Glass transition - Wikipedia

文章推薦指數: 80 %
投票人數:10人

Transition temperature Tg Glasstransition FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Reversibletransitioninamorphousmaterials Theglass–liquidtransition,orglasstransition,isthegradualandreversibletransitioninamorphousmaterials(orinamorphousregionswithinsemicrystallinematerials)fromahardandrelativelybrittle"glassy"stateintoaviscousorrubberystateasthetemperatureisincreased.[1][2]Anamorphoussolidthatexhibitsaglasstransitioniscalledaglass.Thereversetransition,achievedbysupercoolingaviscousliquidintotheglassstate,iscalledvitrification. Theglass-transitiontemperatureTgofamaterialcharacterizestherangeoftemperaturesoverwhichthisglasstransitionoccurs.Itisalwayslowerthanthemeltingtemperature,Tm,ofthecrystallinestateofthematerial,ifoneexists. Hardplasticslikepolystyreneandpoly(methylmethacrylate)areusedwellbelowtheirglasstransitiontemperatures,i.e.,whentheyareintheirglassystate.TheirTgvaluesarebothataround100 °C(212 °F).RubberelastomerslikepolyisopreneandpolyisobutyleneareusedabovetheirTg,thatis,intherubberystate,wheretheyaresoftandflexible;crosslinkingpreventsfreeflowoftheirmolecules,thusendowingrubberwithasetshapeatroomtemperature(asopposedtoaviscousliquid).[3] Despitethechangeinthephysicalpropertiesofamaterialthroughitsglasstransition,thetransitionisnotconsideredaphasetransition;ratheritisaphenomenonextendingoverarangeoftemperatureanddefinedbyoneofseveralconventions.[2][4][5]Suchconventionsincludeaconstantcoolingrate(20kelvinsperminute(36 °F/min))[1]andaviscositythresholdof1012Pa·s,amongothers.Uponcoolingorheatingthroughthisglass-transitionrange,thematerialalsoexhibitsasmoothstepinthethermal-expansioncoefficientandinthespecificheat,withthelocationoftheseeffectsagainbeingdependentonthehistoryofthematerial.[6]Thequestionofwhethersomephasetransitionunderliestheglasstransitionisamatterofcontinuingresearch.[4][5][7][when?] IUPACdefinition glasstransition(inpolymerscience):Processinwhichapolymermeltchangesoncoolingtoapolymerglassorapolymerglasschangesonheatingtoapolymermelt.[8] Note1:Phenomenaoccurringattheglasstransitionofpolymersarestillsubjecttoongoingscientificinvestigationanddebate.Theglasstransitionpresentsfeaturesofasecond-order transitionsincethermalstudiesoftenindicatethatthemolarGibbsenergies,molar enthalpies,andthemolarvolumesofthetwophases,i.e.,themeltandtheglass,are equal,whiletheheatcapacityandtheexpansivityarediscontinuous.However,theglass transitionisgenerallynotregardedasathermodynamictransitioninviewoftheinherentdifficultyinreachingequilibriuminapolymerglassorinapolymermeltattemperaturesclosetotheglass-transitiontemperature. Note2:Inthecaseofpolymers,conformationalchangesofsegments,typicallyconsistingof 10–20main-chainatoms,becomeinfinitelyslowbelowtheglasstransitiontemperature. Note3:Inapartiallycrystallinepolymertheglasstransitionoccursonlyintheamorphousparts ofthematerial. Note4:Thedefinitionisdifferentfromthatinref.[9] Note5:Thecommonlyusedterm“glass-rubbertransition”forglasstransitionisnotrecommended.[10] Contents 1Introduction 2TransitiontemperatureTg 2.1Polymers 2.2Silicatesandothercovalentnetworkglasses 3Kauzmann'sparadox 3.1Alternativeresolutions 4Inspecificmaterials 4.1Silica,SiO2 4.2Polymers 5Mechanicsofvitrification 5.1Electronicstructure 6Seealso 7References 8Externallinks Introduction[edit] Theglasstransitionofaliquidtoasolid-likestatemayoccurwitheithercoolingorcompression.[11]Thetransitioncomprisesasmoothincreaseintheviscosityofamaterialbyasmuchas17ordersofmagnitudewithinatemperaturerangeof500Kwithoutanypronouncedchangeinmaterialstructure.[2][12]Theconsequenceofthisdramaticincreaseisaglassexhibitingsolid-likemechanicalpropertiesonthetimescaleofpracticalobservation.[clarificationneeded]Thistransitionisincontrasttothefreezingorcrystallizationtransition,whichisafirst-orderphasetransitionintheEhrenfestclassificationandinvolvesdiscontinuitiesinthermodynamicanddynamicpropertiessuchasvolume,energy,andviscosity.Inmanymaterialsthatnormallyundergoafreezingtransition,rapidcoolingwillavoidthisphasetransitionandinsteadresultinaglasstransitionatsomelowertemperature.Othermaterials,suchasmanypolymers,lackawelldefinedcrystallinestateandeasilyformglasses,evenuponveryslowcoolingorcompression.Thetendencyforamaterialtoformaglasswhilequenchediscalledglassformingability.Thisabilitydependsonthecompositionofthematerialandcanbepredictedbytherigiditytheory.[13] Belowthetransitiontemperaturerange,theglassystructuredoesnotrelaxinaccordancewiththecoolingrateused.Theexpansioncoefficientfortheglassystateisroughlyequivalenttothatofthecrystallinesolid.Ifslowercoolingratesareused,theincreasedtimeforstructuralrelaxation(orintermolecularrearrangement)tooccurmayresultinahigherdensityglassproduct.Similarly,byannealing(andthusallowingforslowstructuralrelaxation)theglassstructureintimeapproachesanequilibriumdensitycorrespondingtothesupercooledliquidatthissametemperature.Tgislocatedattheintersectionbetweenthecoolingcurve(volumeversustemperature)fortheglassystateandthesupercooledliquid.