The Dynamic Response of Intraocular Pressure and Ocular ...
文章推薦指數: 80 %
Our results suggest that eyes with ocular hypertension are more susceptible to IOP variability induced by hemodynamic fluctuations. Introduction. Intraocular ... JumpTo... Introduction MaterialsandMethods Results Discussion Conclusions Acknowledgments References Free Glaucoma | October2013 TheDynamicResponseofIntraocularPressureandOcularPulseAmplitudetoAcuteHemodynamicChangesinNormalandGlaucomatousEyes JonathanC.Li;VivekK.Gupta;YuyiYou;KeithW.Ng;StuartL.Graham AuthorAffiliations&Notes JonathanC.Li DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales,Australia VivekK.Gupta DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales,Australia YuyiYou DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales,Australia KeithW.Ng DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales,Australia StuartL.Graham DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales,AustraliaSaveSightInstitute,SydneyUniversity,Sydney,NewSouthWales,Australia Correspondence:JonathanC.Li,DepartmentofOphthalmology,AustralianSchoolofAdvancedMedicine,MacquarieUniversity,NorthRyde,NewSouthWales2109,Australia;[email protected]. InvestigativeOphthalmology&VisualScienceOctober2013,Vol.54,6960-6967.doi:https://doi.org/10.1167/iovs.13-12405 Views FullArticle Figures Tables PDF Share E-mail Facebook Twitter Google Digg Delicious Tumblr StumbleUpon Tools Alerts UserAlerts Youareaddinganalertfor: TheDynamicResponseofIntraocularPressureandOcularPulseAmplitudetoAcuteHemodynamicChangesinNormalandGlaucomatousEyes Youwillreceiveanemailwheneverthisarticleiscorrected,updated,orcitedintheliterature.YoucanmanagethisandallotheralertsinMyAccount Thealertwillbesentto: Confirm × Thisfeatureisavailabletoauthenticatedusersonly. SignIn or CreateanAccount × GetCitation Citation JonathanC.Li,VivekK.Gupta,YuyiYou,KeithW.Ng,StuartL.Graham;TheDynamicResponseofIntraocularPressureandOcularPulseAmplitudetoAcuteHemodynamicChangesinNormalandGlaucomatousEyes.Invest.Ophthalmol.Vis.Sci.2013;54(10):6960-6967.doi:https://doi.org/10.1167/iovs.13-12405. Downloadcitationfile: Ris(Zotero) EndNote BibTex Medlars ProCite RefWorks ReferenceManager ©ARVO(1962-2015);TheAuthors(2016-present) × GetPermissions Supplements AbstractPurpose.: Toevaluatetheeffectsofacutearterialbloodpressure(ABP)andvenouspressurechangesonIOPinratswithexperimentalglaucoma.Methods.: UnilateralexperimentalocularhypertensionwasestablishedinSprague-Dawleyratsbyweeklyintracameralinjectionofmicrobeads.Ocularpulseamplitude(OPA)andIOPwererecordedfromtheanteriorchamberusing1.2-Frmicrosensorsunderurethaneanesthesia.TheeffectsonIOPduringhemodynamicchallengesusingphenylephrine(PE)(50μg/kg/minintravenous[IV])andrapidsalineloading(20mL/kg/minIV)werestudied.Results.: Overan8-weekperiod,IOPwassignificantlyelevatedby60%intheunilateralocularhypertensiveeyes.BothABPandIOPweresignificantlyincreasedbyPEinfusion.AsignificantlygreaterIOPincreasewasfoundintheexperimentaleyescomparedwithcontroleyes(1.32±0.18mmHgvs.0.90±0.09mmHg).Correspondingly,higherOPAsandanamplificationoftheOPAduringarterialhypertensionwerefoundintheexperimentaleyes.AsustainedriseinIOPsecondarytoIVsalineloadingwasobserved,withagreaterriseobservedamongexperimentaleyes(0.74±0.13mmHgvs.0.37±0.005mmHg).Conclusions.: SympatheticaccelerationofABPusingPEresultedinsurgesinIOPandOPA.Incontrast,increasedvenouspressureresultedinamoresustainedriseinIOPbuttoalesserextent.Theseresponsesweremorepronouncedineyeswithexperimentalglaucomacomparedwithcontroleyes,whichmayreflectthehigherstartingIOPcontributingtoareducedocularcompliance.OurresultssuggestthateyeswithocularhypertensionaremoresusceptibletoIOPvariabilityinducedbyhemodynamicfluctuations. Introduction Intraocularpressureisawell-knownriskfactorinthedevelopmentofglaucomatousopticneuropathy(GON),characterizedbytheirreversiblelossofretinalganglioncellswiththenaturalhistoryofprogressivevisualfieldloss. ThemechanismbywhichraisedIOPresultsinGONisunclear,butalinearcorrelationbetweenarterialbloodpressureandIOPhavebeenwellestablishedbothbycross-sectionalpopulationstudies1–4andbyanimalmodels.1–6Ithasbeenestimatedinhumansthatforapproximatelyevery10mmHgriseinsystolicbloodpressure,thereisanassociated0.2to0.3mmHgriseinIOP.7Real-timeanalyseshavealsorevealedthatIOPcanriseandfallinsynchronywithacutehemodynamicchangesthatoccurduringphysicalexerciseaswellasduringpharmacologicstimulationbyvasoactiveagents.8,9 DespitethegrowingspeculationofavascularbasisofPOAG,10,11therelationshipbetweenPOAGandhypertensionisnotwelldefined,withepidemiologicstudiesshowingdisparateresultswithanoverallsuggestionofaweakassociationbetweenhypertensionandPOAG.1,12,13Usingarodentmodel,weaimedtoevaluatethedynamicrelationshipbetweenIOPandacutehemodynamicfluctuationsandtoshowhowtheirrelationshipisalteredinthecontextofreducedfacilityofaqueousoutflow. MaterialsandMethods Animals