetweentheextentsoftheuseofoxidativephosphorylation(OxPhos)inrelationtoglycolysisdependsontheoriginandlocalizationoftheprimarytumorsandtheirmetastases.Chemo-resistancedevelopsbecauseoftheabilityofcancercellstorewiretheirmetabolismflexibly.IncreasedOxPhoscauses,amongotherthings,increasedexpressionofclassIMHCmoleculesontheoutermembraneofthecancercellsandtherebyareductionintheirnaturalkiller(NK)cell-mediatedlysis.TwistingthepolarizationofM1-toM2-macrophages,whichoccursmainlyunderhypoxicconditionsusingOxPhos,supportstumorigenesis(100–104). Lactate-activatedtumor-associatedmacrophages(TAMs)increasechemokine(CC)ligand5(CCL5)expressionviaNotch1andJagged2signaling.ItsactivatedreceptorCCR5,likeitsligand,isstimulatedbythetransforminggrowthfactorbeta1(TGF-ß1),whichleadstoincreasedaerobicglycolysisviaactivatedAMPKandpromotesEMTinthebreastcancercellsinvestigated(105).Duetothefurtherincreaseinglycolysis,thereisapositivefeedbackloop,whichfurtheractivatestheTAMsviatheincreasedlactatesecretion.LactatedehydrogenaseA(LDH-A)expressionhasinfluenceonthetumormicroenvironmentthroughHIFsignaling,andtheimmuneresponseismodulatedviaexpressionlevelsofhexokinase1and2(HK1and2)andVEGFsecretion(106).TheincreasedlactateisresponsibleforimpairedTcellfunctionviahypoxia-reducedmicroRNA34a(miR-34a)expressioningastriccancer-associatedtumor-infiltratinglymphocytes,too(107). Thenon-metabolicfunctionsoflactate,whichcanbeconvertedintopyruvateasanenergysourceintumorcells,remainunknown.Zhangetal.(108)describeapreviouslyunknownhistonemodificationcalledlactylation,whichisderivedfromlactate.Theauthorsshow,byidentifying28lactylationsitesonhumanandmousehistones,thatlactylationofhistonelysineresiduesdisplaysanepigeneticmodification,thusdirectlystimulatingchromatingenetranscription.Glycolysisandlactateproductionisinducedbyhypoxiaandbacterialstress,thusstimulatinghistonelactylation.StimulationofM1macrophagesbyexposingthemtobacteriainitiateshistonelactylationthatistemporallyperformeddifferentlythanhistoneacetylation.HistonelactylationincreasesinalatephaseofM1macrophagepolarizationinducinghomeostaticwoundhealinggenesbyanendogenous“lactateclock,”whichprovidestheopportunitytounderstandlactate'sfunctionsininfectionsandcancer. Arecentstudy(109)foundthattumor-associatedregulatoryTcells(Tregs,alsonamedsuppressorTcells),incontrasttoconventionalTcells(Tconv),enhancedfattyacidsynthesis(FAS),andfattyacidoxidation(FAO)tocompensateforthelackofnutrientsinthetumor,andtheyaccumulatedinitsmicroenvironment,protectingthelatterfrominfiltrationbyconventionalactivatedTcells. Elevatedlevelsofmitochondrialreactiveoxygenspecies(ROS)promotecancermetastasisthroughinductionofEMTthroughmetabolicremodelingviaincreasedfattyacidβ-oxidationandMAPKcascadesincancerstemcells(110).Immatureneutrophilsoflow-density(iLDNs)exhibitincreasedmetabolicflexibilityandglobalbiogeneticcapacitytoactivatemitochondrialATPproduction.Amongotherthings,thegranulocytecolony-stimulatingfactor(G-CSF),secretedbybreastcancercellsmobilizesthecellsmigratingintotheliverandpromotesbreastcancermetastasisviaNETosis.Cancercellsmainlyuseglutamateandprolineintheglucose-deprivedenvironment(111).ThemicroRNAmiR-143controlsmemoryTcelldifferentiationbyreprogrammingTcellmetabolisminesophagealcarcinomapatientsviaareductionincellapoptosisandpro-inflammatorycytokinesecretion.Glucosetransporter1(GLUT-1)—thedecisivetargetgene—andindolamine-2,3-dioxygenase(IDO)anditscrucialmetabolitekynurenineconstitutetheupstreamregulatorsofmiR-143inmemoryTcellsandthereprogrammingofthetumormicroenvironmentmetabolismbyGLUT-1(112).Ontheotherhand,contrarytotheneedforhexokinase2(HK2)forcancerprogressionorgrowthinvariouscancermodels,Tcellscanwithstandthelossofhexokinase2.HK2isthemosthighlyregulatedenzymeincancerandactivatedT-cells,whichsuggeststhatHK2couldbeapromisingtargetforcancertherapyofT-ALLleukemia(113). TheInfluenceofTumorMicroenvironmentonEarlyMalignancy,Full-BlownTumor,andCancerStemCells Diversificationandfunctionalinteractionbetweenthetumormicroenvironmentandthenon-transformedenvironmentoccurduetothemetabolicneedsoftheincreasingphenotypicandmetabolicplasticityofdevelopingmalignancies(114–119).Cancerstemcells(CSCs)withaself-renewingpotentialshowapredominantlyglycolyticmetabolismandareresponsibleforthelocalprogressionandrecurrenceofthetumor(120–123).Nevertheless,therearealsoexceptions;forexample,theCSC'sofovariantumorsshowametabolismbasedmoreonoxidativephosphorylation(124);andtherearealsometabolicdifferenceswithintheindividualsubgroupsofCSCswithinatumor(125,126). Cancercells,suchasprostatecancercells,reprogramso-calledtumor-associatedfibroblasts(TAFs)inthedirectionofglycolysis.Bylactatesecretionintothetumormicroenvironment,theyreceivethemselvesalactate-inducedoxidativemetabolism;thismodelisreferredtoasthe“reverseWarburgeffect”(127–130). Recently,studieshaveshownthattherecouldbeanewmodeltounderstandtheWarburgeffect,concerningcancermetabolisminbreastcancerandlymphoma.Thishypothesissaysthatepithelialtumorcellsprovokeaerobicglycolysisinadjacentfibroblastsofthestroma.Thesefibroblastssecreteenergymetabolitesfromaerobicglycolysis,likelactateandpyruvatethatareabsorbedviathemonocarboxylatetransporter1(MCT-1)andconsumedintheTCAcyclebythecancercells,resultinginaproperenergymetaboliteflowthroughATPgenerationviaOxPhos,promotingahighercancercellproliferation(127,131).Essentially,thetumor-associatedfibroblastswouldfeedthecancercellsinakindofhost-parasiteconjunction.ThisnewmodelstillgoesconvenientwithWarburg'sstatementthattumors(consistingofthecancerandthestroma)areshiftingtheirmetabolismfromoxidativephosphorylationtoaerobicglycolysis.Thisisalsoinlinewithnewstudiesthatshowthatbreastcancerandendometrialcarcinomacellsstilldependonmitochondrialoxidativemetabolism.Withaparasitism-likebehavior,PDACsdrivetheTAFstowardautophagyandthusgeneratelocalalanineavailability,whichthecancercellsharnessasacarbonsourceviaextracellularuptakeofproteinsbytheso-calledmacropinocytosis[(132,133);Figure2G].However,macropinocytosisalsorecruitsfattyacids(FA)fortheoxidativeFAmetabolism(FAO)oflocaladipocytes(134–137).Thegenome-wideanalysishasshowncriticalregulationforadipocyte-associatedbreastcancerthroughtwomicroRNAs—miR-3184-5pandmiR-181-3p—whichweremostup-anddown-regulated,withtheirdirecttargetsbeingforkhead-boxprotein4(FOXP4)andtheperoxisomeproliferator-activatedreceptoralpha(PPARα).Invitroco-cultureofbreastcancercellswithmatureadipocyteshasresultedinanincreaseinproliferation,migration,andinvasionviatheNotch-inducedEMTpathwayandtheincreasedproductionofcytokinesandchemokines.Diabetesmellitusalsopromotesbreastcancerprogression(138). Themetaboliccompetitionfornutrientswithdeprivedavailabilityhas,asalreadymentioned,alsodirecteffectsontheimmunesurveillancebyimmuneeffectorcells—whichshowsimilarmetabolicbehaviorasthehighlyproliferatingcancercells—andthusontheevasionofimmunesurveillancebytumorigenesis(139–141). Inadditiontothemetabolic“parasitism,”therealsoexistsaseemingly“symbiotic”formofmetabolismhappeningbetweencancercellsofhypoxic,withthoseofnormoxicareasandglycolysis-drivenlactatetransportingintooxygen-well-exposedareas.TheseareasareabletometabolizethelactateviaOxPhosand,inturn,toprovidethehypoxicareaswithenergyandbicarbonate(HCO3-)ionstobalancetheirprotonsurplusinthehypoxiccenterpieceoftumorgrowthviatheso-calledconnexin(gap-junctionprotein)-composited“communicating”transitions(142–144). Ultimately,activeHCO3-transportfromnormoxiccellsregulatesthepHiofhypoxiccancercellsinthetumorcoreandsupportslacticaciddischargeandacid-basetransportthroughchemicaltitrationbetweenthealkalineperipheralcellsandtheacidiccentralcellsviaconnexinchannelsinjunction-coupledtumorstomaintainpHhomeostasis.Thereby,thedischargeoflactateintothenormoxicregionsoftheedgesofthetumorrepresentsastrategyforavoidingthecompetitionforglucoseinanutrient-andoxygen-deprivedmicroenvironment. TheMetabolismofCancerCellMetastasis Crucialforthepatient'ssurvivalprognosisisthequestionofthepresenceofmetastasis,calledmetastaticseedingorevendissemination.Afteracertaintime,thetumorhitsthelimitsofitsgrowth.Hypoxiaandhypoglycemiaareincreasinginsidethetumorcore[(145);Figure1C].Ifthesupportfromthetumormicroenvironmentandre-vascularizationofthetumorthroughthegenesisofnewbluntedbloodvessels,togetherwiththereprogrammingofmetabolism,reachtheirlimits,thechancesforfurthertumorgrowthwouldremaininthere-orientationofitsphenotypetoinvadethebloodstreamorlymphaticvessels.Itssubsequenttrans-endothelialescapefromtheprimarysiteintonew,distalbodysiteswouldguaranteeitscontinuedsurvivalbutultimatelykillthepatient(146).Thesedistalsitesofsecondarytumordevelopmentareessentiallywithnutrientsandoxygenrichlysuppliedareas,assuchthelungs,theliver,thebrain,bones,theomentum,andthelymphnodes,thusprovidingthedevelopingmetastasiswiththeidealconditionsforfurthersurvival. Afirstandimportantstepinthedevelopmentofmetastasisofthetumoristhealterationofitscell-specificphenotypefromadifferentiatedepithelialphenotypewithacleardifferentiationintoanapical(outerregion,facingtheskin,orcelllumen)andbasal(innerregion,connectedviaabasalmembranewiththeunderlyingtissue)sideintoamesenchymalphenotype.Thisphenotypeincreasinglylosesitsepithelialfeaturesanditspolarizationandassumesamigratoryphenotypecapableofalteringitsposition,dissolvingthecell-cellcontactstopenetratethebasalmembraneandtoreducetheexpressionofadhesionmoleculeslikeE-cadherin,theepithelialcelladhesionmoleculeEpCAM,andkeratin-14.Theexpressionlevelsofothermolecules,suchasvimentin,N-cadherin,orfibronectin,areupregulated.Onceagain,switchingongenesfromembryonicdevelopmentherebydeterminesthephenotypeofthemigratingcancercell. Themechanismresponsiblefortheso-called“metastaticcascade”gaveititsname:theepithelial-mesenchymaltransitionorEMTforshort.EMTresultsinincreasedmigratoryandinvasivepotentialofthemalignancy(147,148).Forexample,fumarate,succinate,or2-hydroxyglutarateareabletorepresstranscriptionofmicroRNAsthatinhibitmetastasisbyrepressingTen-eleventranslocationmethylcytosinedioxygenase1(TET1)orJumonjidomain-containinghistonedemethylase(JHDM)(149,150).ThemicroRNA[(miRNA)forshort;itmostlyconsistsof21-to23-nucleotidelong,highlyconserved,andnon-codingRNAs,whichplayanimportantroleatthepost-transcriptionallevelofgeneregulation]regulationofmanygenetargetsmakesthematherapeuticallyinterestingtopic(151,152).Ratherthaninhibitingasingleneoplasticprocess,theconcomitantordelayedstagingofmanyprocessesisre-sensitizingthecancercelltotherapy.However,thisswordofmiRNAregulationisdouble-edged:thenon-specificnatureofmiRNAregulationoftenleadstoundesirableinteractionswithtargetgenesthatarenotinvolvedintheregulationofcancerproliferationandmetastasis.Nonetheless,proteasomeinhibitorsdonotfailtowork.MiRNA-basedtherapeuticshavenowundergonePhase1ofclinicaltrials(152). Additionally,up-regulationofthegenesoftheperoxisomeproliferator-activatedreceptorgammaco-activator-1alpha(PPARγco-activator1α,alsoPGC-1α)inbreastcancer(153),orsilencingofthemitochondrialmembraneproteinFAM210Binovariancancerprovideoptimalutilizationofmitochondrialbiogenesisandoxidativephosphorylationthatisimplementedthroughthedown-regulationofpyruvatedehydrogenasekinaseisozyme4(PDK-4)andtheincreasedutilizationofpyruvatefromglycolysisviaTCAcycle[(154);Figure2U].Thisprocessisimportantformitochondrial-oxidativemetabolismatthe“growthbud”ofthetumor,whichlinkstotheformationofcytoskeletalchangesnecessaryforincreasingmotilityofthemigratingandinvadingmalignancies(155–157).PGC-1αisessentialforTGF-ßandNeu/ErbB2-drivenbreastcarcinomaonsetandresistancetobiguanidessuchasmetformin.TheinteractionofPGC-1αwiththeShcAadapterproteintherebyraisesmetabolismandbreasttumorglucose-dependence.However,impairedShcAsignalingincreasesglutaminedependenceduetoareductioninPGC-1αlevels,mitochondrialefficiency,andmetabolicversatilityofbreastcancer(158–161). MitophagydefectsincreasemetastaticdisseminationviaslightlyelevatedROSlevels(162–165).Thisactivatesseveralsignalingcascades,suchastheproto-oncogenictyrosinekinaseSRCandproteintyrosinekinase2beta(PTK2B)signaling,whichareessentialformetastasis(165,166).However,toomanyROSinhibitmetastasisthroughoxidativestress,leadingtosenescenceorregulatedcelldeath(167–169).Dependingontheanatomicaloriginofthemetastaticlesions,thereissignificantheterogeneityinthedifferentialuseofoxidativephosphorylationconcerningglycolysis(116,170,171).Mitochondriaarethereforethelinchpinofcellsignalingandmetabolism,whichdecideaboutthedeterminationoftumorigenesis(59,172–174). Conversely,mitochondrialdysfunctioncanleadtoreducedNADHturnoverandanincreaseinthecytosolicNADHconcentration.Throughthereductiveglutaminecarboxylationand,subsequently,viathemalatedehydrogenaseofthemalate-aspartateshuttle,theNADredoxstateisrestored,andthecytosolicglyceraldehyde-3-phosphatedehydrogenase(GAPDH)andglycolysisactivityisenhanced,resultinginanincreasedATPproductionassociatedwithincreasedcellmigration.Thus,theNADHshuttlecombinescytosolicreductiveglutaminecarboxylationwithglycolysisinmitochondrial-dysfunctionalcells(175–177). Thereissomeevidencethatbreastcancerpatientswithmetabolicpathologies,suchasdiabetesandobesity,arelessresponsivetotherapiesandhaveahigheroverallmortalityrate,withhyperglycemiaappearingtoberesponsibleforthis.Itisalsopossiblethattheexcessleptinproductionleadstoanup-regulationoftheleptinreceptorandsubsequentstimulationoftheJAK2/STAT3orPI3K/AKTsignalingpathwaysviathegeneregulationofFoxc2,Twist2,Vim,Akt3,andSox2toaCSC/EMTphenotypedeterminedintriple-negativebreastcancercells(178).Additionally,suppressionofthepyruvatedehydrogenase(PDH)complex(Figure2U)viaoncogenicmicroRNA-27bcanderegulatebreastcancergrowthbyshiftingthemetabolismfromoxidativephosphorylationtowardglycolysis,thusnegativelyaffectingpatientsurvival(151).Caseinkinase2(CK2)modulatesthepyruvatekinaseMisoforms1/2ratioinfavorofpyruvatekinaseM2(PKM2)(Figure2P),therebytriggeringEMTincoloncarcinomacelllinesbyincreasingglycolyticactivityandLDHA-drivenproliferation(179). Themechanotransductionofsignalsfromthesurroundingstiffeningtissueofthetumoralsodeterminestheextentoftheglycolyticdrift.ThepublicationdatafromParketal.(180)showthattheextentoftheglycolysisoftransformednon-smallcelllungcancercellsreactstothestiffnessoftheactomyosincytoskeletonandthatthemechano-sensingmachineryofthesurroundingtissuecontrolsthecellmetabolism.Non-malignantcellscanadapttheirenergyproductiontochangingenvironments.Cancercells,ontheotherhand,reacttotheconstantlychangingmechanicalambientpressureduringtumorprogressionwithaconstantlyhighglycolyticrateinthecancercells.Thetransferofhumanbronchialepithelialcellsfromstifftosoftsubstratesleadstoaglycolysisreductionthroughthebreakdownofphosphofructokinase(PFK).ThisdegradationismediatedbythedisassemblyofstressfibersreleasingtheE3-ubiquitinligasetripartitemotif(TRIM)containingprotein21(TRIM21).Thetransformedcellsofnon-smallcelllungcancerthat,despitethechangedenvironmentalconditions,maintainhighglycolysisviatheincreasedPFKexpression,down-regulateTRIM21andsequesterresidualTRIM21onasubsetofstressfibersthatareinsensitivetosubstratestiffness. Whiletheassumption,inthepast,was,thattheepithelialandmesenchymalphenotypesofmetastasizingcancerwouldjustshowarigidswitchbetweenthem,eitherepithelialormesenchymal,nowweknowthatthereareseveralintermediarystagesinbetween.Thisdependsonthemetabolicandsignalingconditionsinthetumormicroenvironment,theinvasionlocationintothevascularnetwork,theconditionsfoundinthesiteoftrans-endothelialmigration(extravasation)outofit,andtheconditionsfoundinthemetastaticdestinationsite.Thecurrentneedsofthecancercellsnotonlydeterminesthetransitiontothemesenchymalphenotype,butalsoisresponsibleforthereverseddirecteddevelopmenttowardtheepithelialphenotype,calledmesenchymal-epithelialtransition(MET).Arecentstudy(181)investigatedtransitionalstatestendingmoretotheepithelialorthemesenchymalcharacteristicsandclassifiedthem,besidesmeasuringthelevelsofexpressionofadhesionmoleculesandmoleculesofthemesenchymalstate,basedonthelevelsofCD51,CD61,andCD106,receptorproteinsthatindicateamesenchymalcellstate.Itturnedoutthatthemajorityofthemetastasizingcellsdidnotwhollyde-differentiatethemselvestothemesenchymalphenotypetometastasizeandtofinalizethetransitioninadistantorgansite. Manycancercellsoftheprimarytumor,calledcirculatingtumorcells(CTCs),leavethecirculatory,orlymphaticsystemattheirextravasationsiteandtheyhavetochangetheirmetabolicphenotypetosurviveinthenewtumormicroenvironmentoftheorganoftheirdestinationsite;thereby,onlyfewofthemshowtherequiredmetaboliccharacteristicstobuildmetastaticlesions.Manyofthemremainina“sleeping”mode,calleddormantCTCs,whichpreventsanoikis—theprogrammeddeathofcells,whichwerelosingtheircontacttothecellmatrix.Thesecellsarereactivatedonlywhenthesurvivalconditionsimproveinthemicroenvironmentoftheirchoice. Metabolismiscriticalforsurvivalandstressadaptation,andonebelievesthatCTCspossessanindividualsignaturetofulfillthesemetabolicrequirements.Theseso-calleddisseminatedtumorcells(DTCs)haveacertain“predilection”forahostorganthathasaspecificmetabolicsignatureforcolonizationataspecificorgansite,butthisalsooffersanewAchilles'heelforcancertherapy.Sometumorsmetastasizetospecificorgansites,likeprostatecancertoboneorpancreaticcarcinomatoliver(182,183);onthecontrary,cancersfrombreastandlungarenotfussy.Recentevidencegivesahintthattheflexiblecharacterofmetabolismisdetermining,whetherthemetastaticprocessissuccessfulandpromotesmetastasisindistantorgandestinations(184). TherapeuticImplicationsoftheMetabolicFlexibilityoftheTumorandItsCancerStemCells Embryonicandearlyfetalgrowthmainlyrequiresglycolysisandconstitutivegrowthfactors(forinstance,IGF,mTOR)amongpredominantanaerobicenvironmentalconditions(lowO2partialpressure)andwithoutevolutionoffunctionalmitochondria(185,186).Whenthechildisbornandwithcontacttotheoxygenintheatmosphere,manychallengesoftheenvironmentanditsadaptationtoit,thedevelopmentalprogramadjustments,andtheterminaldifferentiationofthesedevelopmentalprograms;shapingofthelymphoidsystem,maturationofthecellsoftheimmunesystemandtheirthymusandbonemarrowsettlementarenecessaryformitochondrialefficiencyandstrongimmunity.Therefore,thereisaneedforbioenergetichealthandstronglyworkingcell-mediatedandhumoralimmunitytogiveprotectiontoexternalthreadsafterbirthandthroughoutlife(187,188). Agingandoxidativestressnegativelyaffectanefficientimmunity,mitochondrialhealth,andweakenstheimmunesystem;theyarealsoresponsibleforhypoxia,resemblingthestatesofanabolicfetaldevelopmentandmaybethereasonfortumorigenesis(189). Theactivationofconstitutiveembryonicgrowthfactorsofepithelialcellsandtheirepithelial-mesenchymaltransition(EMT)induceimmunoreactivetissueloss.Adisruptedpyruvatetransport,thebiosynthesisofproteinsenrichedwithbranchedandaromaticaminoacids,enhancedactivityofSerin/ThreoninkinaseIRAK-M(190,191)andothergrowthpaths,likemTOR/PI3Ks,VEGF,enhancedglycolysistoaddresstheincreaseddemandsforaberrantcancercellgrowthunderhypoxia,andthedisruptionoftheinhibitionofcell-cellcontact,accompanytheseevents(192–194). Effectiveimmunityinacuteinflammatoryconditionshasthepowertoexterminatecancerandtoreviseorpreventtheinitialstagesofimmunedysfunction.However,ithasbeenshownthatchronicinflammationandanagedimmunesystemreducedstabilityofthegenome,changedtheexpressionofthefactorsoftheinflammatoryandanti-inflammatorymachinery,alteredthemitochondrialandribosomalfitnessandfunctionality,anddisturbedtheacid-basebalance,increasingtheriskofcarcinogenesisintissues.Anti-cancerdrugs,derivedfromidentifyingmultiplemutantordamagedgenesortheirrelatedgrowthenzymesformthebasisforlate-stagecancertherapyas“targeted,”“precision,”or“cancer”therapyorevencalled“personalizedmedicine.”Nonetheless,thissortoftherapynotinfrequentlyshowsdrug-related,undesirableeffectsthatthreatenthelivesofthepatientsleadinginworstcasetodeadlymulti-organfailure(MOF)(195,196). Activationofconstitutivetrophoblastgrowthfactorsrequiredfororderlyplacentalembryonicandfetalgrowthandreceptorproteins—likepyruvatekinasesandtheiractivators—inducetheproductionofanaboliccomponentsofmetabolismaffectingaberrantcancercellgrowthandmetabolismtofacilitateglycolysisunderhypoxicconditionswithdysfunctionalmitochondria.Thesecharacteristicsaresimilartothoseoftheearlyfetalgrowth.Embryonicgrowthfactorsexpressionsfacilitatetheamelioratedglycolysis,andeffects,namedafterLouisPasteur,orHerbertGraceCrabtree(glucose),inducingimmunetolerance,andgeneratingahigh-energystatethatfacilitatescancerproliferation—conditionsnotbeneficialforthesurvivalofnon-malignantcells(197–202). Thecruxattheheartofthechoiceofcancertherapyisduetotheparticularcellcontext.Attemptshavebeenmadetostudytheproliferation,cellcycle,migration,andinvasionofcancercellsandtheirderivedcancerstemcellstocombatautophagy,mitophagy,thebilateralinteractionwithinthetumormicroenvironment,andtheacquisitionofbloodvesselsandthusofnutrientsandoxygenvianeo-angiogenesis.Thetargetingoffactorsthatcausetumorigenesiswithvariousanti-neoplasticdrugstopreventtheprimaryaswellassecondarytumorfromspreadingfurtherhas,inthebestcase,reduceditssizeorkilledthetumorcompletely.Thus,completehealingofthepatienthasbeenachieveddependingontheoriginofcancercells,thedegreeoftheiraggressiveness,andtheirstageofdevelopment,theirabilitytoformmetastasesorcancerstemcells,andtheirchoiceoftheirmetastasissite. Inadditiontotherapywithanti-neoplasticagentsandclassicalchemotherapy,includingradiationtherapy(50),treatmentwithanti-angiogenicdrugs(51–53)and“naturalkiller”(NK)—basedtherapy(54),severalmetabolicpathwaysofmitochondriainfluencethetherapeuticanswer.Forexample,metabolicenzymessuchasthemutatedmitochondrialformofisocitratedehydrogenase2(IDH2),whichblockterminaldifferentiation,havebeenharnessedforthedevelopmentofdrugs(58,203,204).BRAFV600E–inhibitionbyvemurafenibactsasa“switch”fromglycolysistooxidativephosphorylationandconcomitanttherapyresistance.Theinhibitoroftheelectrontransportchainhonokiolreversesthisresistance(205).OncogenicablationofKRASG12D–drivenPDACselectsaresistantpopulationthatreliesonoxidativephosphorylation(206).Breastcancercells,afterMYC/KRAS-orMYC/ERBB2-ablation(207),aresimilartogliomacellsintheiracquiredresistancetophosphoinositol-3-kinase(PIK3)inhibitors(208). TheactivitiesofmanydifferentATP-bindingcassette(ABC)familytransporterproteinsthatmediatechemo-resistanceagainstvariouscancertherapeuticsthroughtheexportofxenobiotic,dependonOxPhos-drivenATPavailability(209);andinsomecases,ahigherinflammatorystateisdrivenbyOxPhos,withinterleukin6(IL-6)andtumornecrosisfactoralpha(TNF-α)secretedinthemicroenvironmentofthetumor(210).Therefore,cancercells,whichshowhigherglycolysis,developaresistancetotherapythroughcells'intrinsicandextrinsicpathwaysfollowinga“switch”toOxPhos.Furthermore,malignantcellsthatusepre-dominantoxidativephosphorylationforenergyproduction,includingtheCSCsofpancreaticcarcinoma,maydevelopresistancetoETCinhibitionbecausetheyacquireMYC-dependentglycolyticmetabolism(211).Chemo-resistantovariancancershowsadriftfromOxPhostoglycolysis,followedbyanenhancedproductionofthePPP-dependentNADPHantioxidant,whichensuresredoxhomeostasisinthecytosol(212).Thus,chemo-resistancewouldbearesultoftheabilityofcancercellstoshapetheirmitochondrialmetabolismflexiblysothattheycanescapeandsurviveconstraintssuchasregulatedcelldeath(RCD)thattheywouldexperiencethroughtherapy. Chaoetal.(213)usedthetargetingoflacticacidosisintheso-calledTILA-TACE(targetingofintratumorallacticacidosis-transarterialchemo-embolization)therapyofhepatocellularcarcinomas(HCCs)largerthan5–10cmandnotsuitableforcurativetherapy.First,theyalkalizedthetumorwithasodiumbicarbonatesolutionviatumor-feedingvesselsandsubsequently,byembolizationofthesevessels,theycutthetumorofffromasubsequentglucosesupply.Astheyshowintheirstudy,thealkalizationoftheglucose-deprivedtumortransfersthemetabolismfromtheeconomyandefficiencymodebacktothe“Warburg”mode.Aftertheembolizationoftheglucose-supplyingvessels,thetumormetabolismliterallyruns“hot,”whichultimatelyleadstointratumoralapoptoticornecroticcelldeath(214–216). Conclusion Ineverythingthatwehavelearnedsofaraboutthedevelopmentofcancer,thereisanall-encompassingbasicideathatsuccessfultherapymustalwaystakeintoaccountthetherapyevasionbehaviorcausedbythemanifoldmetabolicmechanismsofcancercellswereportedinthisreview.Duetothemetabolicflexibilityofthetumorcells,thetherapeuticapproachusuallyshiftsthemetabolismonlyinadifferentdirectionandoftenprovokesamechanismofresistance,mainlyduetotheabilityofthemitochondriatoaltertheenergyandmetabolitesynthesistosustainanadequateproliferation,invasion,andmigrationcapacitytocontinuetumorigenesissuccessfully.Therefore,itisimportanttoincludethesetumorandstemcellmechanismsinthetherapeuticapproach,andtoconsiderthesimultaneousorstaggereddeliveryofdrugsornaturalproductsthatblockmultiplemetabolicpathwaysofthecancercellandatbest,wouldleadtoapoptoticcelldeath. The“Warburg-like”effectpromotesactiveproliferationinrapidlydividingembryonictissuesaswellasintumorigenesisofcancer.Becauseofthismetabolicfeature,theimportantdiagnostictechniqueof18F-fluorodeoxyglucosepositronemissiontomography(18FDG-PET)(217)wasdevelopedandsincethenusedintheclinicforthediagnosisofmalignantdiseases.Momcilovicetal.(218)havebeenusing4-[18F]fluorobenzyl-triphenylphosphonium(18FBnTP)—apositivelychargedtracer-ionthatisaccumulatedonthenegativelychargedinnermembraneofmitochondria—todistinguishsquamouscellcarcinomafromadenocarcinomainmice,thusprovidingtheopportunitytotargettheirdifferentdependencyonoxidativephosphorylation.18FBnTP-PET,togetherwith18FDG-PET,providesuswithanewtoolforinvivo-imagingenergyandmetabolitesfluxestofurtherwidenupourdiagnostichorizonintreatingdifferentstatesofdevelopingcancers.Wecanthussafelyclaimthat,almost100yearsago,OttoWarburglaidthefoundationfortoday'scancerdiagnosisandtherapy(219). AuthorContributions ConceptionanddesignofthemanuscriptwasdonebyMLandCG.ProofreadingwasdonebyGE.Allauthorsreadandapprovedthefinalmanuscript. ConflictofInterest Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. References 1.HanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration.Cell.(2011)144:646–74.doi:10.1016/j.cell.2011.02.013 PubMedAbstract|CrossRefFullText|GoogleScholar 2.PavlovaNN,ThompsonCB.Theemerginghallmarksofcancermetabolism.CellMetab.(2016)23:27–47.doi:10.1016/j.cmet.2015.12.006 PubMedAbstract|CrossRefFullText|GoogleScholar 3.WarburgO.Überdenstoffwechseldercarcinomzelle.Naturwissenschaften.(1924)12:1131–37.doi:10.1007/BF01504608 CrossRefFullText|GoogleScholar 4.WarburgO.Ontheoriginofcancercells.Science.(1956)123:309–14.doi:10.1126/science.123.3191.309 PubMedAbstract|CrossRefFullText|GoogleScholar 5.WarburgO,WindF,andNegeleinE.THEMETABOLISMOFTUMORSINTHEBODY.JGenPhysiol.(1927)8:519–30.doi:10.1085/jgp.8.6.519 PubMedAbstract|CrossRefFullText|GoogleScholar 6.WardPS,ThompsonCB.Metabolicreprogramming:acancerhallmarkevenwarburgdidnotanticipate.CancerCell.(2012)21:297–308.doi:10.1016/j.ccr.2012.02.014 CrossRefFullText|GoogleScholar 7.KoivunenP,LeeS,DuncanCG,LopezG,LuG,RamkissoonS,etal.Transformationbythe(R)-enantiomerof2-hydroxyglutaratelinkedtoEGLNactivation.Nature.(2012)483:484–8.doi:10.1038/nature10898 PubMedAbstract|CrossRefFullText|GoogleScholar 8.XuW,YangH,LiuY,YangY,WangP,KimSH,etal.Oncometabolite2-hydroxyglutarateisacompetitiveinhibitorofalpha-ketoglutarate-dependentdioxygenases.CancerCell.(2011)19:17–30.doi:10.1016/j.ccr.2010.12.014 PubMedAbstract|CrossRefFullText|GoogleScholar 9.GuoJ,WangB,FuZ,WeiJ,LuW.HypoxicmicroenvironmentinducesEMTandupgradesstem-likepropertiesofgastriccancercells.TechnolCancerResTreat.(2016)15:60–8.doi:10.1177/1533034614566413 PubMedAbstract|CrossRefFullText|GoogleScholar 10.MatsuokaJ,YashiroM,DoiY,FuyuhiroY,KatoY,ShintoO,etal.HypoxiastimulatestheEMTofgastriccancercellsthroughautocrineTGFbetasignaling.PLoSONE.(2013)8:e62310.doi:10.1371/journal.pone.0062310 PubMedAbstract|CrossRefFullText|GoogleScholar 11.ShenX,XueY,SiY,WangQ,WangZ,YuanJ,etal.Theunfoldedproteinresponsepotentiatesepithelial-to-mesenchymaltransition(EMT)ofgastriccancercellsunderseverehypoxicconditions.MedOncol.(2015)32:447.doi:10.1007/s12032-014-0447-0 PubMedAbstract|CrossRefFullText|GoogleScholar 12.ZhangH,SunL,XiaoX,XieR,LiuC,WangY,etal.Kruppel-likefactor8contributestohypoxia-inducedMDRingastriccancercells.CancerSci.(2014)105:1109–15.doi:10.1111/cas.12483 PubMedAbstract|CrossRefFullText|GoogleScholar 13.ZhouJ,LiK,GuY,FengB,RenG,ZhangL,etal.Transcriptionalup-regulationofRhoEbyhypoxia-induciblefactor(HIF)-1promotesepithelialtomesenchymaltransitionofgastriccancercellsduringhypoxia.BiochemBiophysResCommun.(2011)415:348–354.doi:10.1016/j.bbrc.2011.10.065 PubMedAbstract|CrossRefFullText|GoogleScholar 14.CairnsRA,HarrisIS,MakTW.Regulationofcancercellmetabolism.NatRevCancer.(2011)11:85–95.doi:10.1038/nrc2981 PubMedAbstract|CrossRefFullText|GoogleScholar 15.PfeifferT,SchusterS,BonhoefferS.CooperationandcompetitionintheevolutionofATP-producingpathways.Science.(2001)292:504–7.doi:10.1126/science.1058079 PubMedAbstract|CrossRefFullText|GoogleScholar 16.GaudeE,FrezzaC.Defectsinmitochondrialmetabolismandcancer.CancerMetab.