[2][14][15][16][17][18] Theconfigurationoftheglassinthistemperaturerangechangesslowlywithtimetowardstheequilibriumstructure.[19]TheprincipleoftheminimizationoftheGibbsfreeenergyprovidesthethermodynamicdrivingforcenecessaryfortheeventualchange.AtsomewhathighertemperaturesthanTg,thestructurecorrespondingtoequilibriumatanytemperatureisachievedquiterapidly.Incontrast,atconsiderablylowertemperatures,theconfigurationoftheglassremainssensiblystableoverincreasinglyextendedperiodsoftime. Thus,theliquid-glasstransitionisnotatransitionbetweenstatesofthermodynamicequilibrium.Itiswidelybelievedthatthetrueequilibriumstateisalwayscrystalline.Glassisbelievedtoexistinakineticallylockedstate,anditsentropy,density,andsoon,dependonthethermalhistory.Therefore,theglasstransitionisprimarilyadynamicphenomenon.Timeandtemperatureareinterchangeablequantities(tosomeextent)whendealingwithglasses,afactoftenexpressedinthetime–temperaturesuperpositionprinciple.Oncoolingaliquid,internaldegreesoffreedomsuccessivelyfalloutofequilibrium.However,thereisalongstandingdebatewhetherthereisanunderlyingsecond-orderphasetransitioninthehypotheticallimitofinfinitelylongrelaxationtimes.[clarificationneeded][6][20][21][22] Inamorerecentmodelofglasstransition,theglasstransitiontemperaturecorrespondstothetemperatureatwhichthelargestopeningsbetweenthevibratingelementsintheliquidmatrixbecomesmallerthanthesmallestcross-sectionsoftheelementsorpartsofthemwhenthetemperatureisdecreasing.Asaresultofthefluctuatinginputofthermalenergyintotheliquidmatrix,theharmonicsoftheoscillationsareconstantlydisturbedandtemporarycavities("freevolume")arecreatedbetweentheelements,thenumberandsizeofwhichdependonthetemperature.TheglasstransitiontemperatureTg0definedinthiswayisafixedmaterialconstantofthedisordered(non-crystalline)statethatisdependentonlyonthepressure.AsaresultoftheincreasinginertiaofthemolecularmatrixwhenapproachingTg0,thesettingofthethermalequilibriumissuccessivelydelayed,sothattheusualmeasuringmethodsfordeterminingtheglasstransitiontemperatureinprincipledeliverTgvaluesthataretoohigh.Inprinciple,theslowerthetemperaturechangerateissetduringthemeasurement,thecloserthemeasuredTgvalueTg0approaches.[23]Techniquessuchasdynamicmechanicalanalysiscanbeusedtomeasuretheglasstransitiontemperature.[24] TransitiontemperatureTg[edit] Thissectionneedsadditionalcitationsforverification.Pleasehelpimprovethisarticlebyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.(July2009)(Learnhowandwhentoremovethistemplatemessage) DeterminationofTgbydilatometry. MeasurementofTg(thetemperatureatthepointA)bydifferentialscanningcalorimetry Refertothefigureonthebottomrightplottingtheheatcapacityasafunctionoftemperature.Inthiscontext,TgisthetemperaturecorrespondingtopointAonthecurve.[25] DifferentoperationaldefinitionsoftheglasstransitiontemperatureTgareinuse,andseveralofthemareendorsedasacceptedscientificstandards.Nevertheless,alldefinitionsarearbitrary,andallyielddifferentnumericresults:atbest,valuesofTgforagivensubstanceagreewithinafewkelvins.Onedefinitionreferstotheviscosity,fixingTgatavalueof1013poise(or1012Pa·s).Asevidencedexperimentally,thisvalueisclosetotheannealingpointofmanyglasses.[26] Incontrasttoviscosity,thethermalexpansion,heatcapacity,shearmodulus,andmanyotherpropertiesofinorganicglassesshowarelativelysuddenchangeattheglasstransitiontemperature.AnysuchsteporkinkcanbeusedtodefineTg.Tomakethisdefinitionreproducible,thecoolingorheatingratemustbespecified. ThemostfrequentlyuseddefinitionofTgusestheenergyreleaseonheatingindifferentialscanningcalorimetry(DSC,seefigure).Typically,thesampleisfirstcooledwith10K/minandthenheatedwiththatsamespeed. YetanotherdefinitionofTgusesthekinkindilatometry(a.k.a.thermalexpansion):refertothefigureonthetopright.Here,heatingratesof3–5 K/min(5.4–9.0 °F/min)arecommon.ThelinearsectionsbelowandaboveTgarecoloredgreen.Tgisthetemperatureattheintersectionoftheredregressionlines.[25] SummarizedbelowareTgvaluescharacteristicofcertainclassesofmaterials. Polymers[edit] Material Tg(°C) Tg(°F) Commercialname Tirerubber −70 −94[27] Polyvinylidenefluoride(PVDF) −35 −31[28] Polypropylene(PPatactic) −20 −4[29] Polyvinylfluoride(PVF) −20 −4[28] Polypropylene(PPisotactic) 0 32[29] Poly-3-hydroxybutyrate(PHB) 15 59[29] Poly(vinylacetate)(PVAc) 30 86[29] Polychlorotrifluoroethylene(PCTFE) 45 113[28] Polyamide(PA) 47–60 117–140 Nylon-6,x Polylacticacid(PLA) 60–65 140–149 Polyethyleneterephthalate(PET) 70 158[29] Poly(vinylchloride)(PVC) 80 176[29] Poly(vinylalcohol)(PVA) 85 185[29] Polystyrene(PS) 95 203[29] Poly(methylmethacrylate)(PMMAatactic) 105 221[29] Plexiglas,Perspex Acrylonitrilebutadienestyrene(ABS) 105 221[30] Polytetrafluoroethylene(PTFE) 115 239[31] Teflon Poly(carbonate)(PC) 145 293[29] Lexan Polysulfone 185 365 Polynorbornene 215 419[29] Drynylon-6hasaglasstransitiontemperatureof47 °C(117 °F).