Light - Wikipedia

文章推薦指數: 80 %
投票人數:10人

Light or visible light is electromagnetic radiation within the portion of the electromagnetic spectrum that is perceived by the human eye. Visible light is ... Light FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Electromagneticradiationthatisvisibletohumaneyes "Visiblelight"redirectshere.Forotheruses,seeLight(disambiguation)andVisiblelight(disambiguation). Atriangularprismdispersingabeamofwhitelight.Thelongerwavelengths(red)andtheshorterwavelengths(blue)areseparated. Modernphysics H ^ | ψ n ( t ) ⟩ = i ℏ ∂ ∂ t | ψ n ( t ) ⟩ {\displaystyle{\hat{H}}|\psi_{n}(t)\rangle=i\hbar{\frac{\partial}{\partialt}}|\psi_{n}(t)\rangle} G μ ν + Λ g μ ν = κ T μ ν {\displaystyleG_{\mu\nu}+\Lambdag_{\mu\nu}={\kappa}T_{\mu\nu}} SchrödingerandEinsteinfieldequations FoundersMaxPlanck ·AlbertEinstein ·NielsBohr ·MaxBorn ·WernerHeisenberg ·ErwinSchrödinger ·PascualJordan ·WolfgangPauli ·PaulDirac ·ErnestRutherford ·LouisdeBroglie ·SatyendraNathBose ConceptsTopology ·Space ·Time ·Energy ·Matter ·WorkRandomness ·Information ·Entropy ·MindLight ·Particle ·Wave BranchesApplied ·Experimental ·TheoreticalMathematical ·PhilosophyofphysicsQuantummechanics(Quantumfieldtheory ·Quantuminformation ·Quantumcomputation)Electromagnetism ·Weakinteraction ·ElectroweakinteractionStronginteractionAtomic ·Particle ·NuclearAtomic,molecular,andopticalCondensedmatter ·StatisticalComplexsystems ·Non-lineardynamics ·BiophysicsNeurophysicsPlasmaphysicsSpecialrelativity ·GeneralrelativityAstrophysics ·CosmologyTheoriesofgravitationQuantumgravity ·Theoryofeverything ScientistsWitten ·Röntgen ·Becquerel ·Lorentz ·Planck ·Curie ·Wien ·Skłodowska-Curie ·Sommerfeld ·Rutherford ·Soddy ·Onnes ·Einstein ·Wilczek ·Born ·Weyl ·Bohr ·Kramers ·Schrödinger ·deBroglie ·Laue ·Bose ·Compton ·Pauli ·Walton ·Fermi ·vanderWaals ·Heisenberg ·Dyson ·Zeeman ·Moseley ·Hilbert ·Gödel ·Jordan ·Dirac ·Wigner ·Hawking ·P.W.Anderson ·Lemaître ·Thomson ·Poincaré ·Wheeler ·Penrose ·Millikan ·Nambu ·vonNeumann ·Higgs ·Hahn ·Feynman ·Yang ·Lee ·Lenard ·Salam ·'tHooft ·Veltman ·Bell ·Gell-Mann ·J.J.Thomson ·Raman ·Bragg ·Bardeen ·Shockley ·Chadwick ·Lawrence ·Zeilinger ·Goudsmit ·Uhlenbeck CategoriesModernphysics vte Lightorvisiblelightiselectromagneticradiationwithintheportionoftheelectromagneticspectrumthatisperceivedbythehumaneye.[1]Visiblelightisusuallydefinedashavingwavelengthsintherangeof400–700nanometres(nm),correspondingtofrequenciesof750-420terahertz,betweentheinfrared(withlongerwavelengths)andtheultraviolet(withshorterwavelengths).[2][3] Inphysics,theterm"light"mayrefermorebroadlytoelectromagneticradiationofanywavelength,whethervisibleornot.[4][5]Inthissense,gammarays,X-rays,microwavesandradiowavesarealsolight.Theprimarypropertiesoflightareintensity,propagationdirection,frequencyorwavelengthspectrumandpolarization.Itsspeedinavacuum,299792458metresasecond(m/s),isoneofthefundamentalconstantsofnature.[6]Likealltypesofelectromagneticradiation,visiblelightpropagatesbymasslesselementaryparticlescalledphotonsthatrepresentsthequantaofelectromagneticfield,andcanbeanalyzedasbothwavesandparticles.Thestudyoflight,knownasoptics,isanimportantresearchareainmodernphysics. ThemainsourceofnaturallightonEarthistheSun.Historically,anotherimportantsourceoflightforhumanshasbeenfire,fromancientcampfirestomodernkerosenelamps.Withthedevelopmentofelectriclightsandpowersystems,electriclightinghaseffectivelyreplacedfirelight. Contents 1Electromagneticspectrumandvisiblelight 2Speedoflight 3Optics 3.1Refraction 4Lightsources 5Measurement 6Lightpressure 7Historicaltheoriesaboutlight,inchronologicalorder 7.1ClassicalGreeceandHellenism 7.2ClassicalIndia 7.3Descartes 7.4Particletheory 7.5Wavetheory 7.6Electromagnetictheory 7.7Quantumtheory 8UseforlightonEarth 9Seealso 10Notes 11References 12Externallinks Electromagneticspectrumandvisiblelight Theelectromagneticspectrum,withthevisibleportionhighlighted