(2014)2:10.doi:10.1186/2049-3002-2-10 PubMedAbstract|CrossRefFullText|GoogleScholar 17.DaiC,SunF,ZhuC,HuX.Tumorenvironmentalfactorsglucosedeprivationandlacticacidosisinducemitoticchromosomalinstability–animplicationinaneuploidhumantumors.PLoSONE.(2013)8:e63054.doi:10.1371/journal.pone.0063054 CrossRefFullText|GoogleScholar 18.WuH,DingZ,HuD,SunF,DaiC,XieJ,etal.Centralroleoflacticacidosisincancercellresistancetoglucosedeprivation-inducedcelldeath.JPathol.(2012)227:189–99.doi:10.1002/path.3978 PubMedAbstract|CrossRefFullText|GoogleScholar 19.XieJ,WuH,DaiC,PanQ,DingZ,HuD,etal.BeyondWarburgeffect–dualmetabolicnatureofcancercells.SciRep.(2014)4:4927.doi:10.1038/srep04927 PubMedAbstract|CrossRefFullText|GoogleScholar 20.EckertMA,Santiago-MedinaM,LwinTM,KimJ,CourtneidgeSA,YangJ.ADAM12inductionbyTwist1promotestumorinvasionandmetastasisviaregulationofinvadopodiaandfocaladhesions.JCellSci.(2017)130:2036–48.doi:10.1242/jcs.198200 PubMedAbstract|CrossRefFullText|GoogleScholar 21.ShiL,PanH,LiuZ,XieJ,HanW.RolesofPFKFB3incancer.SignalTransductTargetTher.(2017)2:17044.doi:10.1038/sigtrans.2017.44 PubMedAbstract|CrossRefFullText|GoogleScholar 22.DraouiN,deZeeuwP,CarmelietP.Angiogenesisrevisitedfromametabolicperspective:roleandtherapeuticimplicationsofendothelialcellmetabolism.OpenBiol.(2017)7:1–9.doi:10.1098/rsob.170219 PubMedAbstract|CrossRefFullText|GoogleScholar 23.HuX,ChaoM,WuH.Centralroleoflactateandprotonincancercellresistancetoglucosedeprivationanditsclinicaltranslation.SignalTransductTargetTher.(2017)2:16047.doi:10.1038/sigtrans.2016.47 PubMedAbstract|CrossRefFullText|GoogleScholar 24.LiangJ,ShaoSH,XuZX,HennessyB,DingZ,LarreaM,etal.TheenergysensingLKB1-AMPKpathwayregulatesp27(kip1)phosphorylationmediatingthedecisiontoenterautophagyorapoptosis.NatCellBiol.(2007)9:218–24.doi:10.1038/ncb1537 CrossRefFullText|GoogleScholar 25.AltmanBJ,StineZE,DangCV.Fromkrebstoclinic:glutaminemetabolismtocancertherapy.NatRevCancer.(2016)16:619–34.doi:10.1038/nrc.2016.71 CrossRefFullText|GoogleScholar 26.MetalloCM,GameiroPA,BellEL,MattainiKR,YangJ,HillerK,etal.ReductiveglutaminemetabolismbyIDH1mediateslipogenesisunderhypoxia.Nature.(2011)481:380–4.doi:10.1038/nature10602 PubMedAbstract|CrossRefFullText|GoogleScholar 27.SonJ,LyssiotisCA,YingH,WangX,HuaS,LigorioM,etal.GlutaminesupportspancreaticcancergrowththroughaKRAS-regulatedmetabolicpathway.Nature.(2013)496:101–5.doi:10.1038/nature12040 PubMedAbstract|CrossRefFullText|GoogleScholar 28.SunRC,DenkoNC.HypoxicregulationofglutaminemetabolismthroughHIF1andSIAH2supportslipidsynthesisthatisnecessaryfortumorgrowth.CellMetab.(2014)19:285–92.doi:10.1016/j.cmet.2013.11.022 PubMedAbstract|CrossRefFullText|GoogleScholar 29.FanJ,YeJ,KamphorstJJ,ShlomiT,ThompsonCB,RabinowitzJD.Quantitativefluxanalysisrevealsfolate-dependentNADPHproduction.Nature.(2014)510:298–302.doi:10.1038/nature13236 PubMedAbstract|CrossRefFullText|GoogleScholar 30.JainM,NilssonR,SharmaS,MadhusudhanN,KitamiT,SouzaAL,etal.Metaboliteprofilingidentifiesakeyroleforglycineinrapidcancercellproliferation.Science.(2012)336:1040–4.doi:10.1126/science.1218595 PubMedAbstract|CrossRefFullText|GoogleScholar 31.KennedyKM,ScarbroughPM,RibeiroA,RichardsonR,YuanH,SonveauxP,etal.Catabolismofexogenouslactaterevealsitasalegitimatemetabolicsubstrateinbreastcancer.PLoSONE.(2013)8:e75154.doi:10.1371/journal.pone.0075154 PubMedAbstract|CrossRefFullText|GoogleScholar 32.MaddocksOD,LabuschagneCF,AdamsPD,VousdenKH.SerinemetabolismsupportsthemethioninecycleandDNA/RNAmethylationthroughdenovoATPsynthesisincancercells.MolCell.(2016)61:210–21.doi:10.1016/j.molcel.2015.12.014 PubMedAbstract|CrossRefFullText|GoogleScholar 33.MashimoT,PichumaniK,VemireddyV,HatanpaaKJ,SinghDK,SirasanagandlaS,etal.Acetateisabioenergeticsubstrateforhumanglioblastomaandbrainmetastases.Cell.(2014)159:1603–14.doi:10.1016/j.cell.2014.11.025 PubMedAbstract|CrossRefFullText|GoogleScholar 34.Martinez-OutschoornUE,Peiris-PagesM,PestellRG,SotgiaF,LisantiMP.Cancermetabolism:atherapeuticperspective.NatRevClinOncol.(2017)14:11–31.doi:10.1038/nrclinonc.2016.60 CrossRefFullText|GoogleScholar 35.PietrocolaF,GalluzziL,Bravo-SanPedroJM,MadeoF,KroemerG.Acetylcoenzymea:acentralmetaboliteandsecondmessenger.CellMetab.(2015)21:805–21.doi:10.1016/j.cmet.2015.05.014 PubMedAbstract|CrossRefFullText|GoogleScholar 36.DanhierP,BanskiP,PayenVL,GrassoD,IppolitoL,SonveauxP,etal.Cancermetabolisminspaceandtime:BeyondtheWarburgeffect.BiochimBiophysActa.(2017)1858:556–572.doi:10.1016/j.bbabio.2017.02.001 PubMedAbstract|CrossRefFullText|GoogleScholar 37.GalluzziL,BaehreckeEH,BallabioA,BoyaP,Bravo-SanPedroJM,CecconiF,etal.Moleculardefinitionsofautophagyandrelatedprocesses.EmboJ.(2017)36:1811–36.doi:10.15252/embj.201796697 PubMedAbstract|CrossRefFullText|GoogleScholar 38.MarinoG,PietrocolaF,EisenbergT,KongY,MalikSA,AndryushkovaA,etal.Regulationofautophagybycytosolicacetyl-coenzymeA.MolCell.(2014)53:710–25.doi:10.1016/j.molcel.2014.01.016 PubMedAbstract|CrossRefFullText|GoogleScholar 39.RohrigF,SchulzeA.Themultifacetedrolesoffattyacidsynthesisincancer.NatRevCancer.(2016)16:732–49.doi:10.1038/nrc.2016.89 PubMedAbstract|CrossRefFullText|GoogleScholar 40.WellenKE,HatzivassiliouG,SachdevaUM,BuiTV,CrossJR,ThompsonCB.ATP-citratelyaselinkscellularmetabolismtohistoneacetylation.Science.(2009)324:1076–80.doi:10.1126/science.1164097 PubMedAbstract|CrossRefFullText|GoogleScholar 41.GopalU,PizzoSV.CellsurfaceGRP78promotestumorcellhistoneacetylationthroughmetabolicreprogramming:amechanismwhichmodulatestheWarburgeffect.Oncotarget.(2017)8:107947–63.doi:10.18632/oncotarget.22431 PubMedAbstract|CrossRefFullText|GoogleScholar 42.AkellaNM,CirakuL,ReginatoMJ.Fuelingthefire:emergingroleofthehexosaminebiosyntheticpathwayincancer.BMCBiol.(2019)17:52.doi:10.1186/s12915-019-0671-3 PubMedAbstract|CrossRefFullText|GoogleScholar 43.ArnoldJM,GuF,AmbatiCR,RasailyU,Ramirez-PenaE,JosephR,etal.UDP-glucose6-dehydrogenaseregulateshyaluronicacidproductionandpromotesbreastcancerprogression.Oncogene.(2019).doi:10.1038/s41388-019-0885-4.[Epubaheadofprint]. CrossRefFullText|GoogleScholar 44.ChanmeeT,OntongP,ItanoN.Hyaluronan:amodulatorofthetumormicroenvironment.CancerLett.(2016)375:20–30.doi:10.1016/j.canlet.2016.02.031 PubMedAbstract|CrossRefFullText|GoogleScholar 45.WangX,LiuR,ZhuW,ChuH,YuH,WeiP,etal.UDP-glucoseacceleratesSNAI1mRNAdecayandimpairslungcancermetastasis.Nature.(2019)571:127–131.doi:10.1038/s41586-019-1340-y PubMedAbstract|CrossRefFullText|GoogleScholar 46.FinleyLWS.Metabolicsignalcurbscancer-cellmigration.Nature.(2019)571:39–40.doi:10.1038/d41586-019-01934-9 PubMedAbstract|CrossRefFullText|GoogleScholar 47.IntlekoferAM,FinleyLWS.Metabolicsignaturesofcancercellsandstemcells.NatMetab.(2019)1:177–188.doi:10.1038/s42255-019-0032-0 PubMedAbstract|CrossRefFullText|GoogleScholar 48.HoJJD,BalukoffNC,CervantesG,MalcolmPD,KriegerJR,LeeS.Oxygen-sensitiveremodelingofcentralcarbonmetabolismbyarchaiceIF5B.CellRep.(2018)22:17–26.doi:10.1016/j.celrep.2017.12.031 PubMedAbstract|CrossRefFullText|GoogleScholar 49.ChristensenDR,CalderPC,HoughtonFD.GLUT3andPKM2regulateOCT4expressionandsupportthehypoxiccultureofhumanembryonicstemcells.SciRep.(2015)5:17500.doi:10.1038/srep17500 PubMedAbstract|CrossRefFullText|GoogleScholar 50.GallezB,NeveuMA,DanhierP,JordanBF.Manipulationoftumoroxygenationandradiosensitivitythroughmodificationofcellrespiration.Acriticalreviewofapproachesandimagingbiomarkersfortherapeuticguidance.BiochimBiophysActa.(2017)1858:700–711.doi:10.1016/j.bbabio.2017.01.002 PubMedAbstract|CrossRefFullText|GoogleScholar 51.AllenE,MievilleP,WarrenCM,SaghafiniaS,LiL,PengMW,etal.Metabolicsymbiosisenablesadaptiveresistancetoanti-angiogenictherapythatisdependentonmTORsignaling.CellRep.(2016)15:1144–60.doi:10.1016/j.celrep.2016.04.029 PubMedAbstract|CrossRefFullText|GoogleScholar 52.Jimenez-ValerioG,Martinez-LozanoM,BassaniN,VidalA,Ochoa-de-OlzaM,SuarezC,etal.ResistancetoantiangiogenictherapiesbymetabolicsymbiosisinrenalcellcarcinomaPDXmodelsandpatients.CellRep.(2016)15:1134–43.doi:10.1016/j.celrep.2016.04.015 PubMedAbstract|CrossRefFullText|GoogleScholar 53.PisarskyL,BillR,FagianiE,DimeloeS,GoosenRW,HagmannJ,etal.Targetingmetabolicsymbiosistoovercomeresistancetoanti-angiogenictherapy.CellRep.(2016)15:1161–74.doi:10.1016/j.celrep.2016.04.028 PubMedAbstract|CrossRefFullText|GoogleScholar 54.CatalanE,CharniS,JaimeP,AguiloJI,EnriquezJA,NavalJ,etal.MHC-ImodulationduetochangesintumorcellmetabolismregulatestumorsensitivitytoCTLandNKcells.Oncoimmunology.(2015)4:e985924.doi:10.4161/2162402X.2014.985924 PubMedAbstract|CrossRefFullText|GoogleScholar 55.GalluzziL,PietrocolaF,Bravo-SanPedroJM,AmaravadiRK,BaehreckeEH,CecconiF,etal.Autophagyinmalignanttransformationandcancerprogression.EmboJ.(2015)34:856–80.doi:10.15252/embj.201490784 PubMedAbstract|CrossRefFullText|GoogleScholar 56.ParkSM,OuJ,ChamberlainL,SimoneTM,YangH,VirbasiusCM,etal.U2AF35(S34F)promotestransformationbydirectingaberrantATG7pre-mRNA3'endformation.MolCell.(2016)62:479–90.doi:10.1016/j.molcel.2016.04.011 PubMedAbstract|CrossRefFullText|GoogleScholar 57.RosenfeldtMT,O'PreyJ,MortonJP,NixonC,MacKayG,MrowinskaA,etal.p53statusdeterminestheroleofautophagyinpancreatictumourdevelopment.Nature.(2013)504:296–300.doi:10.1038/nature12865 PubMedAbstract|CrossRefFullText|GoogleScholar 58.LuC,WardPS,KapoorGS,RohleD,TurcanS,Abdel-WahabO,etal.IDHmutationimpairshistonedemethylationandresultsinablocktocelldifferentiation.Nature.(2012)483:474–8.doi:10.1038/nature10860 PubMedAbstract|CrossRefFullText|GoogleScholar 59.PorporatoPE,FilighedduN,PedroJMB,KroemerG,GalluzziL.Mitochondrialmetabolismandcancer.CellRes.