Floor and Ceiling Functions - Math24.net
文章推薦指數: 80 %
Definitions. Let be a real number. The floor function of denoted by or is defined to be the greatest integer that is less than or equal to. The ceiling ... Precalculus Calculus DifferentialEquations FloorandCeilingFunctions Home→Calculus→SetTheory→FloorandCeilingFunctions Definitions Let\(x\)bearealnumber.Thefloorfunctionof\(x,\)denotedby\(\lfloor{x}\rfloor\)or\(\text{floor}\left(x\right),\)isdefinedtobethegreatestintegerthatislessthanorequalto\(x.\) Theceilingfunctionof\(x,\)denotedby\(\lceil{x}\rceil\)or\(\text{ceil}\left(x\right),\)isdefinedtobetheleastintegerthatisgreaterthanorequalto\(x.\) Forexample, \[\lfloor{\pi}\rfloor=3,\;\;\lceil{\pi}\rceil=4,\;\;\lfloor{5}\rfloor=5,\;\;\lceil{5}\rceil=5.\] \[\lfloor{-e}\rfloor=-3,\;\;\lceil{-e}\rceil=-2,\;\;\lfloor{-1}\rfloor=-1,\;\;\lceil{-1}\rceil=-1.\] Itfollowsfromthedefinitionsthatthefloorandceilingfunctionshavetype\(\mathbb{R}\to\mathbb{Z}.\)Formally,forany\(x\in\mathbb{R},\)theycanbedefinedas \[\begin{array}{*{20}{l}}\text{floor:}&{\lfloor{x}\rfloor=\max\left\{{n\in\mathbb{Z}:n\lex}\right\}}\\[1em]\text{ceiling:}&{\lceil{x}\rceil=\min\left\{{n\in\mathbb{Z}:n\lex}\right\}}\end{array}\] GraphsoftheFloorandCeilingFunctions Thefloorandceilingfunctionslooklikeastaircaseandhaveajumpdiscontinuityateachintegerpoint. Figure1. Figure2. PropertiesoftheFloorandCeilingFunctions Therearemanyinterestingandusefulpropertiesinvolvingthefloorandceilingfunctions,someofwhicharelistedbelow.Thenumber\(n\)isassumedtobeaninteger. \(\left\lfloorx\right\rfloor=n\;\text{iff}\;n\lex\ltn+1\) \(\left\lceilx\right\rceil=n\;\text{iff}\;n-1\ltx\len\) \(\left\lfloorx\right\rfloor=n\;\text{iff}\;x-1\ltn\lex\) \(\left\lceilx\right\rceil=n\;\text{iff}\;x\len\ltx+1\) \(\left\lfloor{-x}\right\rfloor=-\left\lceilx\right\rceil\) \(\left\lceil{-x}\right\rceil=-\left\lfloorx\right\rfloor\) \(\left\lfloorx\right\rfloor+\left\lfloor{-x}\right\rfloor\)\(=\left\{{\begin{array}{*{20}{l}} 0&{\text{if}x\in\mathbb{Z}}\\ {-1}&{\text{if}x\notin\mathbb{Z}} \end{array}}\right.\) \(\left\lceilx\right\rceil+\left\lceil{-x}\right\rceil\)\(=\left\{{\begin{array}{*{20}{l}} 0&{\text{if}x\in\mathbb{Z}}\\ 1&{\text{if}x\notin\mathbb{Z}} \end{array}}\right.\) \(\left\lfloor{x+n}\right\rfloor=\left\lfloorx\right\rfloor+n\) \(\left\lceil{x+n}\right\rceil=\left\lceilx\right\rceil+n\) FractionalPartFunction Thefractionalpartofanumber\(x\in\mathbb{R}\)isthedifferencebetween\(x\)andthefloorof\(x:\) \[\left\{x\right\}=x-\left\lfloorx\right\rfloor.\] Forexample, \[\left\{2\right\}=2-\left\lfloor2\right\rfloor=2-2=0,\] \[\left\{{3.51}\right\}=3.51-\left\lfloor{3.51}\right\rfloor=3.51-3=0.51,\] \[\left\{{\frac{7}{3}}\right\}=\frac{7}{3}-\left\lfloor{\frac{7}{3}}\right\rfloor=\frac{7}{3}-2=\frac{1}{3},\] \[\left\{{-5.98}\right\}=-5.98-\left\lfloor{-5.98}\right\rfloor=-5.98-\left({-6}\right)=-5.98+6=0.02\] Thegraphofthefractionalpartfunctionlookslikeasawtoothwave,withaperiodof\(1.\) Figure3. Therangeoffractionalpartfunctionisthehalf-openinterval\(\left[{0,1}\right).\) Someotherpropertiesofthefractionalpartare \(\left\{x\right\}=0\;\text{iff}\;x\in\mathbb{Z}\) \(\left\{{x+n}\right\}=\left\{x\right\},n\in\mathbb{Z}\) \(\left\{x\right\}+\left\{{-x}\right\}\)\(=\left\{{\begin{array}{*{20}{l}} 0&{\text{if}x\in\mathbb{Z}}\\ 1&{\text{if}x\notin\mathbb{Z}} \end{array}}\right.\) SeesolvedproblemsonPage2. RecommendedPages LogicandSetNotation IntroductiontoSets SetOperationsandVennDiagrams SetIdentities CartesianProductofSets BinaryRelations CompositionofRelations Page1 Page2
延伸文章資訊
- 1Floor and Ceiling Functions - Maple Help - Maplesoft
The floor of a real number x, denoted by , is defined to be the largest integer no larger than x....
- 2floor-to-ceiling中文(繁體)翻譯:劍橋詞典
The 306 residential units feature 9 ft ceilings and floor-to-ceiling windows. 來自. Wikipedia.
- 3取整函數- 維基百科,自由的百科全書
在電腦科學中一般記作floor(x),表示不超過x的整數中最大的一個。 ... 電腦中的上取整函數和下取整函數的命名來自於英文的ceiling(天花板)和floor(地板),相關的 ...
- 4EXCEL:你知道CEILING、FLOOR是什麼函數嗎 ... - 每日頭條
今天我們介紹下CEILING、FLOOR函數的意義和用法吧1、CEILING函數CEILING。如significance為3,則是向上捨入到最接近3的倍數。
- 5Floor and Ceiling Functions - Math is Fun
The floor and ceiling functions give us the nearest integer up or down. Example: What is the floo...