AllanimalproceduresconformedtotheARVOStatementfortheUseofAnimalsinOphthalmicandVisionResearchandwereapprovedbytheMacquarieUniversityAnimalEthicsCommittee.MaleSprague-Dawleyratsof8weeksold(220–250g)weresourcedfromtheAnimalResourceCenter,Perth,Australia.Theanimalswerehousedinanenvironmentallycontrolledroomat25°Cand12-hourlight/12-hourdarkcyclewithadlibitumaccesstofoodandwater.Animalswerequarantinedandkeptuntiltheageof16weekspriortothecommencementoftheexperimentsandwerelaterkilledattheageof24weeksuponcompletion. MicrobeadInjectionandGlaucomaInduction Thetechniqueofintracameralinjectionofmicrobeadstoinduceocularhypertensionandglaucomahasbeenadaptedfrompreviousreports.14–17Polystyrenemicrospheresof10μminsizewereused,withaconcentrationof3.6×106beads/mL(FluoSpheres;Invitrogen,Carlsbad,CA).Theywereinjectedusinga25-μLHamiltonsyringeconnectedtoadisposable33-gaugeneedle(TSKLaboratory,Tochigi,Japan).Allintracameralprocedureswereperformedundermagnificationusinganoperatingmicroscope(OPMIVarioS88,CarlZeiss,Oberkochen,Germany)withcaretakentoavoidneedlecontactwiththeirisorlens. Tosimulateamodelofchronicocularhypertensionandglaucoma,theinjectionswereperformedweeklyover8weeks.Injectionswereperformedunderanesthesiafromanintraperitonealmixtureofketamine(75mg/kg)andmedetomidine(0.5mg/kg).Animalswereplacedonaheatingpadduringtheprocedure,andbothpupilsweredilatedwithtopicaltropicamide1%andanesthetizedwithproparacaine0.5%drops.Duringanesthesiaandpriortoeachweeklyinjection,IOPwasmeasuredbyusingahandheldelectronictonometer(IcareTonovet,Helsinki,Finland).TheIOPdisplayedonthetonometerwasthemeanofsixconsecutivemeasurements.TheaverageofthreeconsecutiveIOPreadingswasrecorded.Therighteyewasusedastheexperimentaleye,andthelefteyeservedasapairedcontrol.Theneedlewasinsertedbeveldown,tangentiallybeneaththecornealsurface,tofacilitateself-sealingofthepuncturewound.Oncetheneedletipwasvisualizedwithintheanteriorchamber,5μLmicrobeadsolutionwasinjected.Attheendoftheprocedure,anesthesiawasreversedusingatipamazole(0.75mg/kgsubcutaneousinjection[SCI]),and0.3%ciprofloxacindrops(Ciloxan;AlconLaboratories,FrenchsForest,NSW,Australia)and0.1%dexamethasoneeyedrops(Maxidex,AlconLaboratories)wereinstilledinbotheyes.Anointment(Lacri-lube;Allergan,Gordon,NSW,Australia)wasalsoappliedtoprotectagainstcornealdryinguntiltheanimalrecovered. SimultaneousArterialandIntraocularPressureRecording Followingthe8weeks,ratswereanesthetizedwithanintraperitonealinjectionof10%urethane(1.3g/kg)forinvasiveABPandIOPrecording.Depthofaesthesiawasassessedbyperiodicalassessmentofwithdrawalandcornealreflexes.Animalswereventilatedspontaneouslywithouttheuseofparalyzingagents.Bodytemperaturewasmonitoredusingarectaltemperatureprobeandmaintainedat37°Cusingaheatingpad. Solidstatemicrosensorcatheters(Scisense,London,ON,Canada)withapressureresolutionof10μV/V/mmHgwereusedtorecordtheABPandIOP.Priortoeachuse,thecatheterswerecleanedandthenstabilizedbyimmersioninsalineandcalibratedusingelectroniccalibrationaspermanufacturer'srecommendations.ContinuousABPrecordingwasmeasuredusinga1.9-Frcatheterinsertedintothefemoralartery.Intravenousaccesswasviathefemoralveinusingpolyethylenetubing(PE-50). Aftertheinitialsurgicalpreparation,animalswereimmobilizedinthesphinxpositionwiththeheadsecuredinarodentstereotaxicframe.The1.2-Frcatheterswereinsertedintotheanteriorchambersofbotheyes.Dilationandanestheticdropswereappliedtobotheyespriortosensorinsertion.Asmallself-sealingincisionthroughthecorneawasmadebyastabincisionsuperiorlyandlateraltothelimbusatthe12o'clockpositionusinganophthalmicblade(AlconA-Ok15°AngleBlade;AlconLaboratories).Thecathetertipwasmanuallyadvancedthroughthecorneaandpositionedtositfreelyintheanteriorchamber(Fig.1).Eyelubricantwasappliedaftercatheterinsertiontopreventdryingofthecornea. Figure1ViewOriginalDownloadSlide Positioningofintracameralmicrosensorcatheterinanteriorchamber.Thesensorappears“bent”owingtoopticalrefraction.Figure1 Positioningofintracameralmicrosensorcatheterinanteriorchamber.Thesensorappears“bent”owingtoopticalrefraction.ViewOriginalDownloadSlide HemodynamicManipulation Hemodynamicmanipulationswereperformedoncestabilityoftherecordingparametersheartrate(HR),ABP,andIOPwereconfirmed.SimulationsofanacuteABPrisewereachievedusingIVinfusionofphenylephrine(PE)50μg/kg/min(Sigma-Aldrich,St.Louis,MO)deliveredover2minutes.Simulationsofacutecentralvenouspressureexpansionwereperformedbytheinfusionofisotonicsaline(20mL/kg)over1minute.Infusionsweredeliveredusinganinfusionpump(HarvardPump11Plus;HarvardApparatus,Holliston,MA). DataAcquisitionandStatisticalAnalysis