(2018)28:265–280.doi:10.1038/cr.2017.155 PubMedAbstract|CrossRefFullText|GoogleScholar 60.SahaSK,ParachoniakCA,GhantaKS,FitamantJ,RossKN,NajemMS,etal.MutantIDHinhibitsHNF-4alphatoblockhepatocytedifferentiationandpromotebiliarycancer.Nature.(2014)513:110–4.doi:10.1038/nature13441 PubMedAbstract|CrossRefFullText|GoogleScholar 61.SullivanLB,GuiDY,HeidenMGV.Alteredmetabolitelevelsincancer:implicationsfortumourbiologyandcancertherapy.NatRevCancer.(2016)16:680–93.doi:10.1038/nrc.2016.85 PubMedAbstract|CrossRefFullText|GoogleScholar 62.XiaoM,YangH,XuW,MaS,LinH,ZhuH,etal.Inhibitionofα-KG-dependenthistoneandDNAdemethylasesbyfumarateandsuccinatethatareaccumulatedinmutationsofFHandSDHtumorsuppressors.GenesDev.(2012)26:1326–38.doi:10.1101/gad.191056.112 PubMedAbstract|CrossRefFullText|GoogleScholar 63.KinchL,GrishinNV,BrugarolasJ.SuccinationofKeap1andactivationofNrf2-dependentantioxidantpathwaysinFH-deficientpapillaryrenalcellcarcinomatype2.CancerCell.(2011)20:418–20.doi:10.1016/j.ccr.2011.10.005 PubMedAbstract|CrossRefFullText|GoogleScholar 64.TsengCW,KuoWH,ChanSH,ChanHL,ChangKJ,WangLH.Transketolaseregulatesthemetabolicswitchtocontrolbreastcancercellmetastasisviatheα-ketoglutaratesignalingpathway.CancerRes.(2018)78:2799–812.doi:10.1158/0008-5472.CAN-17-2906 PubMedAbstract|CrossRefFullText|GoogleScholar 65.WeinbergF,HamanakaR,WheatonWW,WeinbergS,JosephJ,LopezM,etal.MitochondrialmetabolismandROSgenerationareessentialforKras-mediatedtumorigenicity.ProcNatlAcadSciUSA.(2010)107:8788–93.doi:10.1073/pnas.1003428107 PubMedAbstract|CrossRefFullText|GoogleScholar 66.LiouGY,DopplerH,DelGiornoKE,ZhangL,LeitgesM,CrawfordHC,etal.MutantKRas-InducedmitochondrialoxidativestressinacinarcellsupregulatesEGFRsignalingtodriveformationofpancreaticprecancerouslesions.CellRep.(2016)14:2325–36.doi:10.1016/j.celrep.2016.02.029 PubMedAbstract|CrossRefFullText|GoogleScholar 67.AlavianKN,LiH,CollisL,BonanniL,ZengL,SacchettiS,etal.Bcl-xLregulatesmetabolicefficiencyofneuronsthroughinteractionwiththemitochondrialF1FOATPsynthase.NatCellBiol.(2011)13:1224–33.doi:10.1038/ncb2330 PubMedAbstract|CrossRefFullText|GoogleScholar 68.CzabotarPE,LesseneG,StrasserA,AdamsJM.ControlofapoptosisbytheBCL-2proteinfamily:implicationsforphysiologyandtherapy.NatRevMolCellBiol.(2014)15:49–63.doi:10.1038/nrm3722 PubMedAbstract|CrossRefFullText|GoogleScholar 69.IzzoV,Bravo-SanPedroJM,SicaV,KroemerG,GalluzziL.Mitochondrialpermeabilitytransition:newfindingsandpersistinguncertainties.TrendsCellBiol.(2016)26:655–67.doi:10.1016/j.tcb.2016.04.006 PubMedAbstract|CrossRefFullText|GoogleScholar 70.PerciavalleRM,StewartDP,KossB,LynchJ,MilastaS,BathinaM,etal.Anti-apoptoticMCL-1localizestothemitochondrialmatrixandcouplesmitochondrialfusiontorespiration.NatCellBiol.(2012)14:575–83.doi:10.1038/ncb2488 PubMedAbstract|CrossRefFullText|GoogleScholar 71.RoslandGV,DyrstadSE,TusubiraD,HelwaR,TanTZ,LotsbergML,etal.Epithelialtomesenchymaltransition(EMT)isassociatedwithattenuationofsuccinatedehydrogenase(SDH)inbreastcancerthroughreducedexpressionofSDHC.CancerMetab.(2019)7:6.doi:10.1186/s40170-019-0197-8 PubMedAbstract|CrossRefFullText|GoogleScholar 72.RohTH,YimH,RohJ,LeeKB,ParkSH,JeongSY,etal.ThelossofsuccinatedehydrogenaseBexpressionisfrequentlyidentifiedinhemangioblastomaofthecentralnervoussystem.SciRep.(2019)9:5873.doi:10.1038/s41598-019-42338-z PubMedAbstract|CrossRefFullText|GoogleScholar 73.LentingK,KhurshedM,PeetersTH,vandenHeuvelCNAM,vanLithSAM,deBitterT,etal.Isocitratedehydrogenase1-mutatedhumangliomasdependonlactateandglutamatetoalleviatemetabolicstress.FasebJ.(2019)33:557–71.doi:10.1096/fj.201800907RR PubMedAbstract|CrossRefFullText|GoogleScholar 74.FendtSM,BellEL,KeiblerMA,OlenchockBA,MayersJR,WasylenkoTM,etal.Reductiveglutaminemetabolismisafunctionofthealpha-ketoglutaratetocitrateratioincells.NatCommun.(2013)4:2236.doi:10.1038/ncomms3236 PubMedAbstract|CrossRefFullText|GoogleScholar 75.MullenAR,WheatonWW,JinES,ChenPH,SullivanLB,ChengT,etal.Reductivecarboxylationsupportsgrowthintumourcellswithdefectivemitochondria.Nature.(2011)481:385–8.doi:10.1038/nature10642 PubMedAbstract|CrossRefFullText|GoogleScholar 76.YeJ,FanJ,VennetiS,WanYW,PawelBR,ZhangJ,etal.Serinecatabolismregulatesmitochondrialredoxcontrolduringhypoxia.CancerDiscov.(2014)4:1406–17.doi:10.1158/2159-8290.CD-14-0250 PubMedAbstract|CrossRefFullText|GoogleScholar 77.TibbettsAS,ApplingDR.CompartmentalizationofMammalianfolate-mediatedone-carbonmetabolism.AnnuRevNutr.(2010)30:57–81.doi:10.1146/annurev.nutr.012809.104810 PubMedAbstract|CrossRefFullText|GoogleScholar 78.ColoffJL,MurphyJP,BraunCR,HarrisIS,SheltonLM,KamiK,etal.Differentialglutamatemetabolisminproliferatingandquiescentmammaryepithelialcells.CellMetab.(2016)23:867–80.doi:10.1016/j.cmet.2016.03.016 PubMedAbstract|CrossRefFullText|GoogleScholar 79.MycielskaME,DettmerK,RummeleP,SchmidtK,PrehnC,MilenkovicVM,etal.Extracellularcitrateaffectscriticalelementsofcancercellmetabolismandsupportscancerdevelopmentinvivo.CancerRes.(2018)78:2513–23.doi:10.1158/0008-5472.CAN-17-2959 PubMedAbstract|CrossRefFullText|GoogleScholar 80.KangHB,FanJ,LinR,ElfS,JiQ,ZhaoL,etal.MetabolicrewiringbyoncogenicBRAFV600ElinksketogenesispathwaytoBRAF-MEK1signaling.MolCell.(2015)59:345–58.doi:10.1016/j.molcel.2015.05.037 PubMedAbstract|CrossRefFullText|GoogleScholar 81.XiaS,LinR,JinL,ZhaoL,KangHB,PanY,etal.Preventionofdietary-fat-fueledketogenesisattenuatesBRAFV600Etumorgrowth.CellMetab.(2017)25:358–373.doi:10.1016/j.cmet.2016.12.010 PubMedAbstract|CrossRefFullText|GoogleScholar 82.PetrosJA,BaumannAK,Ruiz-PesiniE,AminMB,SunCQ,HallJ,etal.mtDNAmutationsincreasetumorigenicityinprostatecancer.ProcNatlAcadSciUSA.(2005)102:719–24.doi:10.1073/pnas.0408894102 PubMedAbstract|CrossRefFullText|GoogleScholar 83.SenaLA,ChandelNS.Physiologicalrolesofmitochondrialreactiveoxygenspecies.MolCell.(2012)48:158–67.doi:10.1016/j.molcel.2012.09.025 PubMedAbstract|CrossRefFullText|GoogleScholar 84.McGuirkS,GravelSP,DebloisG,PapadopoliDJ,FaubertB,WegnerA,etal.PGC-1αsupportsglutaminemetabolisminbreastcancer.CancerMetab.(2013)1:22.doi:10.1186/2049-3002-1-22 PubMedAbstract|CrossRefFullText|GoogleScholar 85.WillemsPH,RossignolR,DieterenCE,MurphyMP,KoopmanWJ.Redoxhomeostasisandmitochondrialdynamics.CellMetab.(2015)22:207–18.doi:10.1016/j.cmet.2015.06.006 PubMedAbstract|CrossRefFullText|GoogleScholar 86.BonoraM,WieckowskiMR,ChinopoulosC,KeppO,KroemerG,GalluzziL,etal.Molecularmechanismsofcelldeath:centralimplicationofATPsynthaseinmitochondrialpermeabilitytransition.Oncogene.(2015)34:1475–86.doi:10.1038/onc.2014.96 CrossRefFullText|GoogleScholar 87.FormentiniL,Sanchez-AragoM,Sanchez-CenizoL,CuezvaJM.ThemitochondrialATPaseinhibitoryfactor1triggersaROS-mediatedretrogradeprosurvivalandproliferativeresponse.MolCell.(2012)45:731–42.doi:10.1016/j.molcel.2012.01.008 PubMedAbstract|CrossRefFullText|GoogleScholar 88.DemariaM,O'LearyMN,ChangJ,ShaoL,LiuS,AlimirahF,etal.Cellularsenescencepromotesadverseeffectsofchemotherapyandcancerrelapse.CancerDiscov.(2017)7:165–76.doi:10.1158/2159-8290.CD-16-0241 PubMedAbstract|CrossRefFullText|GoogleScholar 89.DorrJR,YuY,MilanovicM,BeusterG,ZasadaC,DabritzJH,etal.Syntheticlethalmetabolictargetingofcellularsenescenceincancertherapy.Nature.(2013)501:421–5.doi:10.1038/nature12437 PubMedAbstract|CrossRefFullText|GoogleScholar 90.BonnetS,ArcherSL,Allalunis-TurnerJ,HaromyA,BeaulieuC,ThompsonR,etal.Amitochondria-K+channelaxisissuppressedincanceranditsnormalizationpromotesapoptosisandinhibitscancergrowth.CancerCell.(2007)11:37–51.doi:10.1016/j.ccr.2006.10.020 PubMedAbstract|CrossRefFullText|GoogleScholar 91.VaughnAE,DeshmukhM.GlucosemetabolisminhibitsapoptosisinneuronsandcancercellsbyredoxinactivationofcytochromeC.NatCellBiol.(2008)10:1477–83.doi:10.1038/ncb1807 PubMedAbstract|CrossRefFullText|GoogleScholar 92.DeNicolaGM,KarrethFA,HumptonTJ,GopinathanA,WeiC,FreseK,etal.Oncogene-inducedNrf2transcriptionpromotesROSdetoxificationandtumorigenesis.Nature.(2011)475:106–9.doi:10.1038/nature10189 PubMedAbstract|CrossRefFullText|GoogleScholar 93.JiangL,ShestovAA,SwainP,YangC,ParkerSJ,WangQA,etal.Reductivecarboxylationsupportsredoxhomeostasisduringanchorage-independentgrowth.Nature.(2016)532:255–8.doi:10.1038/nature17393 PubMedAbstract|CrossRefFullText|GoogleScholar 94.GalluzziL,Bravo-SanPedroJM,LevineB,GreenDR,KroemerG.Pharmacologicalmodulationofautophagy:therapeuticpotentialandpersistingobstacles.NatRevDrugDiscov.(2017)16:487–511.doi:10.1038/nrd.2017.22 PubMedAbstract|CrossRefFullText|GoogleScholar 95.HausenloyDJ,YellonDM.Ischaemicconditioningandreperfusioninjury.NatRevCardiol.(2016)13:193–209.doi:10.1038/nrcardio.2016.5 PubMedAbstract|CrossRefFullText|GoogleScholar 96.RistowM.Unravelingthetruthaboutantioxidants:mitohormesisexplainsROS-inducedhealthbenefits.NatMed.(2014)20:709–11.doi:10.1038/nm.3624 PubMedAbstract|CrossRefFullText|GoogleScholar 97.TrabaJ,DelArcoA,DuchenMR,SzabadkaiG,SatrusteguiJ.SCaMC-1promotescancercellsurvivalbydesensitizingmitochondrialpermeabilitytransitionviaATP/ADP-mediatedmatrixCa(2+)buffering.CellDeathDiffer.(2012)19:650–60.doi:10.1038/cdd.2011.139 PubMedAbstract|CrossRefFullText|GoogleScholar 98.GomesLC,DiBenedettoG,ScorranoL.Duringautophagymitochondriaelongate,aresparedfromdegradationandsustaincellviability.NatCellBiol.(2011)13:589–98.doi:10.1038/ncb2220 PubMedAbstract|CrossRefFullText|GoogleScholar 99.LiJ,HuangQ,LongX,GuoX,SunX,JinX,etal.Mitochondrialelongation-mediatedglucosemetabolismreprogrammingisessentialfortumourcellsurvivalduringenergystress.Oncogene.(2017)36:4901–4912.doi:10.1038/onc.2017.98 PubMedAbstract|CrossRefFullText|GoogleScholar 100.Esteban-MartinezL,Sierra-FilardiE,McGrealRS,Salazar-RoaM,MarinoG,SecoE,etal.Programmedmitophagyisessentialfortheglycolyticswitchduringcelldifferentiation.EmboJ.