[32]Nylon-6,6inthedrystatehasaglasstransitiontemperatureofabout70 °C(158 °F).[33][34]Whereaspolyethenehasaglasstransitionrangeof−130 –−80 °C(−202 –−112 °F)[35] Theaboveareonlymeanvalues,astheglasstransitiontemperaturedependsonthecoolingrateandmolecularweightdistributionandcouldbeinfluencedbyadditives.Forasemi-crystallinematerial,suchaspolyethenethatis60–80%crystallineatroomtemperature,thequotedglasstransitionreferstowhathappenstotheamorphouspartofthematerialuponcooling. Silicatesandothercovalentnetworkglasses[edit] Material Tg(°C) Tg(°F) ChalcogenideGeSbTe 150 302[36] ChalcogenideAsGeSeTe 245 473 ZBLANfluorideglass 235 455 Telluriumdioxide 280 536 Fluoroaluminate 400 752 Soda-limeglass 520–600 968–1,112 Fusedquartz(approximate) 1,200 2,200[37] Kauzmann'sparadox[edit] Entropydifferencebetweencrystalandundercooledmelt Asaliquidissupercooled,thedifferenceinentropybetweentheliquidandsolidphasedecreases.Byextrapolatingtheheatcapacityofthesupercooledliquidbelowitsglasstransitiontemperature,itispossibletocalculatethetemperatureatwhichthedifferenceinentropiesbecomeszero.ThistemperaturehasbeennamedtheKauzmanntemperature.[2] IfaliquidcouldbesupercooledbelowitsKauzmanntemperature,anditdidindeeddisplayalowerentropythanthecrystalphase,theconsequenceswouldbeparadoxical.ThisKauzmannparadoxhasbeenthesubjectofmuchdebateandmanypublicationssinceitwasfirstputforwardbyWalterKauzmannin1948.[38][39] OneresolutionoftheKauzmannparadoxistosaythattheremustbeaphasetransitionbeforetheentropyoftheliquiddecreases.Inthisscenario,thetransitiontemperatureisknownasthecalorimetricidealglasstransitiontemperatureT0c.Inthisview,theglasstransitionisnotmerelyakineticeffect,i.e.merelytheresultoffastcoolingofamelt,butthereisanunderlyingthermodynamicbasisforglassformation.Theglasstransitiontemperature: T g → T 0 c  as  d T d t → 0. {\displaystyleT_{g}\toT_{0c}{\text{as}}{\frac{dT}{dt}}\to0.} TheGibbs–DiMarziomodelfrom1958[40]specificallypredictsthatasupercooledliquid'sconfigurationalentropydisappearsinthelimit T → T K + {\displaystyleT\toT_{K}^{+}} ,wheretheliquid'sexistenceregimeends,itsmicrostructurebecomesidenticaltothecrystal's,andtheirpropertycurvesintersectinatruesecond-orderphasetransition.Thishasneverbeenexperimentallyverifiedduetothedifficultyofrealizingaslowenoughcoolingratewhileavoidingaccidentalcrystallization.TheAdam–Gibbsmodelfrom1965[41]suggestedaresolutionoftheKauzmannparadoxaccordingtowhichtherelaxationtimedivergesattheKauzmanntemperature,implyingthatonecanneverequilibratethemetastablesupercooledliquidhere.AcriticaldiscussionoftheKauzmannparadoxandtheAdam–Gibbsmodelwasgivenin2009.[42]DataonseveralsupercooledorganicliquidsdonotconfirmtheAdam–Gibbspredictionofadivergingrelaxationtimeatanyfinitetemperature,e.g.theKauzmanntemperature.[43] Alternativeresolutions[edit] ThereareatleastthreeotherpossibleresolutionstotheKauzmannparadox.ItcouldbethattheheatcapacityofthesupercooledliquidneartheKauzmanntemperaturesmoothlydecreasestoasmallervalue.ItcouldalsobethatafirstorderphasetransitiontoanotherliquidstateoccursbeforetheKauzmanntemperaturewiththeheatcapacityofthisnewstatebeinglessthanthatobtainedbyextrapolationfromhighertemperature.Finally,KauzmannhimselfresolvedtheentropyparadoxbypostulatingthatallsupercooledliquidsmustcrystallizebeforetheKauzmanntemperatureisreached. Inspecificmaterials[edit] Silica,SiO2[edit] Silica(thechemicalcompoundSiO2)hasanumberofdistinctcrystallineformsinadditiontothequartzstructure.NearlyallofthecrystallineformsinvolvetetrahedralSiO4unitslinkedtogetherbysharedverticesindifferentarrangements(stishovite,composedoflinkedSiO6octahedra,isthemainexception).Si-Obondlengthsvarybetweenthedifferentcrystalforms.Forexample,inα-quartzthebondlengthis161picometres(6.3×10−9 in),whereasinα-tridymiteitrangesfrom154–171 pm(6.1×10−9–6.7×10−9 in).TheSi-O-Sibondanglealsovariesfrom140°inα-tridymiteto144°inα-quartzto180°inβ-tridymite.Anydeviationsfromthesestandardparametersconstitutemicrostructuraldifferencesorvariationsthatrepresentanapproachtoanamorphous,vitreousorglassysolid. ThetransitiontemperatureTginsilicatesisrelatedtotheenergyrequiredtobreakandre-formcovalentbondsinanamorphous(orrandomnetwork)latticeofcovalentbonds.TheTgisclearlyinfluencedbythechemistryoftheglass.Forexample,additionofelementssuchasB,Na,KorCatoasilicaglass,whichhaveavalencylessthan4,helpsinbreakingupthenetworkstructure,thusreducingtheTg.Alternatively,P,whichhasavalencyof5,helpstoreinforceanorderedlattice,andthusincreasestheTg.