DatarecordedfromtheintracameralsensorswereanalyzedforchangesinIOPfrombaseline.TheabsolutevalueofIOPwasnotusedforanalysisbecauseoftheknownvariablenegativeoffsetofseveralmillimetersofmercurythatoccursuponimmersionandre-immersionofthemicrosensorcatheters.18Outputfromthecatheterswassampledat2kHzandrecordedusingadataacquisitionsystem(Power1401-2interfacewithSpike2Softwareversion6;CambridgeElectronicDesign,Cambridge,UK).Datawereanalyzedin5-secondbins.Ocularpulseamplitude(OPA)wascalculatedusingautomaticdetectionofthewaveformpeaksandtroughbythesoftware.ThemeanOPAduringbaselineandduringraisedIOPwasaveragedover20seconds.Statisticalanalysiswasperformedusingcommerciallyavailablestatisticalsoftware(Prism6;GraphPadSoftware,LaJolla,CA).Student'st-testandone-wayANOVAwereusedforcomparisonofmeans.DifferenceswithP<0.05wereconsideredstatisticallysignificant. Results Atotalof30ratswereusedinthisstudy.Theweeklyinjectionswerewelltolerated,withanimalsgainingweightduringthestudyperiod.Afterthe8-weektimepoint,theratsweighed500to550g.Oneratdevelopedcataractandanotherdevelopedcornealneovascularizationintheexperimentaleyeandwereexcludedfromthestudy.Theremaining28ratsweredividedevenlybetweenPEandsalineinfusiongroups. MicrobeadInjectionandIOP AsustainedincreaseinIOPcanbeachievedusingrepeatedmicrobeadinjections(Fig.2A).AsingleintracameralinjectionwassufficienttoinduceasustainedincreaseinIOPasshownbythehigherIOPamongstexperimentaleyescomparedwithcontroleyesafterweekone(12.5±0.53mmHgforexperimentaleyecomparedwith10.2±0.2mmHgforcontrol;mean±SEM,P<0.001,n=28).Withsubsequentweeklyinjections,ocularhypertensionwasmaintainedamongtheexperimentaleyeswithamaximalincreaseof1.52-foldoverthe8-weekperiod(16.0±0.75mmHgforexperimentaleyecomparedwith10.56±0.24mmHgforcontrol;mean±SEM,P<0.001,n=28).NosignificantchangeinIOPwasobservedinthecontroleyes. Figure2ViewOriginalDownloadSlide (A)WeeklyIOPreadingsmeasuredfromexperimentaleyesandcontralateralcontroleyes.MeasurementswereobtainedusingIcaretonometerduringketamineandmedetomidineanesthesiaimmediatelybeforetheintracameralinjectionofmicrobeads.Valuesaremean±SEM;n=28;unpairedt-test;*P<0.005.(B)SimultaneousincreaseinABP(red)andIOP(blue)duringPEinfusioninasinglerat.Toprecordinginblackrepresentsheartratederivedfromthepressurewaveformfrequency,illustratingtheresponseofthebaroreceptorreflex.(C)SimultaneousrecordingoftheABPandIOPpressurewaveformsindicatingareal-timesynchronousrelationshipbetweenABPandIOP.Figure2 (A)WeeklyIOPreadingsmeasuredfromexperimentaleyesandcontralateralcontroleyes.MeasurementswereobtainedusingIcaretonometerduringketamineandmedetomidineanesthesiaimmediatelybeforetheintracameralinjectionofmicrobeads.Valuesaremean±SEM;n=28;unpairedt-test;*P<0.005.(B)SimultaneousincreaseinABP(red)andIOP(blue)duringPEinfusioninasinglerat.Toprecordinginblackrepresentsheartratederivedfromthepressurewaveformfrequency,illustratingtheresponseofthebaroreceptorreflex.(C)SimultaneousrecordingoftheABPandIOPpressurewaveformsindicatingareal-timesynchronousrelationshipbetweenABPandIOP.ViewOriginalDownloadSlide OcularHypertensionDuringSurgesinABP ThesimultaneoussamplingofABPandIOPallowedthetracingofIOPfluctuationsinresponsetochangesinABP(Fig.2B).Thehighfrequencysamplingalsoallowedpressurerecordingtotheresolutionoftheirpulsewaveforms(Fig.2C). PriortohemodynamicmanipulationwithPE,thebaselinemeanarterialpressure(MAP)was94.1±2.3mmHg(mean±SEM).PhenylephrineinfusionresultedinatransientbutstatisticallysignificantriseinMAPthatpeakedatthecompletionofinfusion(157.1±5.5mmHg,mean±SEM,P<0.0001).Meanarterialpressurerevertedtobaselinelevel2minutesfollowingthePEinfusion(95.1±2.3mmHg,mean±SEM,P=0.92). Similarly,theIOProseandfellinsynchronywithABP,inboththeexperimentalandcontroleyesduringthePEinfusion(Fig.3).AplotofthemeanchangeinIOPwiththemeanchangesinMAPshowedthatalinearrelationshipwaspresentbetweenIOPandABPduringboththeupwardanddownwardmovementofABPinboththeexperimentalglaucomaandcontroleyes.(Figs.4A,4B). Figure3ViewOriginalDownloadSlide PressorresponseofmeanMAP(A)andthechangeinIOPinexperimentalandcontroleyesduringPEinfusion(B).Arrowsrepresentthestartandfinishofinfusion.Valuesaremean±SEM;n=14;student'st-test;*P<0.05.Figure3 PressorresponseofmeanMAP(A)andthechangeinIOPinexperimentalandcontroleyesduringPEinfusion(B).Arrowsrepresentthestartandfinishofinfusion.Valuesaremean±SEM;n=14;student'st-test;*P<0.05.ViewOriginalDownloadSlide Figure4ViewOriginalDownloadSlide PlotofthechangeinIOPversusthechangeinmeanarterialpressureduringthePEinfusion.(A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively.Valuesaremean±SEM;n=14.Figure4 PlotofthechangeinIOPversusthechangeinmeanarterialpressureduringthePEinfusion.