(2017)36:1688–706.doi:10.15252/embj.201695916 PubMedAbstract|CrossRefFullText|GoogleScholar 101.HaschemiA,KosmaP,GilleL,EvansCR,BurantCF,StarklP,etal.ThesedoheptulosekinaseCARKLdirectsmacrophagepolarizationthroughcontrolofglucosemetabolism.CellMetab.(2012)15:813–26.doi:10.1016/j.cmet.2012.04.023 PubMedAbstract|CrossRefFullText|GoogleScholar 102.IzquierdoE,CuevasVD,Fernandez-ArroyoS,Riera-BorrullM,Orta-ZavalzaE,JovenJ,etal.Reshapingofhumanmacrophagepolarizationthroughmodulationofglucosecatabolicpathways.JImmunol.(2015)195:2442–51.doi:10.4049/jimmunol.1403045 PubMedAbstract|CrossRefFullText|GoogleScholar 103.JinZ,WeiW,YangM,DuY,WanY.MitochondrialcomplexIactivitysuppressesinflammationandenhancesboneresorptionbyshiftingmacrophage-osteoclastpolarization.CellMetab.(2014)20:483–98.doi:10.1016/j.cmet.2014.07.011 PubMedAbstract|CrossRefFullText|GoogleScholar 104.WenesM,ShangM,DiMatteoM,GoveiaJ,Martin-PerezR,SerneelsJ,etal.Macrophagemetabolismcontrolstumorbloodvesselmorphogenesisandmetastasis.CellMetab.(2016)24:701–715.doi:10.1016/j.cmet.2016.09.008 PubMedAbstract|CrossRefFullText|GoogleScholar 105.LinS,SunL,LyuX,AiX,DuD,SuN,etal.Lactate-activatedmacrophagesinducedaerobicglycolysisandepithelial-mesenchymaltransitioninbreastcancerbyregulationofCCL5-CCR5axis:apositivemetabolicfeedbackloop.Oncotarget.(2017)8:110426–43.doi:10.18632/oncotarget.22786 PubMedAbstract|CrossRefFullText|GoogleScholar 106.SerganovaI,CohenIJ,VemuriK,ShindoM,MaedaM,ManeM,etal.LDH-AregulatesthetumormicroenvironmentviaHIF-signalingandmodulatestheimmuneresponse.PLoSONE.(2018)13:e0203965.doi:10.1371/journal.pone.0203965 PubMedAbstract|CrossRefFullText|GoogleScholar 107.PingW,SenyanH,LiG,YanC,LongL.Increasedlactateingastriccancertumor-infiltratinglymphocytesisrelatedtoimpairedTcellfunctionduetomiR-34aderegulatedlactatedehydrogenaseA.CellPhysiolBiochem.(2018)49:828–36.doi:10.1159/000493110 PubMedAbstract|CrossRefFullText|GoogleScholar 108.ZhangD,TangZ,HuangH,ZhouG,CuiC,WengY,etal.Metabolicregulationofgeneexpressionbyhistonelactylation.Nature.(2019)574:575–80.doi:10.1038/s41586-019-1678-1 PubMedAbstract|CrossRefFullText|GoogleScholar 109.PacellaI,ProcacciniC,FocaccettiC,MiacciS,TimperiE,FaicchiaD,etal.FattyacidmetabolismcomplementsglycolysisintheselectiveregulatoryTcellexpansionduringtumorgrowth.ProcNatlAcadSciUSA.(2018)115:E6546–55.doi:10.1073/pnas.1720113115 PubMedAbstract|CrossRefFullText|GoogleScholar 110.WangC,ShaoL,PanC,YeJ,DingZ,WuJ,etal.Elevatedlevelofmitochondrialreactiveoxygenspeciesviafattyacidbeta-oxidationincancerstemcellspromotescancermetastasisbyinducingepithelial-mesenchymaltransition.StemCellResTher.(2019)10:175.doi:10.1186/s13287-019-1265-2 PubMedAbstract|CrossRefFullText|GoogleScholar 111.HsuBE,TabariesS,JohnsonRM,AndrzejewskiS,SenecalJ,LehuedeC,etal.Immaturelow-densityneutrophilsexhibitmetabolicflexibilitythatfacilitatesbreastcancerlivermetastasis.CellRep.(2019)27:3902–3915.e6.doi:10.1016/j.celrep.2019.05.091 PubMedAbstract|CrossRefFullText|GoogleScholar 112.ZhangT,ZhangZ,LiF,PingY,QinG,ZhangC,etal.miR-143RegulatesmemoryTcelldifferentiationbyreprogrammingTcellmetabolism.JImmunol.(2018)201:2165–75.doi:10.4049/jimmunol.1800230 PubMedAbstract|CrossRefFullText|GoogleScholar 113.MehtaMM,WeinbergSE,SteinertEM,ChhibaK,MartinezCA,GaoP,etal.Hexokinase2isdispensableforTcell-dependentimmunity.CancerMetab.(2018)6:10.doi:10.1186/s40170-018-0184-5 PubMedAbstract|CrossRefFullText|GoogleScholar 114.DavidsonSM,PapagiannakopoulosT,OlenchockBA,HeymanJE,KeiblerMA,LuengoA,etal.Environmentimpactsthemetabolicdependenciesofras-drivennon-smallcelllungcancer.CellMetab.(2016)23:517–28.doi:10.1016/j.cmet.2016.01.007 PubMedAbstract|CrossRefFullText|GoogleScholar 115.HensleyCT,FaubertB,YuanQ,Lev-CohainN,JinE,KimJ,etal.Metabolicheterogeneityinhumanlungtumors.Cell.(2016)164:681–94.doi:10.1016/j.cell.2015.12.034 PubMedAbstract|CrossRefFullText|GoogleScholar 116.MayersJR,TorrenceME,DanaiLV,PapagiannakopoulosT,DavidsonSM,BauerMR,etal.Tissueoforigindictatesbranched-chainaminoacidmetabolisminmutantKras-drivencancers.Science.(2016)353:1161–5.doi:10.1126/science.aaf5171 PubMedAbstract|CrossRefFullText|GoogleScholar 117.McGranahanN,SwantonC.Clonalheterogeneityandtumorevolution:past,present,andthefuture.Cell.(2017)168:613–28.doi:10.1016/j.cell.2017.01.018 PubMedAbstract|CrossRefFullText|GoogleScholar 118.TabassumDP,PolyakK.Tumorigenesis:ittakesavillage.NatRevCancer.(2015)15:473–83.doi:10.1038/nrc3971 PubMedAbstract|CrossRefFullText|GoogleScholar 119.YunevaMO,FanTW,AllenTD,HigashiRM,FerrarisDV,TsukamotoT,etal.Themetabolicprofileoftumorsdependsonboththeresponsiblegeneticlesionandtissuetype.CellMetab.(2012)15:157–70.doi:10.1016/j.cmet.2011.12.015 PubMedAbstract|CrossRefFullText|GoogleScholar 120.CiavardelliD,RossiC,BarcaroliD,VolpeS,ConsalvoA,ZucchelliM,etal.Breastcancerstemcellsrelyonfermentativeglycolysisandaresensitiveto2-deoxyglucosetreatment.CellDeathDis.(2014)5:e1336.doi:10.1038/cddis.2014.285 PubMedAbstract|CrossRefFullText|GoogleScholar 121.PaloriniR,VottaG,BalestrieriC,MonestiroliA,OlivieriS,VentoR,etal.Energymetabolismcharacterizationofanovelcancerstemcell-likeline3AB-OS.JCellBiochem.(2014)115:368–79.doi:10.1002/jcb.24671 PubMedAbstract|CrossRefFullText|GoogleScholar 122.PeitzschC,TyutyunnykovaA,PantelK,DubrovskaA.Cancerstemcells:therootoftumorrecurrenceandmetastases.SeminCancerBiol.(2017)44:10–24.doi:10.1016/j.semcancer.2017.02.011 PubMedAbstract|CrossRefFullText|GoogleScholar 123.ShibuyaK,OkadaM,SuzukiS,SeinoM,SeinoS,TakedaH,etal.TargetingthefacilitativeglucosetransporterGLUT1inhibitstheself-renewalandtumor-initiatingcapacityofcancerstemcells.Oncotarget.(2015)6:651–61.doi:10.18632/oncotarget.2892 PubMedAbstract|CrossRefFullText|GoogleScholar 124.PastoA,BellioC,PilottoG,CiminaleV,Silic-BenussiM,GuzzoG,etal.Cancerstemcellsfromepithelialovariancancerpatientsprivilegeoxidativephosphorylation,andresistglucosedeprivation.Oncotarget.(2014)5:4305–19.doi:10.18632/oncotarget.2010 PubMedAbstract|CrossRefFullText|GoogleScholar 125.GammonL,BiddleA,HeywoodHK,JohannessenAC,MackenzieIC.Sub-setsofcancerstemcellsdifferintrinsicallyintheirpatternsofoxygenmetabolism.PLoSONE.(2013)8:e62493.doi:10.1371/journal.pone.0062493 PubMedAbstract|CrossRefFullText|GoogleScholar 126.MaoP,JoshiK,LiJ,KimSH,LiP,Santana-SantosL,etal.Mesenchymalgliomastemcellsaremaintainedbyactivatedglycolyticmetabolisminvolvingaldehydedehydrogenase1A3.ProcNatlAcadSciUSA.(2013)110:8644–9.doi:10.1073/pnas.1221478110 PubMedAbstract|CrossRefFullText|GoogleScholar 127.FiaschiT,MariniA,GiannoniE,TaddeiML,GandelliniP,DeDonatisA,etal.Reciprocalmetabolicreprogrammingthroughlactateshuttlecoordinatelyinfluencestumor-stromainterplay.CancerRes.(2012)72:5130–40.doi:10.1158/0008-5472.CAN-12-1949 PubMedAbstract|CrossRefFullText|GoogleScholar 128.Martinez-OutschoornUE,LinZ,TrimmerC,FlomenbergN,WangC,PavlidesS,etal.Cancercellsmetabolically“fertilize”Lthetumormicroenvironmentwithhydrogenperoxide,drivingtheWarburgeffect:implicationsforPETimagingofhumantumors.CellCycle.(2011)10:2504–20.doi:10.4161/cc.10.15.16585 CrossRefFullText|GoogleScholar 129.NakajimaEC,VanHoutenB.Metabolicsymbiosisincancer:refocusingtheWarburglens.MolCarcinog.(2013)52:329–37.doi:10.1002/mc.21863 PubMedAbstract|CrossRefFullText|GoogleScholar 130.Pertega-GomesN,VizcainoJR,AttigJ,JurmeisterS,LopesC,BaltazarF.Alactateshuttlesystembetweentumourandstromalcellsisassociatedwithpoorprognosisinprostatecancer.BMCCancer.(2014)14:352.doi:10.1186/1471-2407-14-352 PubMedAbstract|CrossRefFullText|GoogleScholar 131.FaubertB,LiKY,CaiL,HensleyCT,KimJ,ZachariasLG,etal.Lactatemetabolisminhumanlungtumors.Cell.(2017)171:358–371.e9.doi:10.1016/j.cell.2017.09.019 PubMedAbstract|CrossRefFullText|GoogleScholar 132.CommissoC,DavidsonSM,Soydaner-AzelogluRG,ParkerSJ,KamphorstJJ,HackettS,etal.MacropinocytosisofproteinisanaminoacidsupplyrouteinRas-transformedcells.Nature.(2013)497:633–7.doi:10.1038/nature12138 PubMedAbstract|CrossRefFullText|GoogleScholar 133.SousaCM,BiancurDE,WangX,HalbrookCJ,ShermanMH,ZhangL,etal.Pancreaticstellatecellssupporttumourmetabolismthroughautophagicalaninesecretion.Nature.(2016)536:479–83.doi:10.1038/nature19084 PubMedAbstract|CrossRefFullText|GoogleScholar 134.LaurentV,GuerardA,MazerollesC,LeGonidecS,TouletA,NietoL,etal.Periprostaticadipocytesactasadrivingforceforprostatecancerprogressioninobesity.NatCommun.(2016)7:10230.doi:10.1038/ncomms10230 PubMedAbstract|CrossRefFullText|GoogleScholar 135.NiemanKM,KennyHA,PenickaCV,LadanyiA,Buell-GutbrodR,ZillhardtMR,etal.Adipocytespromoteovariancancermetastasisandprovideenergyforrapidtumorgrowth.NatMed.(2011)17:1498–503.doi:10.1038/nm.2492 PubMedAbstract|CrossRefFullText|GoogleScholar 136.WangYY,AttaneC,MilhasD,DiratB,DauvillierS,GuerardA,etal.Mammaryadipocytesstimulatebreastcancerinvasionthroughmetabolicremodelingoftumorcells.JCIInsight.(2017)2:e87489.doi:10.1172/jci.insight.87489 PubMedAbstract|CrossRefFullText|GoogleScholar 137.WenYA,XingX,HarrisJW,ZaytsevaYY,MitovMI,NapierDL,etal.Adipocytesactivatemitochondrialfattyacidoxidationandautophagytopromotetumorgrowthincoloncancer.CellDeathDis.(2017)8:e2593.doi:10.1038/cddis.2017.21 PubMedAbstract|CrossRefFullText|GoogleScholar 138.RajarajanD,SelvarajanS,CharanRajaMR,KarMahapatraS,KasiappanR.Genome-wideanalysisrevealsmiR-3184-5pandmiR-181c-3pasacriticalregulatorforadipocytes-associatedbreastcancer.JCellPhysiol.(2019)234:17959–74.doi:10.1002/jcp.28428 PubMedAbstract|CrossRefFullText|GoogleScholar 139.ChangCH,QiuJ,O'SullivanD,BuckMD,NoguchiT,CurtisJD,etal.Metaboliccompetitioninthetumormicroenvironmentisadriverofcancerprogression.Cell.