Mainarticle:Electromagneticspectrum Generally,electromagneticradiation(EMR)isclassifiedbywavelengthintoradiowaves,microwaves,infrared,thevisiblespectrumthatweperceiveaslight,ultraviolet,X-raysandgammarays.Thedesignation"radiation"excludesstaticelectric,magneticandnearfields. ThebehaviorofEMRdependsonitswavelength.Higherfrequencieshaveshorterwavelengthsandlowerfrequencieshavelongerwavelengths.WhenEMRinteractswithsingleatomsandmolecules,itsbehaviordependsontheamountofenergyperquantumitcarries. EMRinthevisiblelightregionconsistsofquanta(calledphotons)thatareatthelowerendoftheenergiesthatarecapableofcausingelectronicexcitationwithinmolecules,whichleadstochangesinthebondingorchemistryofthemolecule.Atthelowerendofthevisiblelightspectrum,EMRbecomesinvisibletohumans(infrared)becauseitsphotonsnolongerhaveenoughindividualenergytocausealastingmolecularchange(achangeinconformation)inthevisualmoleculeretinalinthehumanretina,whichchangetriggersthesensationofvision. Thereexistanimalsthataresensitivetovarioustypesofinfrared,butnotbymeansofquantum-absorption.Infraredsensinginsnakesdependsonakindofnaturalthermalimaging,inwhichtinypacketsofcellularwaterareraisedintemperaturebytheinfraredradiation.EMRinthisrangecausesmolecularvibrationandheatingeffects,whichishowtheseanimalsdetectit. Abovetherangeofvisiblelight,ultravioletlightbecomesinvisibletohumans,mostlybecauseitisabsorbedbythecorneabelow360nmandtheinternallensbelow400 nm.Furthermore,therodsandconeslocatedintheretinaofthehumaneyecannotdetecttheveryshort(below360 nm)ultravioletwavelengthsandareinfactdamagedbyultraviolet.Manyanimalswitheyesthatdonotrequirelenses(suchasinsectsandshrimp)areabletodetectultraviolet,byquantumphoton-absorptionmechanisms,inmuchthesamechemicalwaythathumansdetectvisiblelight. Varioussourcesdefinevisiblelightasnarrowlyas420–680 nm[7][8]toasbroadlyas380–800 nm.[9][10]Underideallaboratoryconditions,peoplecanseeinfrareduptoatleast1,050 nm;[11]childrenandyoungadultsmayperceiveultravioletwavelengthsdowntoabout310–313 nm.[12][13][14] Plantgrowthisalsoaffectedbythecolourspectrumoflight,aprocessknownasphotomorphogenesis. Speedoflight Mainarticle:Speedoflight BeamofsunlightinsidethecavityofRoccaill'AbissuatFondachelli-Fantina,Sicily Thespeedoflightinavacuumisdefinedtobeexactly299792458 m/s(approx.186,282milespersecond).ThefixedvalueofthespeedoflightinSIunitsresultsfromthefactthatthemetreisnowdefinedintermsofthespeedoflight.Allformsofelectromagneticradiationmoveatexactlythissamespeedinvacuum. Differentphysicistshaveattemptedtomeasurethespeedoflightthroughouthistory.Galileoattemptedtomeasurethespeedoflightintheseventeenthcentury.AnearlyexperimenttomeasurethespeedoflightwasconductedbyOleRømer,aDanishphysicist,in1676.Usingatelescope,RømerobservedthemotionsofJupiterandoneofitsmoons,Io.NotingdiscrepanciesintheapparentperiodofIo'sorbit,hecalculatedthatlighttakesabout22minutestotraversethediameterofEarth'sorbit.[15]However,itssizewasnotknownatthattime.IfRømerhadknownthediameteroftheEarth'sorbit,hewouldhavecalculatedaspeedof227000000 m/s. AnothermoreaccuratemeasurementofthespeedoflightwasperformedinEuropebyHippolyteFizeauin1849.[16]Fizeaudirectedabeamoflightatamirrorseveralkilometersaway.Arotatingcogwheelwasplacedinthepathofthelightbeamasittraveledfromthesource,tothemirrorandthenreturnedtoitsorigin.Fizeaufoundthatatacertainrateofrotation,thebeamwouldpassthroughonegapinthewheelonthewayoutandthenextgaponthewayback.Knowingthedistancetothemirror,thenumberofteethonthewheelandtherateofrotation,Fizeauwasabletocalculatethespeedoflightas313000000 m/s. LéonFoucaultcarriedoutanexperimentwhichusedrotatingmirrorstoobtainavalueof298000000 m/s[16]in1862.AlbertA.Michelsonconductedexperimentsonthespeedoflightfrom1877untilhisdeathin1931.HerefinedFoucault'smethodsin1926usingimprovedrotatingmirrorstomeasurethetimeittooklighttomakearoundtripfromMountWilsontoMountSanAntonioinCalifornia.Theprecisemeasurementsyieldedaspeedof299796000 m/s.