(A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively.Valuesaremean±SEM;n=14.ViewOriginalDownloadSlide OcularHypertensiveResponseinEyesWithExperimentalGlaucoma Inexperimentaleyes,theamplificationofIOPduringtheacutehypertensionwasgreaterthantheriserecordedinthecontroleyes(Fig.3B).ThemaximalgaininIOPobservedinexperimentaleyeswasapproximately1.5timesthemaximalIOPincontroleyes(1.32±0.18mmHg,comparedwith0.90±0.09mmHg;mean±SEM;P=0.04;n=14).ComparingtheslopeofthechangeinIOPversusthechangeinABPalsoshowedthattherateofchangeinIOPtoABPwasgreaterintheexperimentaleyes(comparingFig.4Awith4B). OcularPulseAmplitude TheocularpulseamplitudeisthedifferenceinIOPduringcardiacsystoleanddiastole.OcularpulseamplitudewasexaminedusingdatarecordedfromfiveratsbeforeandduringPEinfusionwithdataexpressedasmean±SD.Intheanesthetizedrat,thebaselineIOPoscillatedatapproximately0.1mmHgwitheachcardiaccycle(Fig.2C).ThebaselineOPAwasgreaterinexperimentaleyes,withadifferencethatwasstatisticallysignificant(0.137±0.008mmHginexperimentaleyesversus0.085±0.005mmHginthecontroleye;one-wayANOVA;P≤0.0001;n=5).UponacuteABPstimulationwithintravenousPE,therewasasubstantialgaininOPAamongsttheexperimentaleyeswithover50percentincreasefrombaselineOPA(OPAofexperimentaleyes=0.21±0.02mmduringABPsurge)(Fig.6).ThetransientsystemichypertensioninducedbyPEhadnosignificanteffectontheOPAamongstthecontroleyes(Fig.6). IOPResponseDuringIVSalineChallenge Inboththeexperimentalandcontroleyes,despitethesubstantialfluidloading,theIOPrespondedwithasmallbutstatisticallysignificantriseandplateauingfrombaselineforboththeexperimentalandcontroleyes(0.366±0.005mmHg,P≤0.001forcontroleyes;0.742±0.130mmHg,forexperimentaleyes,mean±SEM,n=14,unpairedt-test,P≤0.001).Pairedt-testanalysisbetweenthetwosamplesyieldedasignificantdifferenceinIOPbetweentheexperimentalandcontroleyesduringthepostinfusionperiod(P<0.0001)(Fig.7B).ThesalineinfusionalsoyieldedapersistentelevationinABPduringthe5-minutepostinfusionperiod(Fig.7A).AplotofthemeanIOPandmeanMAPduringtherapidsalinechallengeshowedthatinboththecontrolandexperimentaleyes,therateofIOPincreasewasinitiallyproportionallyslowerthantherateoftheincreaseinABP(Figs.5A,5B). Figure5ViewOriginalDownloadSlide (A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively,duringsalineinfusion.NotethegreaterIOPresponseperunitchangeinMAPduringthesalineinfusion.Valuesaremean±SEM;n=14.Figure5 (A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively,duringsalineinfusion.NotethegreaterIOPresponseperunitchangeinMAPduringthesalineinfusion.Valuesaremean±SEM;n=14.ViewOriginalDownloadSlide Figure6ViewOriginalDownloadSlide ComparisonofthemeanOPAbetweencontrolandexperimentaleyesduringacutesystemichypertensiveresponsetoIVPE.Mean±SD;one-wayANOVA;Tukey'stest;****P≤0.0001;NS(notsignificant)P>0.05.Figure6 ComparisonofthemeanOPAbetweencontrolandexperimentaleyesduringacutesystemichypertensiveresponsetoIVPE.Mean±SD;one-wayANOVA;Tukey'stest;****P≤0.0001;NS(notsignificant)P>0.05.ViewOriginalDownloadSlide Figure7ViewOriginalDownloadSlide Arterialbloodpressure(A)andIOP(B)recordingsfrombaselineto5minutesduringandfollowingtherapidsalineinfusion.Arrowsrepresentstartandfinishoftheinfusiondeliveredover1minute.Valuesaremean±SEM;n=14;pairedt-test;*P<0.0001.Figure7 Arterialbloodpressure(A)andIOP(B)recordingsfrombaselineto5minutesduringandfollowingtherapidsalineinfusion.Arrowsrepresentstartandfinishoftheinfusiondeliveredover1minute.Valuesaremean±SEM;n=14;pairedt-test;*P<0.0001.ViewOriginalDownloadSlide Discussion Ourpresentstudyreportsthreeimportantfindings: Intheoutflowobstructionmodelofglaucoma,thereisanamplificationoftheIOPduringacuteelevationsinbloodpressure(Fig.3); Duringacuteincreasesinbloodpressure,thereisanassociatedincreaseintheOPAintheeyeswithexperimentalglaucoma(Fig.6);and IntravenousvolumeloadingresultsinamildbutsustainedIOPelevationineyes,withagreaterresponseineyeswithexperimentalglaucoma(Fig.7). Ourstudyconfirmedthepreviouslyreportedreal-timelinearrelationshipbetweenIOPandABP8,9,19(Figs.2B,2C).Ofinterest,theplotofABPversusIOPduringthePEinfusionshowedahysteresisrelationshipbetweenABPandIOPasshownbythedifferenceintherateofchangeinIOPduringtheriseofABPcomparedwiththefallinABP(Fig.4).ThelimitedoutflowfacilityoftheexperimentalocularhypertensioneyesmayhavepreventedacompensatoryincreaseinoutflowfiltrationinresponsetotheIOPelevationthusresultinginagreaterchangeinIOPperunitchangeinABP.However,thismechanismdoesnotexplainthemarkedincreaseinthebaselineOPAobservedamongeyeswithexperimentalocularhypertension(Fig.6).Althoughthemechanismisbeyondthescopeofthisstudy,wehypothesizethatthehigherOPAmayberelatedtothehigherbaselineIOPintheexperimentaleyes.Higherbaselinepressureswouldtendtodecreasethecompliancepropertyoftheeyeowingtoincreasedscleralwalltension,whichinturntranslatestoagreaterriseinIOPduringtheexpansionofchoroidbloodflowresultinginanincreaseinboththemagnitudeofIOPaswellasOPA. ThegreaterOPAineyeswithexperimentalocularhypertensionobservedduringbaselineaswellasduringthebloodpressure–inducedriseofIOPsuggeststhereisbothastaticanddynamiccomponentofreducedocularcomplianceineyeswithocularhypertension.OurresultofelevatedOPAintheexperimentaleyeswithocularhypertensionagreeswiththefindingsfromstudiesthathaveshownthatadirectrelationshipexistsbetweenOPAandIOP.20,21StudieshavealsoreportedpatientswithglaucomatohaveanormalorreducedOPAandthatthehighestOPAsarefoundinpatientswithocularhypertension.20–22Ofinterest,ithasalsobeenreportedthatarelativelyhigherOPAwascorrelatedtopatientswithlessseveredisease.23 