[44] Tgisdirectlyproportionaltobondstrength,e.g.itdependsonquasi-equilibriumthermodynamicparametersofthebondse.g.ontheenthalpyHdandentropySdofconfigurons–brokenbonds:Tg=Hd / [Sd + R ln[(1 − fc)/ fc]whereRisthegasconstantandfcisthepercolationthreshold.ForstrongmeltssuchasSiO2thepercolationthresholdintheaboveequationistheuniversalScher–Zallencriticaldensityinthe3-Dspacee.g.fc=0.15,howeverforfragilematerialsthepercolationthresholdsarematerial-dependentandfc ≪ 1.[45]TheenthalpyHdandtheentropySdofconfigurons–brokenbondscanbefoundfromavailableexperimentaldataonviscosity.[46] Polymers[edit] Inpolymerstheglasstransitiontemperature,Tg,isoftenexpressedasthetemperatureatwhichtheGibbsfreeenergyissuchthattheactivationenergyforthecooperativemovementof50orsoelementsofthepolymerisexceeded[citationneeded].Thisallowsmolecularchainstoslidepasteachotherwhenaforceisapplied.Fromthisdefinition,wecanseethattheintroductionofrelativelystiffchemicalgroups(suchasbenzenerings)willinterferewiththeflowingprocessandhenceincreaseTg.[47] Thestiffnessofthermoplasticsdecreasesduetothiseffect(seefigure.)Whentheglasstemperaturehasbeenreached,thestiffnessstaysthesameforawhile,i.e.,atornearE2,untilthetemperatureexceedsTm,andthematerialmelts.Thisregioniscalledtherubberplateau. Inironing,afabricisheatedthroughtheglass-rubbertransition. Comingfromthelow-temperatureside,theshearmodulusdropsbymanyordersofmagnitudeattheglasstransitiontemperatureTg.Amolecular-levelmathematicalrelationforthetemperature-dependentshearmodulusofthepolymerglassonapproachingTgfrombelowhasbeendevelopedbyAlessioZacconeandEugeneTerentjev.[48]Eventhoughtheshearmodulusdoesnotreallydroptozero(itdropsdowntothemuchlowervalueoftherubberplateau),uponsettingtheshearmodulustozerointheZaccone–Terentjevformula,anexpressionforTgisobtainedwhichrecoverstheFlory–Foxequation,andalsoshowsthatTgisinverselyproportionaltothethermalexpansioncoefficientintheglassstate.ThisprocedureprovidesyetanotheroperationalprotocoltodefinetheTgofpolymerglassesbyidentifyingitwiththetemperatureatwhichtheshearmodulusdropsbymanyordersofmagnitudedowntotherubberyplateau. Inironing,afabricisheatedthroughthistransitionsothatthepolymerchainsbecomemobile.Theweightoftheironthenimposesapreferredorientation.Tgcanbesignificantlydecreasedbyadditionofplasticizersintothepolymermatrix.Smallermoleculesofplasticizerembedthemselvesbetweenthepolymerchains,increasingthespacingandfreevolume,andallowingthemtomovepastoneanotherevenatlowertemperatures.Additionofplasticizercaneffectivelytakecontroloverpolymerchaindynamicsanddominatetheamountsoftheassociatedfreevolumesothattheincreasedmobilityofpolymerendsisnotapparent.[49]Theadditionofnonreactivesidegroupstoapolymercanalsomakethechainsstandofffromoneanother,reducingTg.IfaplasticwithsomedesirablepropertieshasaTgthatistoohigh,itcansometimesbecombinedwithanotherinacopolymerorcompositematerialwithaTgbelowthetemperatureofintendeduse.Notethatsomeplasticsareusedathightemperatures,e.g.,inautomobileengines,andothersatlowtemperatures.[29] StiffnessversustemperatureInviscoelasticmaterials,thepresenceofliquid-likebehaviordependsonthepropertiesofandsovarieswithrateofappliedload,i.e.,howquicklyaforceisapplied.ThesiliconetoySillyPuttybehavesquitedifferentlydependingonthetimerateofapplyingaforce:pullslowlyanditflows,actingasaheavilyviscousliquid;hititwithahammeranditshatters,actingasaglass. Oncooling,rubberundergoesaliquid-glasstransition,whichhasalsobeencalledarubber-glasstransition. Mechanicsofvitrification[edit] Mainarticle:Vitrification MolecularmotionincondensedmattercanberepresentedbyaFourierserieswhosephysicalinterpretationconsistsofasuperpositionoflongitudinalandtransversewavesofatomicdisplacementwithvaryingdirectionsandwavelengths.Inmonatomicsystems,thesewavesarecalleddensityfluctuations.(Inpolyatomicsystems,theymayalsoincludecompositionalfluctuations.)[50] Thus,thermalmotioninliquidscanbedecomposedintoelementarylongitudinalvibrations(oracousticphonons)whiletransversevibrations(orshearwaves)wereoriginallydescribedonlyinelasticsolidsexhibitingthehighlyorderedcrystallinestateofmatter.Inotherwords,simpleliquidscannotsupportanappliedforceintheformofashearingstress,andwillyieldmechanicallyviamacroscopicplasticdeformation(orviscousflow).Furthermore,thefactthatasoliddeformslocallywhileretainingitsrigidity–whilealiquidyieldstomacroscopicviscousflowinresponsetotheapplicationofanappliedshearingforce–isacceptedbymanyasthemechanicaldistinctionbetweenthetwo.[51][52] Theinadequaciesofthisconclusion,however,werepointedoutbyFrenkelinhisrevisionofthekinetictheoryofsolidsandthetheoryofelasticityinliquids.Thisrevisionfollowsdirectlyfromthecontinuouscharacteristicoftheviscoelasticcrossoverfromtheliquidstateintothesolidonewhenthetransitionisnotaccompaniedbycrystallization—ergothesupercooledviscousliquid.Thusweseetheintimatecorrelationbetweentransverseacousticphonons(orshearwaves)andtheonsetofrigidityuponvitrification,asdescribedbyBartenevinhismechanicaldescriptionofthevitrificationprocess.