[17] Theeffectivevelocityoflightinvarioustransparentsubstancescontainingordinarymatter,islessthaninvacuum.Forexample,thespeedoflightinwaterisabout3/4ofthatinvacuum. Twoindependentteamsofphysicistsweresaidtobringlighttoa"completestandstill"bypassingitthroughaBose–Einsteincondensateoftheelementrubidium,oneteamatHarvardUniversityandtheRowlandInstituteforScienceinCambridge,MassachusettsandtheotherattheHarvard–SmithsonianCenterforAstrophysics,alsoinCambridge.[18]However,thepopulardescriptionoflightbeing"stopped"intheseexperimentsrefersonlytolightbeingstoredintheexcitedstatesofatoms,thenre-emittedatanarbitrarylatertime,asstimulatedbyasecondlaserpulse.Duringthetimeithad"stopped"ithadceasedtobelight. Optics Mainarticle:Optics Thestudyoflightandtheinteractionoflightandmatteristermedoptics.Theobservationandstudyofopticalphenomenasuchasrainbowsandtheauroraborealisoffermanycluesastothenatureoflight. Refraction Mainarticle:Refraction Duetorefraction,thestrawdippedinwaterappearsbentandtherulerscalecompressedwhenviewedfromashallowangle. Refractionisthebendingoflightrayswhenpassingthroughasurfacebetweenonetransparentmaterialandanother.ItisdescribedbySnell'sLaw: n 1 sin ⁡ θ 1 = n 2 sin ⁡ θ 2   . {\displaystylen_{1}\sin\theta_{1}=n_{2}\sin\theta_{2}\.} whereθ1istheanglebetweentherayandthesurfacenormalinthefirstmedium,θ2istheanglebetweentherayandthesurfacenormalinthesecondmediumandn1andn2aretheindicesofrefraction,n=1inavacuumandn>1inatransparentsubstance. Whenabeamoflightcrossestheboundarybetweenavacuumandanothermedium,orbetweentwodifferentmedia,thewavelengthofthelightchanges,butthefrequencyremainsconstant.Ifthebeamoflightisnotorthogonal(orrathernormal)totheboundary,thechangeinwavelengthresultsinachangeinthedirectionofthebeam.Thischangeofdirectionisknownasrefraction. Therefractivequalityoflensesisfrequentlyusedtomanipulatelightinordertochangetheapparentsizeofimages.Magnifyingglasses,spectacles,contactlenses,microscopesandrefractingtelescopesareallexamplesofthismanipulation. Lightsources "Lightsource"redirectshere.ForthesolarenergydevelopernamedLightsource,seeLightsourceRenewableEnergy.ForaparticleacceleratorusedtogenerateX-rays,seeSynchrotronlightsource. Furtherinformation:Listoflightsources Therearemanysourcesoflight.Abodyatagiventemperatureemitsacharacteristicspectrumofblack-bodyradiation.Asimplethermalsourceissunlight,theradiationemittedbythechromosphereoftheSunataround6,000kelvins(5,730degreesCelsius;10,340degreesFahrenheit)peaksinthevisibleregionoftheelectromagneticspectrumwhenplottedinwavelengthunits[19]androughly44%ofsunlightenergythatreachesthegroundisvisible.[20]Anotherexampleisincandescentlightbulbs,whichemitonlyaround10%oftheirenergyasvisiblelightandtheremainderasinfrared.Acommonthermallightsourceinhistoryistheglowingsolidparticlesinflames,butthesealsoemitmostoftheirradiationintheinfraredandonlyafractioninthevisiblespectrum. Thepeakoftheblack-bodyspectrumisinthedeepinfrared,atabout10micrometrewavelength,forrelativelycoolobjectslikehumanbeings.Asthetemperatureincreases,thepeakshiftstoshorterwavelengths,producingfirstaredglow,thenawhiteoneandfinallyablue-whitecolourasthepeakmovesoutofthevisiblepartofthespectrumandintotheultraviolet.Thesecolourscanbeseenwhenmetalisheatedto"redhot"or"whitehot".Blue-whitethermalemissionisnotoftenseen,exceptinstars(thecommonlyseenpure-bluecolourinagasflameorawelder'storchisinfactduetomolecularemission,notablybyCHradicals(emittingawavelengthbandaround425 