OurstudyalsofoundthattheOPAmagnitudeofthecontroleyeswasunaffectedbythetransientelevationinbloodpressure,suggestingthattheabilityforABPtoincreaseOPAmaybedependentonthepresenceofelevatedIOPorreducedaqueoushumoroutflow. Thereal-timemirroredfluctuationsofIOPwithchangestoABPmaybeexplainedbytheocularpressure–volumerelationshipmodel.24Givenexternalenergyisrequiredtofurtherpressurizetheocularcompartment,thetransmissionofpulsatileenergyfromthearterialsystemintotheintraocularspaceislikelyowingtothesuddenriseinocularbloodflowthatoccursduringsystoleorduringanacutehypertensivechallenge.Pulsatileenergyispredominatelytransmittedbythechoroidgivenitrepresentsthemajorityoftheophthalmicbloodflow.25ItislikelythattheobservedsynchronousriseinIOPresultsfromanexpansionofchoroidalvolumebroughtonbytheincreaseinocularbloodflow.26TheexpansionofthechoroidagainsttherigidsclerawouldthereforeexplainthetransientriseinIOP,withtheamountofIOPincreasedeterminedbyboththemagnitudeofABPriseaswellthecompliancepropertyofthesclera. Inratsthatreceivedtherapidsalineinfusionprotocol,themagnitudeofIOPincreasewasnotuptothesameextentasobservedduringPEinfusion.ThepatternofelevationfollowingthesalineinfusiondifferedbyelicitingasustainedformofIOPelevationthatpersistedfollowingthesalineinfusion(Fig.7B).Sincechangesincentralvenouspressuretendtoaffectcardiacpreloadandcardiacoutputinvivo,itispossiblethatanincreaseinbloodpressureduringtherapidsalineinfusioncontributedtotheriseinIOP(Fig.7A).However,theABP–IOPrelationshipobtainedduringthesalineinfusion(Fig.5)differedfromtherelationshipobservedforthePEinfusion(Fig.4).DespitetheoverallsmallermaximalIOPresponseobservedduringthesalineinfusion,therewasagreaterIOPelevationperunitMAPelevationduringthesalineinfusioncomparedwiththePEinfusion.Thisfindingsuggeststhatothermechanisms,apartfromtheinducedchangeinbloodpressure,maybecontributingtotheIOPriseduringthesalineinfusion. AsustainedincreaseinIOPandOPAhasalsobeenlinkedtotheexpansionofthechoroidinglaucomapatientsundergoingthewater-drinkingtest.27Duringthewater-drinkingtestinhumans,IOPtypicallypeaksby2.5mmHginthenormaleye28andapproximately4mmHg29forglaucomatouseyes30minutesaftertheingestionofwater.Themechanismbehindtheocularresponsetothewater-drinkingtestremainsunclear.30Oursaline-infusiontestisnotequivalenttothewater-drinking,butourfindingssuggestthathemodynamicchangesfromtheexpansionofcentralvenouspressurecancontributepartlytotheIOPriseduringthewater-drinkingtestinglaucoma. TheeffectivenessofintracameralinjectionofmicrobeadstoinduceocularhypertensionwithsubsequentGONhasbeenvalidatedbypreviousstudies.14,15,31Weacknowledgethatmechanicalobstructionwithmicrobeadsisnotdirectlyrepresentativeoftheaqueousoutflowobstructionseeninhumanglaucoma;however,itprovidesacharacterizationofrestrictedfiltrationthatdoesnotinvolvedestructionoftissueasseeninotherlaserorcauterymodels.32,33 Alimitationofourstudyisthepotentialforpressuremeasurementstobeconfoundedbygeneralanesthesia.TheweeklyIOPreadingswereobtainedwhilstanimalswereundertheeffectofketamineanesthesia.Ithasbeenreportedthatketamine-basedanesthesiacanreduceIOPby25%to40%inrats(ChenB,etal.IOVS2002;43:ARVOE-Abstract4074),suggestingthatouranimalsmayhavehadhigherIOPduringtheirunanaesthetizedstate.Allourinvasivepressuremeasurementswereobtainedfromouranimalsusingastandardizeddosageofurethaneanesthesia.UrethanedeliveredbyintraperitonealinjectionhasnotbeenshowntoaffecttheIOPofrats(ChenB,etal.IOVS2002;43:ARVOE-Abstract4074).However,urethaneanesthesiahasbeenshowntoreducetherestingcardiovascularparametersofMAPandheartrate;stillthisisunlikelytoconfoundourresultssinceboththevasopressorresponsetoPEandthebradycardicresponsefromthebaroreceptorreflexarepreservedduringurethaneanesthesia.34,35 Thesteady-stateaqueoushumordynamicsdescribedbytheGoldmannequationassociatesIOPwiththedifferencebetweenaqueoushumorformationandaqueousoutflow.36Inrodents,thenormalaqueousformationrate,alsoknownasturnoverrate,hasbeenestimatedtobe2%to3%oftotalaqueousvolumeperminute.37,38ArapidformationofaqueoushumorduringtransientincreasesinABPwouldthereforebeunlikelytocontributetothesimultaneousriseinIOPgiventherateofaqueousproductionislimitedbymetabolicdependentprocesseswithciliaryperfusionpressurebeingunaffectedbyhypertension.39–41 Last,althoughwedidnotspecificallyinvestigatethedirectpharmacologicinfluenceofPEonIOP,webelievetheIOPriseobservedduringtheintravenousPEinfusionisaresultofarterialhypertension.ThepharmacologicactionofPEismediatedbyα-adrenoreceptorsandtheiractivationwilltendtolowerIOPthroughthereductionofaqueoushumorproductionbyitsactionontheciliarybody42andalsothroughitsvasoconstrictiveactionontheophthalmicarteriesowingtotheartery'srichsympatheticinnervation.43,44Thenonselectiveactivationofα2selectiveadrenergicreceptorbyPEmayalsohavetheeffectofloweringIOP,similartotheactionoftheselectiveα2adrenergicagonistssuchasapraclonidinebydecreasingaqueousproduction.45,46Ineffect,thestimulationofarterialhypertensionbyPEinourstudyisanalogoustothesympathoadrenalactivationofarterialhypertensionobservedduringthestressresponse47aswellasduringisometricexercises.48 