[53][54] Thisconceptleadstodefiningtheglasstransitionintermsofthevanishingorsignificantloweringofthelow-frequencyshearmodulus,asshownquantitativelyintheworkofZacconeandTerentjev[48]ontheexampleofpolymerglass.Infact,theshovingmodelstipulatesthattheactivationenergyoftherelaxationtimeisproportionaltothehigh-frequencyplateaushearmodulus,[2][55]aquantitythatincreasesuponcoolingthusexplainingtheubiquitousnon-Arrheniustemperaturedependenceoftherelaxationtimeinglass-formingliquids. Thevelocitiesoflongitudinalacousticphononsincondensedmatteraredirectlyresponsibleforthethermalconductivitythatlevelsouttemperaturedifferentialsbetweencompressedandexpandedvolumeelements.Kittelproposedthatthebehaviorofglassesisinterpretedintermsofanapproximatelyconstant"meanfreepath"forlatticephonons,andthatthevalueofthemeanfreepathisoftheorderofmagnitudeofthescaleofdisorderinthemolecularstructureofaliquidorsolid.Thethermalphononmeanfreepathsorrelaxationlengthsofanumberofglassformershavebeenplottedversustheglasstransitiontemperature,indicatingalinearrelationshipbetweenthetwo.Thishassuggestedanewcriterionforglassformationbasedonthevalueofthephononmeanfreepath.[56] Ithasoftenbeensuggestedthatheattransportindielectricsolidsoccursthroughelasticvibrationsofthelattice,andthatthistransportislimitedbyelasticscatteringofacousticphononsbylatticedefects(e.g.randomlyspacedvacancies).[57] Thesepredictionswereconfirmedbyexperimentsoncommercialglassesandglassceramics,wheremeanfreepathswereapparentlylimitedby"internalboundaryscattering"tolengthscalesof10–100micrometres(0.00039–0.00394 in).[58][59]Therelationshipbetweenthesetransversewavesandthemechanismofvitrificationhasbeendescribedbyseveralauthorswhoproposedthattheonsetofcorrelationsbetweensuchphononsresultsinanorientationalorderingor"freezing"oflocalshearstressesinglass-formingliquids,thusyieldingtheglasstransition.[60] Electronicstructure[edit] Theinfluenceofthermalphononsandtheirinteractionwithelectronicstructureisatopicthatwasappropriatelyintroducedinadiscussionoftheresistanceofliquidmetals.Lindemann'stheoryofmeltingisreferenced,[61]anditissuggestedthatthedropinconductivityingoingfromthecrystallinetotheliquidstateisduetotheincreasedscatteringofconductionelectronsasaresultoftheincreasedamplitudeofatomicvibration.Suchtheoriesoflocalizationhavebeenappliedtotransportinmetallicglasses,wherethemeanfreepathoftheelectronsisverysmall(ontheorderoftheinteratomicspacing).[62][63] Theformationofanon-crystallineformofagold-siliconalloybythemethodofsplatquenchingfromthemeltledtofurtherconsiderationsoftheinfluenceofelectronicstructureonglassformingability,basedonthepropertiesofthemetallicbond.[64][65][66][67][68] Otherworkindicatesthatthemobilityoflocalizedelectronsisenhancedbythepresenceofdynamicphononmodes.Oneclaimagainstsuchamodelisthatifchemicalbondsareimportant,thenearlyfreeelectronmodelsshouldnotbeapplicable.However,ifthemodelincludesthebuildupofachargedistributionbetweenallpairsofatomsjustlikeachemicalbond(e.g.,silicon,whenabandisjustfilledwithelectrons)thenitshouldapplytosolids.[69] Thus,iftheelectricalconductivityislow,themeanfreepathoftheelectronsisveryshort.Theelectronswillonlybesensitivetotheshort-rangeorderintheglasssincetheydonotgetachancetoscatterfromatomsspacedatlargedistances.Sincetheshort-rangeorderissimilaringlassesandcrystals,theelectronicenergiesshouldbesimilarinthesetwostates.Foralloyswithlowerresistivityandlongerelectronicmeanfreepaths,theelectronscouldbegintosense[dubious–discuss]thatthereisdisorderintheglass,andthiswouldraisetheirenergiesanddestabilizetheglasswithrespecttocrystallization.Thus,theglassformationtendenciesofcertainalloysmaythereforebedueinparttothefactthattheelectronmeanfreepathsareveryshort,sothatonlytheshort-rangeorderiseverimportantfortheenergyoftheelectrons. Ithasalsobeenarguedthatglassformationinmetallicsystemsisrelatedtothe"softness"oftheinteractionpotentialbetweenunlikeatoms.Someauthors,emphasizingthestrongsimilaritiesbetweenthelocalstructureoftheglassandthecorrespondingcrystal,suggestthatchemicalbondinghelpstostabilizetheamorphousstructure.[70][71] Otherauthorshavesuggestedthattheelectronicstructureyieldsitsinfluenceonglassformationthroughthedirectionalpropertiesofbonds.Non-crystallinityisthusfavoredinelementswithalargenumberofpolymorphicformsandahighdegreeofbondinganisotropy.Crystallizationbecomesmoreunlikelyasbondinganisotropyisincreasedfromisotropicmetallictoanisotropicmetallictocovalentbonding,thussuggestingarelationshipbetweenthegroupnumberintheperiodictableandtheglassformingabilityinelementalsolids.[72] Seealso[edit] Gardnertransition References[edit] ^ab ISO11357-2:Plastics–Differentialscanningcalorimetry –Part2:Determinationofglasstransitiontemperature(1999). ^abcdefDyre,JeppeC.