nmandisnotseeninstarsorpurethermalradiation). Atomsemitandabsorblightatcharacteristicenergies.Thisproduces"emissionlines"inthespectrumofeachatom.Emissioncanbespontaneous,asinlight-emittingdiodes,gasdischargelamps(suchasneonlampsandneonsigns,mercury-vaporlamps,etc.)andflames(lightfromthehotgasitself—so,forexample,sodiuminagasflameemitscharacteristicyellowlight).Emissioncanalsobestimulated,asinalaseroramicrowavemaser. Decelerationofafreechargedparticle,suchasanelectron,canproducevisibleradiation:cyclotronradiation,synchrotronradiationandbremsstrahlungradiationareallexamplesofthis.ParticlesmovingthroughamediumfasterthanthespeedoflightinthatmediumcanproducevisibleCherenkovradiation.Certainchemicalsproducevisibleradiationbychemoluminescence.Inlivingthings,thisprocessiscalledbioluminescence.Forexample,firefliesproducelightbythismeansandboatsmovingthroughwatercandisturbplanktonwhichproduceaglowingwake. Certainsubstancesproducelightwhentheyareilluminatedbymoreenergeticradiation,aprocessknownasfluorescence.Somesubstancesemitlightslowlyafterexcitationbymoreenergeticradiation.Thisisknownasphosphorescence.Phosphorescentmaterialscanalsobeexcitedbybombardingthemwithsubatomicparticles.Cathodoluminescenceisoneexample.Thismechanismisusedincathode-raytubetelevisionsetsandcomputermonitors. HongKongilluminatedbycolourfulartificiallighting. Certainothermechanismscanproducelight: Bioluminescence Cherenkovradiation Electroluminescence Scintillation Sonoluminescence Triboluminescence Whentheconceptoflightisintendedtoincludevery-high-energyphotons(gammarays),additionalgenerationmechanismsinclude: Particle–antiparticleannihilation Radioactivedecay Measurement Mainarticles:Photometry(optics)andRadiometry Lightismeasuredwithtwomainalternativesetsofunits:radiometryconsistsofmeasurementsoflightpoweratallwavelengths,whilephotometrymeasureslightwithwavelengthweightedwithrespecttoastandardizedmodelofhumanbrightnessperception.Photometryisuseful,forexample,toquantifyIllumination(lighting)intendedforhumanuse. Thephotometryunitsaredifferentfrommostsystemsofphysicalunitsinthattheytakeintoaccounthowthehumaneyerespondstolight.Theconecellsinthehumaneyeareofthreetypeswhichresponddifferentlyacrossthevisiblespectrumandthecumulativeresponsepeaksatawavelengthofaround555 nm.Therefore,twosourcesoflightwhichproducethesameintensity(W/m2)ofvisiblelightdonotnecessarilyappearequallybright.Thephotometryunitsaredesignedtotakethisintoaccountandthereforeareabetterrepresentationofhow"bright"alightappearstobethanrawintensity.Theyrelatetorawpowerbyaquantitycalledluminousefficacyandareusedforpurposeslikedetermininghowtobestachievesufficientilluminationforvarioustasksinindoorandoutdoorsettings.Theilluminationmeasuredbyaphotocellsensordoesnotnecessarilycorrespondtowhatisperceivedbythehumaneyeandwithoutfilterswhichmaybecostly,photocellsandcharge-coupleddevices(CCD)tendtorespondtosomeinfrared,ultravioletorboth. Lightpressure Mainarticle:Radiationpressure Lightexertsphysicalpressureonobjectsinitspath,aphenomenonwhichcanbededucedbyMaxwell'sequations,butcanbemoreeasilyexplainedbytheparticlenatureoflight:photonsstrikeandtransfertheirmomentum.Lightpressureisequaltothepowerofthelightbeamdividedbyc,thespeedoflight. Duetothemagnitudeofc,theeffectoflightpressureisnegligibleforeverydayobjects. Forexample,aone-milliwattlaserpointerexertsaforceofabout3.3piconewtonsontheobjectbeingilluminated;thus,onecouldliftaU.S.pennywithlaserpointers,butdoingsowouldrequireabout30 billion1-mWlaserpointers.[21] However,innanometre-scaleapplicationssuchasnanoelectromechanicalsystems(NEMS),theeffectoflightpressureismoresignificantandexploitinglightpressuretodriveNEMSmechanismsandtoflipnanometre-scalephysicalswitchesinintegratedcircuitsisanactiveareaofresearch.[22]Atlargerscales,lightpressurecancauseasteroidstospinfaster,[23]actingontheirirregularshapesasonthevanesofawindmill. Thepossibilityofmakingsolarsailsthatwouldacceleratespaceshipsinspaceisalsounderinvestigation.[24][25] AlthoughthemotionoftheCrookesradiometerwasoriginallyattributedtolightpressure,thisinterpretationisincorrect;thecharacteristicCrookesrotationistheresultofapartialvacuum.[26]ThisshouldnotbeconfusedwiththeNicholsradiometer,inwhichthe(slight)motioncausedbytorque(thoughnotenoughforfullrotationagainstfriction)isdirectlycausedbylightpressure.