Conclusions OurstudyshowedthatthereisanamplificationoftheIOPthataccompaniesasympathomimeticaccelerationofABP.Usingarodentmodel,wehaveshownforthefirsttimethattheIOPandOPAresponsetoacutesystemicblood-pressuresurgesisheightenedinthecontextofocularhypertension.AlessprominentbutprolongedincreaseinIOPwasachievedinourattempttorapidlyaltervenouspressurebyrapidsalineinfusion.Furtherstudiesarerequiredtovalidatethedynamicreal-timerelationshipbetweenhemodynamicfluxesandIOPinhumansasourresultssuggestthatindividualswithocularhypertensionareatagreaterriskofhavingocularpressuresthataremoresusceptibletobloodpressurevariations,whichoveralongperiodmaybeofclinicalsignificance. Acknowledgments SupportedbyOphthalmicResearchInstituteofAustralia(ORIA),AllerganAustralia,andNovartisAustralia. Disclosure:J.C.Li,None;V.K.Gupta,None;Y.You,None;K.W.Ng,None;S.L.Graham,None References 1. Leske MC Wu SY Nemesure B Hennis A. Incidentopen-angleglaucomaandbloodpressure. ArchOphthalmol . 2002; 120: 954–959. [CrossRef][PubMed]2. Hennis A Wu SY Nemesure B Leske MC. Hypertension,diabetes,andlongitudinalchangesinintraocularpressure. Ophthalmology . 2003; 110: 908–914. [CrossRef][PubMed]3. Xu L Wang H Wang Y Jonas JB. Intraocularpressurecorrelatedwitharterialbloodpressure:theBeijingeyestudy. AmJOphthalmol . 2007; 144: 461–462. [CrossRef][PubMed]4. Tomoyose E Higa A Sakai H Intraocularpressureandrelatedsystemicandocularbiometricfactorsinapopulation-basedstudyinJapan:theKumejimastudy. AmJOphthalmol . 2010; 150: 279–286. [CrossRef][PubMed]5. Vaajanen A Mervaala E Oksala O Vapaatalo H. Istherearelationshipbetweenbloodpressureandintraocularpressure?Anexperimentalstudyinhypertensiverats. CurrEyeRes . 2008; 33: 325–332. [CrossRef][PubMed]6. Castejon H Chiquet C Savy O Effectofacuteincreaseinbloodpressureonintraocularpressureinpigsandhumans. InvestOphthalmolVisSci . 2010; 51: 1599–1605. [CrossRef][PubMed]7. Leske MC. Ocularperfusionpressureandglaucoma:clinicaltrialandepidemiologicfindings. CurrOpinOphthalmol . 2009; 20: 73–78. [CrossRef][PubMed]8. Funk R Rohen JW Skolasinska K. Intraocularpressureandsystemicbloodpressureafteradministrationofvasoactivesubstancesinhypertensiveandnormalrats. GraefesArchClinExpOphthalmol . 1985; 223: 145–149. [CrossRef][PubMed]9. Gherezghiher T Hey JA Koss MC. Systemicbloodpressureandintraocularpressurerelationship. JOculPharmacol . 1988; 4: 291–301. [CrossRef][PubMed]10. Flammer J Haefliger IO Orgül S Resink T. Vasculardysregulation:aprincipalriskfactorforglaucomatousdamage? JGlaucoma . 1999; 8: 212–219. [CrossRef][PubMed]11. Wong T Mitchell P. Theeyeinhypertension. Lancet . 2007; 369: 425–435. [CrossRef][PubMed]12. Klein BEK Klein R Knudtson MD. Intraocularpressureandsystemicbloodpressure:longitudinalperspective:theBeaverDamEyeStudy. BrJOphthalmol . 2005; 89: 284–287. [CrossRef][PubMed]13. Topouzis F Coleman AL Harris A Associationofbloodpressurestatuswiththeopticdiskstructureinnon-glaucomasubjects:theThessalonikieyestudy. AmJOphthalmol . 2006; 142: 60–67. [CrossRef][PubMed]14. Sappington RM Carlson BJ Crish SD Calkins DJ. Themicrobeadocclusionmodel:aparadigmforinducedocularhypertensioninratsandmice. InvestOphthalmolVisSci . 2010; 51: 207–216. [CrossRef][PubMed]15. Chen H Wei X Cho K-S Opticneuropathyduetomicrobead-inducedelevatedintraocularpressureinthemouse. InvestOphthalmolVisSci . 2011; 52: 36–44. [CrossRef][PubMed]16. Yang Q Cho K-S Chen H Microbead-inducedocularhypertensivemousemodelforscreeningandtestingofaqueousproductionsuppressantsforglaucoma. InvestOphthalmolVisSci . 2012; 53: 3733–3741. [CrossRef][PubMed]17. Gupta VK You Y Klistorner A Graham SL. Shp-2regulatestheTrkBreceptoractivityintheretinalganglioncellsunderglaucomatousstress. BiochimBiophysActa . 2012; 1822: 1643–1649. [CrossRef][PubMed]18. Hartley CJ Reddy AK Taffet GE. In-vitroevaluationofsensorsandamplifierstomeasureleftventricularpressureinmice. ConfProcIEEEEngMedBiolSoc . 2008; 2008: 965–968. [PubMed]19. Kiel JWJ. Choroidalmyogenicautoregulationandintraocularpressure. ExpEyeRes . 1994; 58: 529–543. [CrossRef][PubMed]20. Punjabi OS Ho H-KV Kniestedt C Bostrom AG Stamper RL Lin SC. Intraocularpressureandocularpulseamplitudecomparisonsindifferenttypesofglaucomausingdynamiccontourtonometry. CurrEyeRes . 2006; 31: 851–862. [CrossRef][PubMed]21. Schwenn OO Troost RR Vogel AA Grus FF Beck SS Pfeiffer NN. Ocularpulseamplitudeinpatientswithopenangleglaucoma,normaltensionglaucoma,andocularhypertension. BrJOphthalmol . 2002; 86: 981–984. [CrossRef][PubMed]22. Robert YCAY Wild AA Kessels AGA Backes WHW Zollinger AA Bachmann LML. Discriminationofhealthyandglaucomatouseyesbasedontheocularpulseamplitude:adiagnosticcase-controlstudy. OphthalmicRes . 2011; 48: 1–5. [CrossRef][PubMed]23. Weizer JS Asrani S Stinnett SS Herndon LW. Theclinicalutilityofdynamiccontourtonometryandocularpulseamplitude. JGlaucoma . 2007; 16: 700–703. [CrossRef][PubMed]24. Kiel JW. Theeffectofarterialpressureontheocularpressure-volumerelationshipintherabbit. ExpEyeRes . 