(2006)."Colloquium :Theglasstransitionandelasticmodelsofglass-formingliquids".ReviewsofModernPhysics.78(3):953–972.Bibcode:2006RvMP...78..953D.doi:10.1103/RevModPhys.78.953.ISSN 0034-6861. ^"TheGlassTransition".PolymerScienceLearningCenter.Archivedfromtheoriginalon2019-01-15.Retrieved2009-10-15. ^abDebenedetti,P.G.;Stillinger(2001)."Supercooledliquidsandtheglasstransition".Nature.410(6825):259–267.Bibcode:2001Natur.410..259D.doi:10.1038/35065704.PMID 11258381.S2CID 4404576. ^abAngell,C.A.;Ngai,K.L.;McKenna,G.B.;McMillan,P.F.;Martin,S.W.(2000)."Relaxationinglassformingliquidsandamorphoussolids".Appl.Phys.Rev.88(6):3113–3157.Bibcode:2000JAP....88.3113A.doi:10.1063/1.1286035. ^ab Zarzycki,J.(1991).GlassesandtheVitreousState.CambridgeUniversityPress.ISBN 978-0521355827. ^Ojovan,M.I.(2004)."GlassformationinamorphousSiO2asapercolationphasetransitioninasystemofnetworkdefects".JournalofExperimentalandTheoreticalPhysicsLetters.79(12):632–634.Bibcode:2004JETPL..79..632O.doi:10.1134/1.1790021.S2CID 124299526. ^MeilleStefano,V.;Allegra,G.;GeilPhillip,H.;He,J.;Hess,M.;Jin,J.-I.;Kratochvíl,P.;Mormann,W.;Stepto,R.(2011)."Definitionsoftermsrelatingtocrystallinepolymers(IUPACRecommendations2011)"(PDF).PureApplChem.83(10):1831.doi:10.1351/PAC-REC-10-11-13.S2CID 98823962. ^IUPAC,CompendiumofChemicalTerminology,2nded.(the"GoldBook")(1997).Onlinecorrectedversion:(2006–)"glasstransition".doi:10.1351/goldbook.G02640 ^Hess,M.;Allegra,G.;He,J.;Horie,K.;Kim,J.-S.;MeilleStefano,V.;Metanomski,V.;Moad,G.;SteptoRobert,F.T.;Vert,M.;Vohlídal,J.(2013)."Glossaryoftermsrelatingtothermalandthermomechanicalpropertiesofpolymers(IUPACRecommendations2013)"(PDF).PureApplChem.85(5):1017.doi:10.1351/PAC-REC-12-03-02.S2CID 93268437. ^Hansen,J.-P.;McDonald,I.R.(2007).TheoryofSimpleLiquids.Elsevier.pp. 250–254.ISBN 978-0123705358. ^Adam,J-L;Zhang,X.(14February2014).ChalcogenideGlasses:Preparation,PropertiesandApplications.ElsevierScience.p. 94.ISBN 978-0-85709-356-1. ^Phillips,J.C.(1979)."Topologyofcovalentnon-crystallinesolidsI:Short-rangeorderinchalcogenidealloys".JournalofNon-CrystallineSolids.34(2):153.Bibcode:1979JNCS...34..153P.doi:10.1016/0022-3093(79)90033-4. ^ Moynihan,C.etal.(1976)inTheGlassTransitionandtheNatureoftheGlassyState,M.GoldsteinandR.Simha(Eds.),Ann.N.Y.Acad.Sci.,Vol.279.ISBN 0890720533. ^ Angell,C.A.(1988)."Perspectiveontheglasstransition".JournalofPhysicsandChemistryofSolids.49(8):863–871.Bibcode:1988JPCS...49..863A.doi:10.1016/0022-3697(88)90002-9. ^Ediger,M.D.;Angell,C.A.;Nagel,SidneyR.(1996)."SupercooledLiquidsandGlasses".TheJournalofPhysicalChemistry.100(31):13200.doi:10.1021/jp953538d. ^Angell,C.A.(1995)."FormationofGlassesfromLiquidsandBiopolymers".Science.267(5206):1924–35.Bibcode:1995Sci...267.1924A.doi:10.1126/science.267.5206.1924.PMID 17770101.S2CID 927260. ^Stillinger,F.H.(1995)."ATopographicViewofSupercooledLiquidsandGlassFormation".Science.267(5206):1935–9.Bibcode:1995Sci...267.1935S.doi:10.1126/science.267.5206.1935.PMID 17770102.S2CID 30407650. ^Riechers,Birte;Roed,LisaA.;Mehri,Saeed;Ingebrigtsen,TrondS.;Hecksher,Tina;Dyre,JeppeC.;Niss,Kristine(2022-03-18)."Predictingnonlinearphysicalagingofglassesfromequilibriumrelaxationviathematerialtime".ScienceAdvances.8(11).doi:10.1126/sciadv.abl9809.ISSN 2375-2548. ^ NemilovSV(1994).ThermodynamicandKineticAspectsoftheVitreousState.CRCPress.ISBN 978-0849337826. ^ Gibbs,J.H.(1960).MacKenzie,J.D.(ed.).ModernAspectsoftheVitreousState.Butterworth.OCLC 1690554. ^Ojovan,MichaelI;Lee,William(Bill)E(2010)."Connectivityandglasstransitionindisorderedoxidesystems".JournalofNon-CrystallineSolids.356(44–49):2534.Bibcode:2010JNCS..356.2534O.doi:10.1016/j.jnoncrysol.2010.05.012. ^Sturm,KarlGünter(2017)."Microscopic-PhenomenologicalModelofGlassTransitionI.Foundationsofthemodel(Revisedandenhancedversion)(Formertitle:MicroscopicModelofGlassTransformationandMolecularTranslationsinLiquidsI.FoundationsoftheModel-October2015)".doi:10.13140/RG.2.2.19831.73121.{{citejournal}}:Citejournalrequires|journal=(help) ^"WhatisDynamicMechanicalTesting(DMA)?".2018. ^abTgmeasurementofglasses.Glassproperties.com.Retrievedon2012-06-29. ^IUPAC,CompendiumofChemicalTerminology,2nded.(the"GoldBook")(1997).Onlinecorrectedversion:(2006–)"glass-transitiontemperature".doi:10.1351/goldbook.G02641 ^ Galimberti,Maurizio;Caprio,Michela;Fino,Luigi(2001-12-21)."Tyrecomprisingacycloolefinpolymer,treadbandandelasomericcompositionusedtherein"(published2003-03-07).country-code=EU,patent-number=WO03053721{{citejournal}}:Citejournalrequires|journal=(help) ^abcIbeh,ChristopherC.(2011).THERMOPLASTICMATERIALSProperties,ManufacturingMethods,andApplications.CRCPress.pp. 491–497.ISBN 978-1-4200-9383-4. ^abcdefghijkl Wilkes,C.E.(2005).PVCHandbook.HanserVerlag.ISBN 978-1-56990-379-7. ^ABS.nrri.umn.edu ^Nicholson,JohnW.