[27] Asaconsequenceoflightpressure,Einstein[28]in1909predictedtheexistenceof"radiationfriction"whichwouldopposethemovementofmatter.Hewrote,"radiationwillexertpressureonbothsidesoftheplate.Theforcesofpressureexertedonthetwosidesareequaliftheplateisatrest.However,ifitisinmotion,moreradiationwillbereflectedonthesurfacethatisaheadduringthemotion(frontsurface)thanonthebacksurface.Thebackwardactingforceofpressureexertedonthefrontsurfaceisthuslargerthantheforceofpressureactingontheback.Hence,astheresultantofthetwoforces,thereremainsaforcethatcounteractsthemotionoftheplateandthatincreaseswiththevelocityoftheplate.Wewillcallthisresultant'radiationfriction'inbrief." Usuallylightmomentumisalignedwithitsdirectionofmotion.However,forexampleinevanescentwavesmomentumistransversetodirectionofpropagation.[29] Historicaltheoriesaboutlight,inchronologicalorder ClassicalGreeceandHellenism InthefifthcenturyBC,Empedoclespostulatedthateverythingwascomposedoffourelements;fire,air,earthandwater.HebelievedthatAphroditemadethehumaneyeoutofthefourelementsandthatshelitthefireintheeyewhichshoneoutfromtheeyemakingsightpossible.Ifthisweretrue,thenonecouldseeduringthenightjustaswellasduringtheday,soEmpedoclespostulatedaninteractionbetweenraysfromtheeyesandraysfromasourcesuchasthesun.[30] Inabout300BC,EuclidwroteOptica,inwhichhestudiedthepropertiesoflight.Euclidpostulatedthatlighttravelledinstraightlinesandhedescribedthelawsofreflectionandstudiedthemmathematically.Hequestionedthatsightistheresultofabeamfromtheeye,forheaskshowoneseesthestarsimmediately,ifoneclosesone'seyes,thenopensthematnight.Ifthebeamfromtheeyetravelsinfinitelyfastthisisnotaproblem.[31] In55BC,Lucretius,aRomanwhocarriedontheideasofearlierGreekatomists,wrotethat"Thelight&heatofthesun;thesearecomposedofminuteatomswhich,whentheyareshovedoff,losenotimeinshootingrightacrosstheinterspaceofairinthedirectionimpartedbytheshove."(fromOnthenatureoftheUniverse).Despitebeingsimilartolaterparticletheories,Lucretius'sviewswerenotgenerallyaccepted.Ptolemy(c.secondcentury)wroteabouttherefractionoflightinhisbookOptics.[32] ClassicalIndia InancientIndia,theHinduschoolsofSamkhyaandVaisheshika,fromaroundtheearlycenturiesADdevelopedtheoriesonlight.AccordingtotheSamkhyaschool,lightisoneofthefivefundamental"subtle"elements(tanmatra)outofwhichemergethegrosselements.Theatomicityoftheseelementsisnotspecificallymentionedanditappearsthattheywereactuallytakentobecontinuous.[33] Ontheotherhand,theVaisheshikaschoolgivesanatomictheoryofthephysicalworldonthenon-atomicgroundofether,spaceandtime.(SeeIndianatomism.)Thebasicatomsarethoseofearth(prthivi),water(pani),fire(agni)andair(vayu)Lightraysaretakentobeastreamofhighvelocityoftejas(fire)atoms.Theparticlesoflightcanexhibitdifferentcharacteristicsdependingonthespeedandthearrangementsofthetejasatoms.[citationneeded] TheVishnuPuranareferstosunlightas"thesevenraysofthesun".[33] TheIndianBuddhists,suchasDignāgainthefifthcenturyandDharmakirtiintheseventhcentury,developedatypeofatomismthatisaphilosophyaboutrealitybeingcomposedofatomicentitiesthataremomentaryflashesoflightorenergy.Theyviewedlightasbeinganatomicentityequivalenttoenergy.[33] Descartes RenéDescartes(1596–1650)heldthatlightwasamechanicalpropertyoftheluminousbody,rejectingthe"forms"ofIbnal-HaythamandWiteloaswellasthe"species"ofBacon,GrossetesteandKepler.[34]In1637hepublishedatheoryoftherefractionoflightthatassumed,incorrectly,thatlighttravelledfasterinadensermediumthaninalessdensemedium.Descartesarrivedatthisconclusionbyanalogywiththebehaviourofsoundwaves.[citationneeded]AlthoughDescarteswasincorrectabouttherelativespeeds,hewascorrectinassumingthatlightbehavedlikeawaveandinconcludingthatrefractioncouldbeexplainedbythespeedoflightindifferentmedia. Descartesisnotthefirsttousethemechanicalanalogiesbutbecauseheclearlyassertsthatlightisonlyamechanicalpropertyoftheluminousbodyandthetransmittingmedium,Descartes'stheoryoflightisregardedasthestartofmodernphysicaloptics.