1995; 60: 267–278. [CrossRef][PubMed]25. Anand-Apte B Hollyfield JG. Developmentalanatomyoftheretinalandchoroidalvasculature. In:BesharseJC,BokD,eds.TheRetinaandItsDisorders.SanDiego,CA:Elsevier;2011:179. 26. Johnstone M Martin E Jamil A. Pulsatileflowintotheaqueousveins:manifestationsinnormalandglaucomatouseyes. ExpEyeRes . 2011; 92: 318–327. [CrossRef][PubMed]27. VasconcelosDeMoraes CG CastroReisAS,deSáCavalcanteAF,SanoME,SusannaRJr.Choroidalexpansionduringthewaterdrinkingtest. GraefesArchClinExpOphthalmol . 2009; 247: 385–389. [CrossRef][PubMed]28. Armaly MF. Water-drinkingtest.I.Characteristicsoftheocularpressureresponseandtheeffectofage. ArchOphthalmol . 1970; 83: 169–175. [CrossRef][PubMed]29. Kerr NM Danesh-Meyer HV. Understandingthemechanismofthewaterdrinkingtest:theroleoffluidchallengevolumeinpatientswithmedicallycontrolledprimaryopenangleglaucoma. ClinExperimentOphthalmol . 2010; 38: 4–9. [CrossRef][PubMed]30. Danesh-Meyer HV. Thewater-drinkingtest:theeleganceofsimplicity. ClinExperimentOphthalmol . 2008; 36: 301–303. [CrossRef][PubMed]31. Zhu Y Zhang L Schmidt JF Gidday JM. Glaucoma-induceddegenerationofretinalganglioncellspreventedbyhypoxicpreconditioning:amodelofglaucomatolerance. MolMed . 2012; 18: 697–706. [CrossRef][PubMed]32. Grozdanic SD Betts DM Sakaguchi DS Allbaugh RA Kwon YH Kardon RH. Laser-inducedmousemodelofchronicocularhypertension. InvestOphthalmolVisSci . 2003; 44: 4337–4346. [CrossRef][PubMed]33. Shareef SR Garcia-Valenzuela E Salierno A Walsh J Sharma SC. Chronicocularhypertensionfollowingepiscleralvenousocclusioninrats. ExpEyeRes . 1995; 61: 379–382. [CrossRef][PubMed]34. Maggi CA Meli A. Suitabilityofurethaneanesthesiaforphysiopharmacologicalinvestigationsinvarioussystems.Part2:cardiovascularsystem. Experientia . 1986; 42: 292–297. [CrossRef][PubMed]35. Zorniak M Mitrega K Bialka S Porc M Krzeminski TF. Comparisonofthiopental,urethane,andpentobarbitalinthestudyofexperimentalcardiologyinratsinvivo. JCardiovascPharmacol . 2010; 56: 38–44. [CrossRef][PubMed]36. Brubaker RF. Goldmann'sequationandclinicalmeasuresofaqueousdynamics. ExpEyeRes . 2004; 78: 633–637. [CrossRef][PubMed]37. Mermoud A Baerveldt G Minckler DS Prata JA Rao NA. Aqueoushumordynamicsinrats. GraefesArchClinExpOphthalmol . 1996; 234 (suppl1): S198–S203. [CrossRef][PubMed]38. Aihara M Lindsey JD Weinreb RN. Aqueoushumordynamicsinmice. InvestOphthalmolVisSci . 2003; 44: 5168–5173. [CrossRef][PubMed]39. Bill A. Theroleofciliarybloodflowandultrafiltrationinaqueoushumorformation. ExpEyeRes . 1973; 16: 287–298. [CrossRef][PubMed]40. Kiel JW Hollingsworth M Rao R Chen M Reitsamer HA. Ciliarybloodflowandaqueoushumorproduction. ProgRetinEyeRes . 2011; 30: 1–17. [CrossRef][PubMed]41. Reitsamer HA. Relationshipbetweenciliarybloodflowandaqueousproductioninrabbits. InvestOphthalmolVisSci . 2003; 44: 3967–3971. [CrossRef][PubMed]42. Arthur S Cantor LB. Updateontheroleofalpha-agonistsinglaucomamanagement. ExpEyeRes . 2011; 93: 271–283. [CrossRef][PubMed]43. Delgado E MarquesNevesC,RochaI,SalesLuísJ,SilvaCarvalhoL.Intrinsicvasomotricityandadrenergiceffectsinamodelofisolatedrabbiteye. ActaOphthalmol . 2009; 87 : 443–449. [CrossRef][PubMed]44. Gericke A Kordasz ML Steege A Functionalroleofα1-adrenoceptorsubtypesinmurineophthalmicarteries. InvestOphthalmolVisSci . 2011; 52: 4795–4799. [CrossRef][PubMed]45. Toris CB Tafoya ME Camras CB Yablonski ME. Effectsofapraclonidineonaqueoushumordynamicsinhumaneyes. Ophthalmology . 1995; 102: 456–461. [CrossRef][PubMed]46. Scuderi G Romano M Perdicchi A Cascone N Lograno M. Apraclonidinehydrochloride:pharmacologyandclinicaluse. ExpertRevOphthalmol . 2008; 3: 149–153. [CrossRef]47. Desborough JP. Thestressresponsetotraumaandsurgery. BrJAnaesth . 2000; 85: 109–117. [CrossRef][PubMed]48. Bakke EF Hisdal J Semb SO. Intraocularpressureincreasesinparallelwithsystemicbloodpressureduringisometricexercise. InvestOphthalmolVisSci . 2009; 50: 760–764. [CrossRef][PubMed] Figure1ViewOriginalDownloadSlide Positioningofintracameralmicrosensorcatheterinanteriorchamber.Thesensorappears“bent”owingtoopticalrefraction.Figure1 Positioningofintracameralmicrosensorcatheterinanteriorchamber.Thesensorappears“bent”owingtoopticalrefraction.ViewOriginalDownloadSlide Figure2ViewOriginalDownloadSlide (A)WeeklyIOPreadingsmeasuredfromexperimentaleyesandcontralateralcontroleyes.MeasurementswereobtainedusingIcaretonometerduringketamineandmedetomidineanesthesiaimmediatelybeforetheintracameralinjectionofmicrobeads.Valuesaremean±SEM;n=28;unpairedt-test;*P<0.005.(B)SimultaneousincreaseinABP(red)andIOP(blue)duringPEinfusioninasinglerat.Toprecordinginblackrepresentsheartratederivedfromthepressurewaveformfrequency,illustratingtheresponseofthebaroreceptorreflex.