(2015)162:1229–41.doi:10.1016/j.cell.2015.08.016 PubMedAbstract|CrossRefFullText|GoogleScholar 140.HoPC,BihuniakJD,MacintyreAN,StaronM,LiuX,AmezquitaR,etal.Phosphoenolpyruvateisametaboliccheckpointofanti-tumorTcellresponses.Cell.(2015)162:1217–28.doi:10.1016/j.cell.2015.08.012 PubMedAbstract|CrossRefFullText|GoogleScholar 141.UyttenhoveC,PilotteL,TheateI,StroobantV,ColauD,ParmentierN,etal.Eynde,evidenceforatumoralimmuneresistancemechanismbasedontryptophandegradationbyindoleamine2,3-dioxygenase.NatMed.(2003)9:1269–74.doi:10.1038/nm934 PubMedAbstract|CrossRefFullText|GoogleScholar 142.DovmarkTH,HulikovaA,NiedererSA,Vaughan-JonesRD,SwietachP.Normoxiccellsremotelyregulatetheacid-basebalanceofcellsatthehypoxiccoreofconnexin-coupledtumorgrowths.FasebJ.(2018)32:83–96.doi:10.1096/fj.201700480r PubMedAbstract|CrossRefFullText|GoogleScholar 143.FeronO.Pyruvateintolactateandback:fromtheWarburgeffecttosymbioticenergyfuelexchangeincancercells.RadiotherOncol.(2009)92:329–33.doi:10.1016/j.radonc.2009.06.025 PubMedAbstract|CrossRefFullText|GoogleScholar 144.SonveauxP,VegranF,SchroederT,WerginMC,VerraxJ,RabbaniZN,etal.Targetinglactate-fueledrespirationselectivelykillshypoxictumorcellsinmice.JClinInvest.(2008)118:3930–42.doi:10.1172/JCI36843 PubMedAbstract|CrossRefFullText|GoogleScholar 145.Marín-HernándezÁ,Gallardo-PérezJC,Hernández-ReséndizI,DelMazo-MonsalvoI,Robledo-CadenaDX,Moreno-SánchezR,etal.Hypoglycemiaenhancesepithelial-mesenchymaltransitionandinvasiveness,andrestrainsthewarburgphenotype,inhypoxichelacellculturesandmicrospheroids.JCellPhysiol.(2017)232:1346–59.doi:10.1002/jcp.25617 PubMedAbstract|CrossRefFullText|GoogleScholar 146.SchildT,LowV,BlenisJ,GomesAP.Uniquemetabolicadaptationsdictatedistalorgan-specificmetastaticcolonization.CancerCell.(2018)33:347–54.doi:10.1016/j.ccell.2018.02.001 PubMedAbstract|CrossRefFullText|GoogleScholar 147.Lopez-SotoA,GonzalezS,SmythMJ,GalluzziL.ControlofmetastasisbyNKcells.CancerCell.(2017)32:135–54.doi:10.1016/j.ccell.2017.06.009 PubMedAbstract|CrossRefFullText|GoogleScholar 148.NietoMA,HuangRY,JacksonRA,ThieryJP.EMT:2016.Cell.(2016)166:21–45.doi:10.1016/j.cell.2016.06.028 PubMedAbstract|CrossRefFullText|GoogleScholar 149.FrezzaC.Mitochondrialmetabolites:undercoversignallingmolecules.InterfaceFocus.(2017)7:20160100.doi:10.1098/rsfs.2016.0100 PubMedAbstract|CrossRefFullText|GoogleScholar 150.SciacovelliM,GoncalvesE,JohnsonTI,ZecchiniVR,daCostaAS,GaudeE,etal.Fumarateisanepigeneticmodifierthatelicitsepithelial-to-mesenchymaltransition.Nature.(2016)537:544–7.doi:10.1038/nature19353 PubMedAbstract|CrossRefFullText|GoogleScholar 151.EastlackSC,DongS,IvanC,AlahariSK.SuppressionofPDHXbymicroRNA-27bderegulatescellmetabolismandpromotesgrowthinbreastcancer.MolCancer.(2018)17:100.doi:10.1186/s12943-018-0851-8 PubMedAbstract|CrossRefFullText|GoogleScholar 152.ShibataC,OtsukaM,KishikawaT,YoshikawaT,OhnoM,TakataA,etal.CurrentstatusofmiRNA-targetingtherapeuticsandpreclinicalstudiesagainstgastroenterologicalcarcinoma.MolCellTher.(2013)1:5.doi:10.1186/2052-8426-1-5 PubMedAbstract|CrossRefFullText|GoogleScholar 153.LeBleuVS,O'ConnellJT,GonzalezHerreraKN,WikmanH,PantelK,HaigisMC,etal.PGC-1αmediatesmitochondrialbiogenesisandoxidativephosphorylationincancercellstopromotemetastasis.NatCellBiol.(2014)16:992–1003.doi:10.1038/ncb3039 PubMedAbstract|CrossRefFullText|GoogleScholar 154.SunS,LiuJ,ZhaoM,HanY,ChenP,MoQ,etal.LossofthenovelmitochondrialproteinFAM210BpromotesmetastasisviaPDK4-dependentmetabolicreprogramming.CellDeathDis.(2017)8:e2870.doi:10.1038/cddis.2017.273 PubMedAbstract|CrossRefFullText|GoogleScholar 155.CainoMC,GhoshJC,ChaeYC,VairaV,RivadeneiraDB,FaversaniA,etal.PI3Ktherapyreprogramsmitochondrialtraffickingtofueltumorcellinvasion.ProcNatlAcadSciUSA.(2015)112:8638–43.doi:10.1073/pnas.1500722112 PubMedAbstract|CrossRefFullText|GoogleScholar 156.CainoMC,SeoJH,AguinaldoA,WaitE,BryantKG,KossenkovAV,etal.Aneuronalnetworkofmitochondrialdynamicsregulatesmetastasis.NatCommun.(2016)7:13730.doi:10.1038/ncomms13730 PubMedAbstract|CrossRefFullText|GoogleScholar 157.RivadeneiraDB,CainoMC,SeoJH,AngelinA,WallaceDC,LanguinoLR,etal.Survivinpromotesoxidativephosphorylation,subcellularmitochondrialrepositioning,andtumorcellinvasion.SciSignal.(2015)8:ra80.doi:10.1126/scisignal.aab1624 PubMedAbstract|CrossRefFullText|GoogleScholar 158.HaJR,AhnR,SmithHW,SabourinV,HebertS,CepedaCanedoE,etal.IntegrationofdistinctShcAsignalingcomplexespromotesbreasttumorgrowthandtyrosinekinaseinhibitorresistance.MolCancerRes.(2018)16:894–908.doi:10.1158/1541-7786.MCR-17-0623 PubMedAbstract|CrossRefFullText|GoogleScholar 159.ImYK,NajybO,GravelSP,McGuirkS,AhnR,AvizonisDZ,etal.InterplaybetweenShcAsignalingandPGC-1αtriggerstargetablemetabolicvulnerabilitiesinbreastcancer.CancerRes.(2018)78:4826–38.doi:10.1158/0008-5472.CAN-17-3696 PubMedAbstract|CrossRefFullText|GoogleScholar 160.NortheyJJ,ChmieleckiJ,NganE,RussoC,AnnisMG,MullerWJ,etal.SignalingthroughShcAisrequiredfortransforminggrowthfactorbeta-andNeu/ErbB-2-inducedbreastcancercellmotilityandinvasion.MolCellBiol.(2008)28:3162–76.doi:10.1128/MCB.01734-07 PubMedAbstract|CrossRefFullText|GoogleScholar 161.Ursini-SiegelJ,HardyWR,ZuoD,LamSH,Sanguin-GendreauV,CardiffRD,etal.ShcAsignallingisessentialfortumourprogressioninmousemodelsofhumanbreastcancer.EmboJ.(2008)27:910–20.doi:10.1038/emboj.2008.22 PubMedAbstract|CrossRefFullText|GoogleScholar 162.ChourasiaAH,TracyK,FrankenbergerC,BolandML,SharifiMN,DrakeLE,etal.MitophagydefectsarisingfromBNip3losspromotemammarytumorprogressiontometastasis.EMBORep.(2015)16:1145–63.doi:10.15252/embr.201540759 PubMedAbstract|CrossRefFullText|GoogleScholar 163.ComitoG,CalvaniM,GiannoniE,BianchiniF,CaloriniL,TorreE,etal.HIF-1αstabilizationbymitochondrialROSpromotesMet-dependentinvasivegrowthandvasculogenicmimicryinmelanomacells.FreeRadicBiolMed.(2011)51:893–904.doi:10.1016/j.freeradbiomed.2011.05.042 PubMedAbstract|CrossRefFullText|GoogleScholar 164.IshikawaK,TakenagaK,AkimotoM,KoshikawaN,YamaguchiA,ImanishiH,etal.ROS-generatingmitochondrialDNAmutationscanregulatetumorcellmetastasis.Science.(2008)320:661–4.doi:10.1126/science.1156906 PubMedAbstract|CrossRefFullText|GoogleScholar 165.PorporatoPE,PayenVL,Perez-EscuredoJ,DeSaedeleerCJ,DanhierP,CopettiT,etal.Amitochondrialswitchpromotestumormetastasis.CellRep.(2014)8:754–66.doi:10.1016/j.celrep.2014.06.043 PubMedAbstract|CrossRefFullText|GoogleScholar 166.ParkJH,VithayathilS,KumarS,SungPL,DobroleckiLE,PutluriV,etal.Fattyacidoxidation-drivensrclinksmitochondrialenergyreprogrammingandoncogenicpropertiesintriple-negativebreastcancer.CellRep.(2016)14:2154–65.doi:10.1016/j.celrep.2016.02.004 PubMedAbstract|CrossRefFullText|GoogleScholar 167.LeGalK,IbrahimMX,WielC,SayinVI,AkulaMK,KarlssonC,etal.Antioxidantscanincreasemelanomametastasisinmice.SciTranslMed.(2015)7:308re8.doi:10.1126/scitranslmed.aad3740 PubMedAbstract|CrossRefFullText|GoogleScholar 168.PiskounovaE,AgathocleousM,MurphyMM,HuZ,HuddlestunSE,ZhaoZ,etal.Oxidativestressinhibitsdistantmetastasisbyhumanmelanomacells.Nature.(2015)527:186–91.doi:10.1038/nature15726 PubMedAbstract|CrossRefFullText|GoogleScholar 169.SayinVI,IbrahimMX,LarssonE,NilssonJA,LindahlP,BergoMO.Antioxidantsacceleratelungcancerprogressioninmice.SciTranslMed.(2014)6:221ra15.doi:10.1126/scitranslmed.3007653 PubMedAbstract|CrossRefFullText|GoogleScholar 170.DupuyF,TabariesS,AndrzejewskiS,DongZ,BlagihJ,AnnisMG,etal.PDK1-dependentmetabolicreprogrammingdictatesmetastaticpotentialinbreastcancer.CellMetab.(2015)22:577–89.doi:10.1016/j.cmet.2015.08.007 PubMedAbstract|CrossRefFullText|GoogleScholar 171.RuckenstuhlC,ButtnerS,Carmona-GutierrezD,EisenbergT,KroemerG,SigristSJ,etal.TheWarburgeffectsuppressesoxidativestressinducedapoptosisinayeastmodelforcancer.PLoSONE.(2009)4:e4592.doi:10.1371/journal.pone.0004592 PubMedAbstract|CrossRefFullText|GoogleScholar 172.ConradM,AngeliJP,VandenabeeleP,StockwellBR.Regulatednecrosis:diseaserelevanceandtherapeuticopportunities.NatRevDrugDiscov.(2016)15:348–66.doi:10.1038/nrd.2015.6 PubMedAbstract|CrossRefFullText|GoogleScholar 173.GalluzziL,KeppO,ChanFK,KroemerG.Necroptosis:mechanismsandrelevancetodisease.AnnuRevPathol.(2017)12:103–130.doi:10.1146/annurev-pathol-052016-100247 PubMedAbstract|CrossRefFullText|GoogleScholar 174.GalluzziL,PietrocolaF,LevineB,KroemerG.Metaboliccontrolofautophagy.Cell.(2014)159:1263–76.doi:10.1016/j.cell.2014.11.006 PubMedAbstract|CrossRefFullText|GoogleScholar 175.DeBockK,GeorgiadouM,SchoorsS,KuchnioA,WongBW,CantelmoAR,etal.RoleofPFKFB3-drivenglycolysisinvesselsprouting.Cell.(2013)154:651–63.doi:10.1016/j.cell.2013.06.037 PubMedAbstract|CrossRefFullText|GoogleScholar 176.GaudeE,SchmidtC,GammagePA,DugourdA,BlackerT,ChewSP,etal.NADHshuttlingcouplescytosolicreductivecarboxylationofglutaminewithglycolysisincellswithmitochondrialdysfunction.MolCell.(2018)69:581–93.e7.doi:10.1016/j.molcel.2018.01.034 PubMedAbstract|CrossRefFullText|GoogleScholar 177.YizhakK,LeDevedecSE,RogkotiVM,BaenkeF,deBoerVC,FrezzaC,etal.AcomputationalstudyoftheWarburgeffectidentifiesmetabolictargetsinhibitingcancermigration.MolSystBiol.(2014)10:744.doi:10.15252/msb.20145746 PubMedAbstract|CrossRefFullText|GoogleScholar 178.BowersLW,RossiEL,McDonellSB,DoerstlingSS,KhatibSA,LinebergerCG,etal.Leptinsignalingmediatesobesity-associatedCSCenrichmentandEMTinpreclinicalTNBCmodels.MolCancerRes.(2018)16:869–879.doi:10.1158/1541-7786.MCR-17-0508 PubMedAbstract|CrossRefFullText|GoogleScholar 179.YangKM,KimK.ProteinkinaseCK2modulationofpyruvatekinaseMisoformsaugmentstheWarburgeffectincancercells.JCellBiochem.(2018)119:8501–10.doi:10.1002/jcb.27078 PubMedAbstract|CrossRefFullText|GoogleScholar 180.ParkJS,BurckhardtCJ,LazcanoR,SolisLM,IsogaiT,LiL,etal.Mechanicalregulationofglycolysisviacytoskeletonarchitecture.Nature.