[34] Particletheory Mainarticle:Corpusculartheoryoflight PierreGassendi. PierreGassendi(1592–1655),anatomist,proposedaparticletheoryoflightwhichwaspublishedposthumouslyinthe1660s.IsaacNewtonstudiedGassendi'sworkatanearlyageandpreferredhisviewtoDescartes'stheoryoftheplenum.HestatedinhisHypothesisofLightof1675thatlightwascomposedofcorpuscles(particlesofmatter)whichwereemittedinalldirectionsfromasource.OneofNewton'sargumentsagainstthewavenatureoflightwasthatwaveswereknowntobendaroundobstacles,whilelighttravelledonlyinstraightlines.Hedid,however,explainthephenomenonofthediffractionoflight(whichhadbeenobservedbyFrancescoGrimaldi)byallowingthatalightparticlecouldcreatealocalisedwaveintheaether. Newton'stheorycouldbeusedtopredictthereflectionoflight,butcouldonlyexplainrefractionbyincorrectlyassumingthatlightaccelerateduponenteringadensermediumbecausethegravitationalpullwasgreater.NewtonpublishedthefinalversionofhistheoryinhisOpticksof1704.Hisreputationhelpedtheparticletheoryoflighttoholdswayduringthe18thcentury.TheparticletheoryoflightledLaplacetoarguethatabodycouldbesomassivethatlightcouldnotescapefromit.Inotherwords,itwouldbecomewhatisnowcalledablackhole.Laplacewithdrewhissuggestionlater,afterawavetheoryoflightbecamefirmlyestablishedasthemodelforlight(ashasbeenexplained,neitheraparticleorwavetheoryisfullycorrect).AtranslationofNewton'sessayonlightappearsinThelargescalestructureofspace-time,byStephenHawkingandGeorgeF.R.Ellis. ThefactthatlightcouldbepolarizedwasforthefirsttimequalitativelyexplainedbyNewtonusingtheparticletheory.Étienne-LouisMalusin1810createdamathematicalparticletheoryofpolarization.Jean-BaptisteBiotin1812showedthatthistheoryexplainedallknownphenomenaoflightpolarization.Atthattimethepolarizationwasconsideredastheproofoftheparticletheory. Wavetheory Toexplaintheoriginofcolours,RobertHooke(1635–1703)developeda"pulsetheory"andcomparedthespreadingoflighttothatofwavesinwaterinhis1665workMicrographia("ObservationIX").In1672Hookesuggestedthatlight'svibrationscouldbeperpendiculartothedirectionofpropagation.ChristiaanHuygens(1629–1695)workedoutamathematicalwavetheoryoflightin1678andpublisheditinhisTreatiseonlightin1690.Heproposedthatlightwasemittedinalldirectionsasaseriesofwavesinamediumcalledtheluminiferousaether.Aswavesarenotaffectedbygravity,itwasassumedthattheysloweddownuponenteringadensermedium.[35] ChristiaanHuygens. ThomasYoung'ssketchofadouble-slitexperimentshowingdiffraction.Young'sexperimentssupportedthetheorythatlightconsistsofwaves. Thewavetheorypredictedthatlightwavescouldinterferewitheachotherlikesoundwaves(asnotedaround1800byThomasYoung).Youngshowedbymeansofadiffractionexperimentthatlightbehavedaswaves.Healsoproposedthatdifferentcolourswerecausedbydifferentwavelengthsoflightandexplainedcolourvisionintermsofthree-colouredreceptorsintheeye.AnothersupporterofthewavetheorywasLeonhardEuler.HearguedinNovatheorialucisetcolorum(1746)thatdiffractioncouldmoreeasilybeexplainedbyawavetheory.In1816André-MarieAmpèregaveAugustin-JeanFresnelanideathatthepolarizationoflightcanbeexplainedbythewavetheoryiflightwereatransversewave.[36] Later,FresnelindependentlyworkedouthisownwavetheoryoflightandpresentedittotheAcadémiedesSciencesin1817.SiméonDenisPoissonaddedtoFresnel'smathematicalworktoproduceaconvincingargumentinfavorofthewavetheory,helpingtooverturnNewton'scorpusculartheory.[dubious–discuss]Bytheyear1821,Fresnelwasabletoshowviamathematicalmethodsthatpolarizationcouldbeexplainedbythewavetheoryoflightifandonlyiflightwasentirelytransverse,withnolongitudinalvibrationwhatsoever.[citationneeded] Theweaknessofthewavetheorywasthatlightwaves,likesoundwaves,wouldneedamediumfortransmission.TheexistenceofthehypotheticalsubstanceluminiferousaetherproposedbyHuygensin1678wascastintostrongdoubtinthelatenineteenthcenturybytheMichelson–Morleyexperiment. Newton'scorpusculartheoryimpliedthatlightwouldtravelfasterinadensermedium,whilethewavetheoryofHuygensandothersimpliedtheopposite.Atthattime,thespeedoflightcouldnotbemeasuredaccuratelyenoughtodecidewhichtheorywascorrect.ThefirsttomakeasufficientlyaccuratemeasurementwasLéonFoucault,in1850.