(C)SimultaneousrecordingoftheABPandIOPpressurewaveformsindicatingareal-timesynchronousrelationshipbetweenABPandIOP.Figure2 (A)WeeklyIOPreadingsmeasuredfromexperimentaleyesandcontralateralcontroleyes.MeasurementswereobtainedusingIcaretonometerduringketamineandmedetomidineanesthesiaimmediatelybeforetheintracameralinjectionofmicrobeads.Valuesaremean±SEM;n=28;unpairedt-test;*P<0.005.(B)SimultaneousincreaseinABP(red)andIOP(blue)duringPEinfusioninasinglerat.Toprecordinginblackrepresentsheartratederivedfromthepressurewaveformfrequency,illustratingtheresponseofthebaroreceptorreflex.(C)SimultaneousrecordingoftheABPandIOPpressurewaveformsindicatingareal-timesynchronousrelationshipbetweenABPandIOP.ViewOriginalDownloadSlide Figure3ViewOriginalDownloadSlide PressorresponseofmeanMAP(A)andthechangeinIOPinexperimentalandcontroleyesduringPEinfusion(B).Arrowsrepresentthestartandfinishofinfusion.Valuesaremean±SEM;n=14;student'st-test;*P<0.05.Figure3 PressorresponseofmeanMAP(A)andthechangeinIOPinexperimentalandcontroleyesduringPEinfusion(B).Arrowsrepresentthestartandfinishofinfusion.Valuesaremean±SEM;n=14;student'st-test;*P<0.05.ViewOriginalDownloadSlide Figure4ViewOriginalDownloadSlide PlotofthechangeinIOPversusthechangeinmeanarterialpressureduringthePEinfusion.(A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively.Valuesaremean±SEM;n=14.Figure4 PlotofthechangeinIOPversusthechangeinmeanarterialpressureduringthePEinfusion.(A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively.Valuesaremean±SEM;n=14.ViewOriginalDownloadSlide Figure5ViewOriginalDownloadSlide (A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively,duringsalineinfusion.NotethegreaterIOPresponseperunitchangeinMAPduringthesalineinfusion.Valuesaremean±SEM;n=14.Figure5 (A,B)representtheABP/IOPrelationshipinnormalandexperimentaleyes,respectively,duringsalineinfusion.NotethegreaterIOPresponseperunitchangeinMAPduringthesalineinfusion.Valuesaremean±SEM;n=14.ViewOriginalDownloadSlide Figure6ViewOriginalDownloadSlide ComparisonofthemeanOPAbetweencontrolandexperimentaleyesduringacutesystemichypertensiveresponsetoIVPE.Mean±SD;one-wayANOVA;Tukey'stest;****P≤0.0001;NS(notsignificant)P>0.05.Figure6 ComparisonofthemeanOPAbetweencontrolandexperimentaleyesduringacutesystemichypertensiveresponsetoIVPE.Mean±SD;one-wayANOVA;Tukey'stest;****P≤0.0001;NS(notsignificant)P>0.05.ViewOriginalDownloadSlide Figure7ViewOriginalDownloadSlide Arterialbloodpressure(A)andIOP(B)recordingsfrombaselineto5minutesduringandfollowingtherapidsalineinfusion.Arrowsrepresentstartandfinishoftheinfusiondeliveredover1minute.Valuesaremean±SEM;n=14;pairedt-test;*P<0.0001.Figure7 Arterialbloodpressure(A)andIOP(B)recordingsfrombaselineto5minutesduringandfollowingtherapidsalineinfusion.Arrowsrepresentstartandfinishoftheinfusiondeliveredover1minute.Valuesaremean±SEM;n=14;pairedt-test;*P<0.0001.ViewOriginalDownloadSlide Copyright©AssociationforResearchinVisionandOphthalmology 1,385 Views 8 Citations ViewMetrics × RelatedArticles QuantificationoftheEffectofDifferentLevelsofIOPintheAstrogliaoftheRatRetinaIpsilateralandContralateraltoExperimentalGlaucoma IntraocularPressure,BloodPressure,andRetinalBloodFlowAutoregulation:AMathematicalModeltoClarifyTheirRelationshipandClinicalRelevance DeformationoftheEarlyGlaucomatousMonkeyOpticNerveHeadConnectiveTissueafterAcuteIOPElevationin3-DHistomorphometricReconstructions ChangesofOsteopontinintheAqueousHumoroftheDBA2/JGlaucomaModelCorrelatedwithOpticNerveandRGCDegenerations ChangesintheBiomechanicalResponseoftheOpticNerveHeadinEarlyExperimentalGlaucoma FromOtherJournals Interocularsuppressioninstrabismicamblyopiaresultsinanattenuatedanddelayedhemodynamicresponsefunctioninearlyvisualcortex LatrunculinBReducesIntraocularPressureinHumanOcularHypertensionandPrimaryOpen-AngleGlaucoma TranscornealElectricalStimulationInhibitsRetinalMicroglialActivationandEnhancesRetinalGanglionCellSurvivalAfterAcuteOcularHypertensiveInjury RelatedTopics EyeAnatomyandDisorders Glaucoma Advertisement Copyright©2015AssociationforResearchinVisionandOphthalmology. Forgotpassword? ToViewMore... Purchasethisarticlewithanaccount. CreateanAccount or SubscribeNow × × ThisPDFisavailabletoSubscribersOnly Signinorpurchaseasubscriptiontoaccessthiscontent. × Youmustbesignedintoanindividualaccounttousethisfeature. × Thissiteusescookies.Bycontinuingtouseourwebsite,youareagreeingtoourprivacypolicy.Accept
延伸文章資訊
- 1Reduction of Intraocular Pressure and Glaucoma Progression
ObjectiveTo provide the results of the Early Manifest Glaucoma Trial, which compared the effect o...
- 2What Causes High Eye Pressure and How to Reduce It
Intraocular pressure (IOP) is the pressure in your eyes. When that pressure is higher than normal...
- 3High Eye Pressure and Glaucoma
Eye pressure is ...
- 4Glaucoma and Eye Pressure: How High is Too High?
When people hear the word “glaucoma,” many of them connect the eye disease with elevated eye pres...
- 5Eye Pressure - American Academy of Ophthalmology
Eye pressure is a measurement of the fluid pressure inside the eye. Measuring it is like measurin...