(2011).TheChemistryofPolymers(4,Revised ed.).RoyalSocietyofChemistry.p. 50.ISBN 9781849733915.Retrieved10September2013. ^nylon-6informationandproperties.Polymerprocessing.com(2001-04-15).Retrievedon2012-06-29. ^Jones,A(2014)."SupplementaryMaterialsforArtificialMusclesfromFishingLineandSewingThread".Science.343(6173):868–72.Bibcode:2014Sci...343..868H.doi:10.1126/science.1246906.PMID 24558156.S2CID 16577662. ^MeasurementofMoistureEffectsontheMechanicalPropertiesof66Nylon.TAInstrumentsThermalAnalysisApplicationBriefTA-133 ^PCL|ApplicationsandEndUses|Polythene.Polyesterconverters.com.Retrievedon2012-06-29. ^EPCOS2007:GlassTransitionandCrystallizationinPhaseChangeMaterialsArchived2011-07-26attheWaybackMachine.Retrievedon2012-06-29. ^Bucaro,J.A.(1974)."High-temperatureBrillouinscatteringinfusedquartz".JournalofAppliedPhysics.45(12):5324–5329.Bibcode:1974JAP....45.5324B.doi:10.1063/1.1663238. ^Kauzmann,Walter(1948)."TheNatureoftheGlassyStateandtheBehaviorofLiquidsatLowTemperatures".ChemicalReviews.43(2):219–256.doi:10.1021/cr60135a002. ^Wolchover,Natalie(11March2020)."IdealGlassWouldExplainWhyGlassExistsatAll".QuantaMagazine.Retrieved3April2020. ^Gibbs,JulianH.;DiMarzio,EdmundA.(1958)."NatureoftheGlassTransitionandtheGlassyState".TheJournalofChemicalPhysics.28(3):373–383.Bibcode:1958JChPh..28..373G.doi:10.1063/1.1744141.ISSN 0021-9606. ^Adam,Gerold;Gibbs,JulianH.(1965)."OntheTemperatureDependenceofCooperativeRelaxationPropertiesinGlass‐FormingLiquids".TheJournalofChemicalPhysics.43(1):139–146.Bibcode:1965JChPh..43..139A.doi:10.1063/1.1696442.ISSN 0021-9606. ^Dyre,JeppeC.;Hechsher,Tina;Niss,Kristine(2009)."AbriefcritiqueoftheAdam–Gibbsentropymodel".JournalofNon-CrystallineSolids.355(10–12):624–627.arXiv:0901.2104.Bibcode:2009JNCS..355..624D.doi:10.1016/j.jnoncrysol.2009.01.039.S2CID 53051058. ^Hecksher,Tina;Nielsen,AlbenaI.;Olsen,NielsBoye;Dyre,JeppeC.(2008)."Littleevidencefordynamicdivergencesinultraviscousmolecularliquids".NaturePhysics.4(9):737–741.Bibcode:2008NatPh...4..673H.doi:10.1038/nphys1033.ISSN 1745-2473. ^OjovanM.I.(2008)."Configurons:thermodynamicparametersandsymmetrychangesatglasstransition"(PDF).Entropy.10(3):334–364.Bibcode:2008Entrp..10..334O.doi:10.3390/e10030334. ^Ojovan,M.I.(2008)."Configurons:thermodynamicparametersandsymmetrychangesatglasstransition"(PDF).Entropy.10(3):334–364.Bibcode:2008Entrp..10..334O.doi:10.3390/e10030334. ^Ojovan,MichaelI;Travis,KarlP;Hand,RussellJ(2007)."Thermodynamicparametersofbondsinglassymaterialsfromviscosity–temperaturerelationships"(PDF).JournalofPhysics:CondensedMatter.19(41):415107.Bibcode:2007JPCM...19O5107O.doi:10.1088/0953-8984/19/41/415107.PMID 28192319. ^Cowie,J.M.G.andArrighi,V.,Polymers:ChemistryandPhysicsofModernMaterials,3rdEdn.(CRCPress,2007)ISBN 0748740732 ^abZaccone,A.;Terentjev,E.(2013)."Disorder-AssistedMeltingandtheGlassTransitioninAmorphousSolids".PhysicalReviewLetters.110(17):178002.arXiv:1212.2020.Bibcode:2013PhRvL.110q8002Z.doi:10.1103/PhysRevLett.110.178002.PMID 23679782.S2CID 15600577. ^Capponi,S.;Alvarez,F.;Racko,D.(2020),"FreeVolumeinaPVMEPolymer–WaterSolution",Macromolecules,53(12):4770–4782,Bibcode:2020MaMol..53.4770C,doi:10.1021/acs.macromol.0c00472,S2CID 219911779 ^Slater,J.C.,IntroductiontoChemicalPhysics(3rdEd.,MartindellPress,2007)ISBN 1178626598 ^Born,Max(2008)."Onthestabilityofcrystallattices.I".MathematicalProceedingsoftheCambridgePhilosophicalSociety.36(2):160–172.Bibcode:1940PCPS...36..160B.doi:10.1017/S0305004100017138. ^Born,Max(1939)."ThermodynamicsofCrystalsandMelting".TheJournalofChemicalPhysics.7(8):591–603.Bibcode:1939JChPh...7..591B.doi:10.1063/1.1750497. ^Frenkel,J.(1946).KineticTheoryofLiquids.ClarendonPress,Oxford. ^ Bartenev,G.M.,StructureandMechanicalPropertiesofInorganicGlasses(Wolters–Noordhoof,1970)ISBN 9001054501 ^Dyre,JeppeC.;Olsen,NielsBoye;Christensen,Tage(1996)."Localelasticexpansionmodelforviscous-flowactivationenergiesofglass-formingmolecularliquids".PhysicalReviewB.53(5):2171–2174.Bibcode:1996PhRvB..53.2171D.doi:10.1103/PhysRevB.53.2171.ISSN 0163-1829.PMID 9983702. ^ Reynolds,C.L.Jr.(1979)."Correlationbetweenthelowtemperaturephononmeanfreepathandglasstransitiontemperatureinamorphoussolids".J.Non-Cryst.Solids.30(3):371.Bibcode:1979JNCS...30..371R.doi:10.1016/0022-3093(79)90174-1. ^Rosenburg,H.M.(1963)LowTemperatureSolidStatePhysics.ClarendonPress,Oxford. ^Kittel,C.(1946)."UltrasonicPropagationinLiquids".J.Chem.Phys.14(10):614.Bibcode:1946JChPh..14..614K.doi:10.1063/1.1724073.hdl:1721.1/5041. ^ Kittel,C.(1949)."InterpretationoftheThermalConductivityofGlasses".Phys.Rev.75(6):972.Bibcode:1949PhRv...75..972K.doi:10.1103/PhysRev.75.972. ^Chen,Shao-Ping;Egami,T.;Vitek,V.(1985)."Orientationalorderingoflocalshearstressesinliquids:Aphasetransition?".JournalofNon-CrystallineSolids.75(1–3):449.Bibcode:1985JNCS...75..449C.doi:10.1016/0022-3093(85)90256-X. ^Sorkin,Viacheslav(2005)."Lindemanncriterion".PointDefects,LatticeStructureandMelting(PDF)(MSc).IsraelInstituteofTechnology.pp. 5–8.Retrieved6January2022. ^ Mott,N.F.