(2020)578:621–6.doi:10.1038/s41586-020-1998-1 PubMedAbstract|CrossRefFullText|GoogleScholar 181.PastushenkoI,BrisebarreA,SifrimA,FioramontiM,RevencoT,BoumahdiS,etal.IdentificationofthetumourtransitionstatesoccurringduringEMT.Nature.(2018)556:463–468.doi:10.1038/s41586-018-0040-3 PubMedAbstract|CrossRefFullText|GoogleScholar 182.MassagueJ,ObenaufAC.Metastaticcolonizationbycirculatingtumourcells.Nature.(2016)529:298–306.doi:10.1038/nature17038 PubMedAbstract|CrossRefFullText|GoogleScholar 183.ObenaufAC,MassagueJ.Survivingatadistance:organ-specificmetastasis.TrendsCancer.(2015)1:76–91.doi:10.1016/j.trecan.2015.07.009 PubMedAbstract|CrossRefFullText|GoogleScholar 184.LehuedeC,DupuyF,RabinovitchR,JonesRG,SiegelPM.Metabolicplasticityasadeterminantoftumorgrowthandmetastasis.CancerRes.(2016)76:5201–8.doi:10.1158/0008-5472.CAN-16-0266 PubMedAbstract|CrossRefFullText|GoogleScholar 185.IllsleyNP,CaniggiaI,ZamudioS.Placentalmetabolicreprogramming:dochangesinthemixofenergy-generatingsubstratesmodulatefetalgrowth?IntJDevBiol.(2010)54:409–19.doi:10.1387/ijdb.082798ni PubMedAbstract|CrossRefFullText|GoogleScholar 186.MurrayAJ.Oxygendeliveryandfetal-placentalgrowth:beyondaquestionofsupplyanddemand?Placenta.(2012)33(Suppl.2):e16–22.doi:10.1016/j.placenta.2012.06.006 PubMedAbstract|CrossRefFullText|GoogleScholar 187.KhatamiM.Cancer;aninduceddiseaseoftwentiethcentury!Inductionoftolerance,increasedentropyand'DarkEnergy':lossofbiorhythms(Anabolismv.Catabolism).ClinTranslMed.(2018)7:20.doi:10.1186/s40169-018-0193-6 PubMedAbstract|CrossRefFullText|GoogleScholar 188.MarshallGM,CarterDR,CheungBB,LiuT,MateosMK,MeyerowitzJG,etal.Theprenataloriginsofcancer.NatRevCancer.(2014)14:277–89.doi:10.1038/nrc3679 PubMedAbstract|CrossRefFullText|GoogleScholar 189.SchwartsburdPM.Age-promotedcreationofapro-cancermicroenvironmentbyinflammation:pathogenesisofdyscoordinatedfeedbackcontrol.MechAgeingDev.(2004)125:581–90.doi:10.1016/j.mad.2004.08.003 PubMedAbstract|CrossRefFullText|GoogleScholar 190.KesselringR,GlaesnerJ,HiergeistA,NaschbergerE,NeumannH,BrunnerSM,etal.IRAK-MexpressionintumorcellssupportscolorectalcancerprogressionthroughreductionofantimicrobialdefenseandstabilizationofSTAT3.CancerCell.(2016)29:684–96.doi:10.1016/j.ccell.2016.03.014 PubMedAbstract|CrossRefFullText|GoogleScholar 191.KobayashiK,HernandezLD,GalanJE,JanewayCAJr,MedzhitovR,FlavellRA.IRAK-MisanegativeregulatorofToll-likereceptorsignaling.Cell.(2002)110:191–202.doi:10.1016/S0092-8674(02)00827-9 PubMedAbstract|CrossRefFullText|GoogleScholar 192.BenderT,MartinouJC.Themitochondrialpyruvatecarrierinhealthanddisease:tocarryornottocarry?BiochimBiophysActa.(2016)1863:2436–42.doi:10.1016/j.bbamcr.2016.01.017 CrossRefFullText|GoogleScholar 193.BrivioS,CadamuroM,FabrisL,StrazzaboscoM.Epithelial-to-mesenchymaltransitionandcancerinvasiveness:whatcanwelearnfromcholangiocarcinoma?JClinMed.(2015)4:2028–41.doi:10.3390/jcm4121958 PubMedAbstract|CrossRefFullText|GoogleScholar 194.DallaPozzaE,ForcinitiS,PalmieriM,DandoI.Secretedmoleculesinducingepithelial-to-mesenchymaltransitionincancerdevelopment.SeminCellDevBiol.(2018)78:62–72.doi:10.1016/j.semcdb.2017.06.027 PubMedAbstract|CrossRefFullText|GoogleScholar 195.KhatamiM,editor.Immunesurveillanceinhealthanddiseasesofaging:definitionsofacuteandchronicInflammation[YinandYang].In:Inflammation,AgingandCancer.Cham:Springer(2017).p.37–89.doi:10.1007/978-3-319-66475-0_2 CrossRefFullText|GoogleScholar 196.MaedaH,KhatamiM.Analysesofrepeatedfailuresincancertherapyforsolidtumors:poortumor-selectivedrugdelivery,lowtherapeuticefficacyandunsustainablecosts.ClinTranslMed.(2018)7:11.doi:10.1186/s40169-018-0185-6 PubMedAbstract|CrossRefFullText|GoogleScholar 197.AlHasawiN,AlkandariMF,LuqmaniYA.Phosphofructokinase:amediatorofglycolyticfluxincancerprogression.CritRevOncolHematol.(2014)92:312–21.doi:10.1016/j.critrevonc.2014.05.007 PubMedAbstract|CrossRefFullText|GoogleScholar 198.DangCV,KimJW.Convergenceofcancermetabolismandimmunity:anoverview.BiomolTher.(2018)26:4–9.doi:10.4062/biomolther.2017.194 PubMedAbstract|CrossRefFullText|GoogleScholar 199.Diaz-RuizR,AveretN,AraizaD,PinsonB,Uribe-CarvajalS,DevinA,etal.Mitochondrialoxidativephosphorylationisregulatedbyfructose1,6-bisphosphate.Apossibleroleincrabtreeeffectinduction?JBiolChem.(2008)283:26948–55.doi:10.1074/jbc.M800408200 PubMedAbstract|CrossRefFullText|GoogleScholar 200.HammadN,Rosas-LemusM,Uribe-CarvajalS,RigouletM,DevinA.Thecrabtreeandwarburgeffects:dometabolite-inducedregulationsparticipateintheirinduction?BiochimBiophysActa.(2016)1857:1139–46.doi:10.1016/j.bbabio.2016.03.034 PubMedAbstract|CrossRefFullText|GoogleScholar 201.KumarA,DandekarJU,BhatPJ.Fermentativemetabolismimpedesp53-dependentapoptosisinaCrabtree-positivebutnotinCrabtree-negativeyeast.JBiosci.(2017)42:585–601.doi:10.1007/s12038-017-9717-2 CrossRefFullText|GoogleScholar 202.SokolovSS,MarkovaOV,NikolaevaKD,FedorovIA,SeverinFF.Triosephosphatesasintermediatesofthecrabtreeeffect.Biochemistry.(2017)82:458–64.doi:10.1134/S0006297917040071 PubMedAbstract|CrossRefFullText|GoogleScholar 203.LosmanJA,LooperRE,KoivunenP,LeeS,SchneiderRK,McMahonC,etal.(R)-2-hydroxyglutarateissufficienttopromoteleukemogenesisanditseffectsarereversible.Science.(2013)339:1621–5.doi:10.1126/science.1231677 PubMedAbstract|CrossRefFullText|GoogleScholar 204.SteinEM,DiNardoCD,PollyeaDA,FathiAT,RobozGJ,AltmanJK,etal.EnasidenibinmutantIDH2relapsedorrefractoryacutemyeloidleukemia.Blood.(2017)130:722–31.doi:10.1182/blood-2017-04-779405 CrossRefFullText|GoogleScholar 205.TrottaAP,GellesJD,SerasingheMN,LoiP,ArbiserJL,ChipukJE.Disruptionofmitochondrialelectrontransportchainfunctionpotentiatesthepro-apoptoticeffectsofMAPKinhibition.JBiolChem.(2017)292:11727–39.doi:10.1074/jbc.M117.786442 PubMedAbstract|CrossRefFullText|GoogleScholar 206.VialeA,PettazzoniP,LyssiotisCA,YingH,SanchezN,MarchesiniM,etal.Oncogeneablation-resistantpancreaticcancercellsdependonmitochondrialfunction.Nature.(2014)514:628–32.doi:10.1038/nature13611 PubMedAbstract|CrossRefFullText|GoogleScholar 207.HavasKM,MilchevskayaV,RadicK,AlladinA,KafkiaE,GarciaM,etal.Metabolicshiftsinresidualbreastcancerdrivetumorrecurrence.JClinInvest.(2017)127:2091–105.doi:10.1172/JCI89914 PubMedAbstract|CrossRefFullText|GoogleScholar 208.GhoshJC,SiegelinMD,VairaV,FaversaniA,TavecchioM,ChaeYC,etal.AdaptivemitochondrialreprogrammingandresistancetoPI3Ktherapy.JNatlCancerInst.(2015)107:dju502.doi:10.1093/jnci/dju502 PubMedAbstract|CrossRefFullText|GoogleScholar 209.VellingaTT,BorovskiT,deBoerVC,FatraiS,vanSchelvenS,TrumpiK,etal.SIRT1/PGC1alpha-dependentincreaseinoxidativephosphorylationsupportschemotherapyresistanceofcoloncancer.ClinCancerRes.(2015)21:2870–9.doi:10.1158/1078-0432.CCR-14-2290 PubMedAbstract|CrossRefFullText|GoogleScholar 210.MorandiA,IndraccoloS.Linkingmetabolicreprogrammingtotherapyresistanceincancer.BiochimBiophysActaRevCancer.(2017)1868:1–6.doi:10.1016/j.bbcan.2016.12.004 PubMedAbstract|CrossRefFullText|GoogleScholar 211.SanchoP,Burgos-RamosE,TaveraA,BouKheirT,JagustP,SchoenhalsM,etal.MYC/PGC-1αbalancedeterminesthemetabolicphenotypeandplasticityofpancreaticcancerstemcells.CellMetab.(2015)22:590–605.doi:10.1016/j.cmet.2015.08.015 PubMedAbstract|CrossRefFullText|GoogleScholar 212.CatanzaroD,GaudeE,OrsoG,GiordanoC,GuzzoG,RasolaA,etal.Inhibitionofglucose-6-phosphatedehydrogenasesensitizescisplatin-resistantcellstodeath.Oncotarget.(2015)6:30102–14.doi:10.18632/oncotarget.4945 PubMedAbstract|CrossRefFullText|GoogleScholar 213.ChaoM,WuH,JinK,LiB,WuJ,ZhangG,etal.Anonrandomizedcohortandarandomizedstudyoflocalcontroloflargehepatocarcinomabytargetingintratumorallacticacidosis.Elife.(2016)5:e15691.doi:10.7554/eLife.15691 PubMedAbstract|CrossRefFullText|GoogleScholar 214.Caro-MaldonadoA,TaitSW,Ramirez-PeinadoS,RicciJE,FabregatI,GreenDR,etal.Glucosedeprivationinducesanatypicalformofapoptosismediatedbycaspase-8inBax-,Bak-deficientcells.CellDeathDiffer.(2010)17:1335–44.doi:10.1038/cdd.2010.21 PubMedAbstract|CrossRefFullText|GoogleScholar 215.JinS,DiPaolaRS,MathewR,WhiteE.Metaboliccatastropheasameanstocancercelldeath.JCellSci.(2007)120:379–83.doi:10.1242/jcs.03349 PubMedAbstract|CrossRefFullText|GoogleScholar 216.LeeYJ,GaloforoSS,BernsCM,TongWP,KimHR,CorryPM.Glucosedeprivation-inducedcytotoxicityindrugresistanthumanbreastcarcinomaMCF-7/ADRcells:roleofc-mycandbcl-2inapoptoticcelldeath.JCellSci.(1997)110(Pt5):681–6. PubMedAbstract|GoogleScholar 217.WechalekarK,SharmaB,CookG.PET/CTinoncology–amajoradvance.ClinRadiol.(2005)60:1143–55.doi:10.1016/j.crad.2005.05.018 PubMedAbstract|CrossRefFullText|GoogleScholar 218.MomcilovicM,JonesA,BaileyST,WaldmannCM,LiR,LeeJT,etal.Invivoimagingofmitochondrialmembranepotentialinnon-small-celllungcancer.Nature.(2019)575:380–4.doi:10.1038/s41586-019-1715-0 PubMedAbstract|CrossRefFullText|GoogleScholar 219.VanderHeidenMG,CantleyLC,ThompsonCB.UnderstandingtheWarburgeffect:themetabolicrequirementsofcellproliferation.Science.(2009)324:1029–33.doi:10.1126/science.1160809 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:cancer,metabolism,microenvironment,metastasis,therapy Citation:LäscheM,EmonsGandGründkerC(2020)SheddingNewLightonCancerMetabolism:AMetabolicTightropeBetweenLifeandDeath.Front.Oncol.10:409.doi:10.3389/fonc.2020.00409 Received:27January2020;Accepted:09March2020;Published:31March2020. Editedby:CappelloAnnaRita,UniversityofCalabria,Italy Reviewedby:AlessandraFerramosca,UniversityofSalento,ItalyDomenicaScumaci,MagnaGræciaUniversityofCatanzaro,Italy Copyright©2020Läsche,EmonsandGründker.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:CarstenGründker,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?