[37]Hisresultsupportedthewavetheoryandtheclassicalparticletheorywasfinallyabandoned,onlytopartlyre-emergeinthe20thcentury. Electromagnetictheory Mainarticle:Electromagneticradiation Alinearlypolarizedelectromagneticwavegoinginthex-axis,withEdenotingtheelectricfieldandperpendicularBdenotingmagneticfield In1845,MichaelFaradaydiscoveredthattheplaneofpolarizationoflinearlypolarizedlightisrotatedwhenthelightraystravelalongthemagneticfielddirectioninthepresenceofatransparentdielectric,aneffectnowknownasFaradayrotation.[38]Thiswasthefirstevidencethatlightwasrelatedtoelectromagnetism.In1846hespeculatedthatlightmightbesomeformofdisturbancepropagatingalongmagneticfieldlines.[38]Faradayproposedin1847thatlightwasahigh-frequencyelectromagneticvibration,whichcouldpropagateevenintheabsenceofamediumsuchastheether.[39] Faraday'sworkinspiredJamesClerkMaxwelltostudyelectromagneticradiationandlight.Maxwelldiscoveredthatself-propagatingelectromagneticwaveswouldtravelthroughspaceataconstantspeed,whichhappenedtobeequaltothepreviouslymeasuredspeedoflight.Fromthis,Maxwellconcludedthatlightwasaformofelectromagneticradiation:hefirststatedthisresultin1862inOnPhysicalLinesofForce.In1873,hepublishedATreatiseonElectricityandMagnetism,whichcontainedafullmathematicaldescriptionofthebehaviorofelectricandmagneticfields,stillknownasMaxwell'sequations.Soonafter,HeinrichHertzconfirmedMaxwell'stheoryexperimentallybygeneratinganddetectingradiowavesinthelaboratoryanddemonstratingthatthesewavesbehavedexactlylikevisiblelight,exhibitingpropertiessuchasreflection,refraction,diffractionandinterference.Maxwell'stheoryandHertz'sexperimentsleddirectlytothedevelopmentofmodernradio,radar,television,electromagneticimagingandwirelesscommunications. Inthequantumtheory,photonsareseenaswavepacketsofthewavesdescribedintheclassicaltheoryofMaxwell.ThequantumtheorywasneededtoexplaineffectsevenwithvisuallightthatMaxwell'sclassicaltheorycouldnot(suchasspectrallines). Quantumtheory In1900MaxPlanck,attemptingtoexplainblack-bodyradiation,suggestedthatalthoughlightwasawave,thesewavescouldgainorloseenergyonlyinfiniteamountsrelatedtotheirfrequency.Planckcalledthese"lumps"oflightenergy"quanta"(fromaLatinwordfor"howmuch").In1905,AlbertEinsteinusedtheideaoflightquantatoexplainthephotoelectriceffectandsuggestedthattheselightquantahada"real"existence.In1923ArthurHollyComptonshowedthatthewavelengthshiftseenwhenlowintensityX-raysscatteredfromelectrons(socalledComptonscattering)couldbeexplainedbyaparticle-theoryofX-rays,butnotawavetheory.In1926GilbertN.Lewisnamedtheselightquantaparticlesphotons.[40] Eventuallythemoderntheoryofquantummechanicscametopicturelightas(insomesense)bothaparticleandawaveand(inanothersense),asaphenomenonwhichisneitheraparticlenorawave(whichactuallyaremacroscopicphenomena,suchasbaseballsoroceanwaves).Instead,modernphysicsseeslightassomethingthatcanbedescribedsometimeswithmathematicsappropriatetoonetypeofmacroscopicmetaphor(particles)andsometimesanothermacroscopicmetaphor(waterwaves),butisactuallysomethingthatcannotbefullyimagined.AsinthecaseforradiowavesandtheX-raysinvolvedinComptonscattering,physicistshavenotedthatelectromagneticradiationtendstobehavemorelikeaclassicalwaveatlowerfrequencies,butmorelikeaclassicalparticleathigherfrequencies,butnevercompletelylosesallqualitiesofoneortheother.Visiblelight,whichoccupiesamiddlegroundinfrequency,caneasilybeshowninexperimentstobedescribableusingeitherawaveorparticlemodel,orsometimesboth. InFebruary2018,scientistsreported,forthefirsttime,thediscoveryofanewformoflight,whichmayinvolvepolaritons,thatcouldbeusefulinthedevelopmentofquantumcomputers.