(1934)."TheResistanceofLiquidMetals".ProceedingsoftheRoyalSocietyA.146(857):465.Bibcode:1934RSPSA.146..465M.doi:10.1098/rspa.1934.0166. ^ Lindemann,C.(1911)."Onthecalculationofmolecularnaturalfrequencies".Phys.Z.11:609. ^Klement,W.;Willens,R.H.;Duwez,POL(1960)."Non-crystallineStructureinSolidifiedGold–SiliconAlloys".Nature.187(4740):869.Bibcode:1960Natur.187..869K.doi:10.1038/187869b0.S2CID 4203025. ^Duwez,Pol;Willens,R.H.;Klement,W.(1960)."ContinuousSeriesofMetastableSolidSolutionsinSilver-CopperAlloys"(PDF).JournalofAppliedPhysics.31(6):1136.Bibcode:1960JAP....31.1136D.doi:10.1063/1.1735777. ^Duwez,Pol;Willens,R.H.;Klement,W.(1960)."MetastableElectronCompoundinAg-GeAlloys"(PDF).JournalofAppliedPhysics.31(6):1137.Bibcode:1960JAP....31.1137D.doi:10.1063/1.1735778. ^Chaudhari,P;Turnbull,D(1978)."Structureandpropertiesofmetallicglasses".Science.199(4324):11–21.Bibcode:1978Sci...199...11C.doi:10.1126/science.199.4324.11.PMID 17841932.S2CID 7786426. ^Chen,J.S.(1980)."Glassymetals".ReportsonProgressinPhysics.43(4):353.Bibcode:1980RPPh...43..353C.doi:10.1088/0034-4885/43/4/001. ^ Jonson,M.;Girvin,S.M.(1979)."Electron-PhononDynamicsandTransportAnomaliesinRandomMetalAlloys".Phys.Rev.Lett.43(19):1447.Bibcode:1979PhRvL..43.1447J.doi:10.1103/PhysRevLett.43.1447. ^ Turnbull,D.(1974)."AmorphousSolidFormationandInterstitialSolutionBehaviorinMetallicAlloySystem".J.Phys.C.35(C4):C4–1.CiteSeerX 10.1.1.596.7462.doi:10.1051/jphyscol:1974401. ^ Chen,H.S.;Park,B.K.(1973)."Roleofchemicalbondinginmetallicglasses".ActaMetall.21(4):395.doi:10.1016/0001-6160(73)90196-X. ^ Wang,R.;Merz,D.(1977)."Polymorphicbondingandthermalstabilityofelementalnoncrystallinesolids".PhysicaStatusSolidiA.39(2):697.Bibcode:1977PSSAR..39..697W.doi:10.1002/pssa.2210390240. Externallinks[edit] WikimediaCommonshasmediarelatedtoGlass-liquidtransitions. Fragility VFTEqn. PolymersI PolymersII Angell:Aqueousmedia DoITPoMSTeachingandLearningPackage-"TheGlassTransitioninPolymers" GlassTransitionTemperatureshortoverview vteGlasssciencetopicsBasics Glass Glasstransition Supercooling Formulation AgInSbTe Bioglass Borophosphosilicateglass Borosilicateglass Ceramicglaze Chalcogenideglass Cobaltglass Cranberryglass Crownglass Flintglass Fluorosilicateglass Fusedquartz GeSbTe Goldrubyglass Leadglass Milkglass Phosphosilicateglass Photochromiclensglass Silicateglass Soda–limeglass Sodiumhexametaphosphate Solubleglass Telluriteglass Thoriatedglass Ultralowexpansionglass Uraniumglass Vitreousenamel Wood'sglass ZBLAN Glass-ceramics Bioactiveglass CorningWare Glass-ceramic-to-metalseals Macor Zerodur Preparation Annealing Chemicalvapordeposition Glassbatchcalculation Glassforming Glassmelting Glassmodeling Ionimplantation Liquidustemperature sol–geltechnique Viscosity Vitrification Optics Achromat Dispersion Gradient-indexoptics Hydrogendarkening Opticalamplifier Opticalfiber Opticallensdesign Photochromiclens Photosensitiveglass Refraction Transparentmaterials Surfacemodification Anti-reflectivecoating Chemicallystrengthenedglass Corrosion Dealkalization DNAmicroarray Hydrogendarkening Insulatedglazing Porousglass Self-cleaningglass sol–geltechnique Temperedglass Diversetopics Conservationandrestorationofglassobjects Glass-coatedwire Safetyglass Glassdatabases Glasselectrode Glassfiberreinforcedconcrete Glassionomercement Glassmicrospheres Glass-reinforcedplastic Glasscloth Glass-to-metalseal Porousglass Pre-preg PrinceRupert'sdrops Radioactivewastevitrification Windshield Glassfiber Authoritycontrol:Nationallibraries Israel UnitedStates Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Glass_transition&oldid=1078616556" Categories:CondensedmatterphysicsCryobiologyGlassengineeringandscienceGlassphysicsPhasetransitionsPolymerchemistryRubberpropertiesThresholdtemperaturesHiddencategories:CS1errors:missingperiodicalWebarchivetemplatewaybacklinksArticleswithshortdescriptionShortdescriptionmatchesWikidataAllarticleswithvagueorambiguoustimeVagueorambiguoustimefromOctober2020WikipediaarticlesneedingclarificationfromJune2019WikipediaarticlesneedingclarificationfromJune2016ArticlesneedingadditionalreferencesfromJuly2009AllarticlesneedingadditionalreferencesAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromSeptember2010AllaccuracydisputesArticleswithdisputedstatementsfromJuly2019CommonscategorylinkisonWikidataArticleswithJ9UidentifiersArticleswithLCCNidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadEditViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages العربيةBân-lâm-gúΕλληνικάEspañolفارسیFrançais한국어हिन्दीעבריתമലയാളം日本語PortuguêsРусскийSimpleEnglishکوردیSuomiTürkçeTiếngViệt粵語中文 Editlinks



請為這篇文章評分?