[41][42] UseforlightonEarth Sunlightprovidestheenergythatgreenplantsusetocreatesugarsmostlyintheformofstarches,whichreleaseenergyintothelivingthingsthatdigestthem.Thisprocessofphotosynthesisprovidesvirtuallyalltheenergyusedbylivingthings.Somespeciesofanimalsgeneratetheirownlight,aprocesscalledbioluminescence.Forexample,firefliesuselighttolocatematesandvampiresquiduseittohidethemselvesfromprey. Seealso Physicsportal Scienceportal Automotivelighting Ballisticphoton Colourtemperature Fermat'sprinciple Huygens'principle JournalofLuminescence Lightart Lightbeam–inparticularaboutlightbeamsvisiblefromtheside LightFantastic(TVseries) Lightmill Lightpainting Lightpollution Lighttherapy Lighting Listoflightsources Luminescence:TheJournalofBiologicalandChemicalLuminescence Photicsneezereflex Righttolight Risksandbenefitsofsunexposure Spectroscopy Notes References ^CIE(1987).InternationalLightingVocabularyArchived27February2010attheWaybackMachine.Number17.4.CIE,4thedition.ISBN 978-3-900734-07-7.BytheInternationalLightingVocabulary,thedefinitionoflightis:"Anyradiationcapableofcausingavisualsensationdirectly." ^Pal,G.K.;Pal,Pravati(2001)."chapter52".TextbookofPracticalPhysiology(1st ed.).Chennai:OrientBlackswan.p. 387.ISBN 978-81-250-2021-9.Retrieved11October2013.Thehumaneyehastheabilitytorespondtoallthewavelengthsoflightfrom400–700nm.Thisiscalledthevisiblepartofthespectrum. ^Buser,PierreA.;Imbert,Michel(1992).Vision.MITPress.p. 50.ISBN 978-0-262-02336-8.Retrieved11October2013.Lightisaspecialclassofradiantenergyembracingwavelengthsbetween400and700nm(ormμ),or4000to7000Å. ^GregoryHallockSmith(2006).Cameralenses:fromboxcameratodigital.SPIEPress.p. 4.ISBN 978-0-8194-6093-6. ^NarinderKumar(2008).ComprehensivePhysicsXII.LaxmiPublications.p. 1416.ISBN 978-81-7008-592-8. ^Uzan,J-P;Leclercq,B(2008).TheNaturalLawsoftheUniverse:UnderstandingFundamentalConstants.TranslatedbyRobertMizon.Springer-Praxis,InternetArchive:2020-06-14AbdzexKuban.pp. 43–4.Bibcode:2008nlu..book.....U.doi:10.1007/978-0-387-74081-2.ISBN 978-0-387-73454-5. ^Laufer,Gabriel(13July1996)."GeometricalOptics".IntroductiontoOpticsandLasersinEngineering.IntroductiontoOpticsandLasersinEngineering.p. 11.Bibcode:1996iole.book.....L.doi:10.1017/CBO9781139174190.004.ISBN 978-0-521-45233-5.Retrieved20October2013. ^Bradt,Hale(2004).AstronomyMethods:APhysicalApproachtoAstronomicalObservations.CambridgeUniversityPress.p. 26.ISBN 978-0-521-53551-9.Retrieved20October2013. ^Ohannesian,Lena;Streeter,Anthony(9November2001).HandbookofPharmaceuticalAnalysis.CRCPress.p. 187.ISBN 978-0-8247-4194-5.Retrieved20October2013. ^Ahluwalia,V.K.;Goyal,Madhuri(1January2000).ATextbookofOrganicChemistry.Narosa.p. 110.ISBN 978-81-7319-159-6.Retrieved20October2013. ^Sliney,DavidH.;Wangemann,RobertT.;Franks,JamesK.;Wolbarsht,MyronL.(1976)."Visualsensitivityoftheeyetoinfraredlaserradiation".JournaloftheOpticalSocietyofAmerica.66(4):339–341.Bibcode:1976JOSA...66..339S.doi:10.1364/JOSA.66.000339.PMID 1262982.Thefovealsensitivitytoseveralnear-infraredlaserwavelengthswasmeasured.Itwasfoundthattheeyecouldrespondtoradiationatwavelengthsatleastasfaras1,064nm.Acontinuous1,064nmlasersourceappearedred,buta1,060nmpulsedlasersourceappearedgreen,whichsuggeststhepresenceofsecondharmonicgenerationintheretina. ^Lynch,DavidK.;Livingston,WilliamCharles(2001).ColorandLightinNature(2nd ed.).Cambridge:CambridgeUniversityPress.p. 231.ISBN 978-0-521-77504-5.Retrieved12October2013.Limitsoftheeye'soverallrangeofsensitivityextendsfromabout310to1,050nanometers ^Dash,MadhabChandra;Dash,SatyaPrakash(2009).FundamentalsofEcology3E.TataMcGraw-HillEducation.p. 213.ISBN 978-1-259-08109-5.Retrieved18October2013.Normallythehumaneyerespondstolightraysfrom390to760nm.Thiscanbeextendedtoarangeof310to1,050nmunderartificialconditions. ^Saidman,Jean(15May1933)."Surlavisibilitédel'ultravioletjusqu'àlalongueurd'onde3130"[Thevisibilityoftheultraviolettothewavelengthof3130].Comptesrendusdel'Académiedessciences(inFrench).196:1537–9. ^Oldford,R.W;MacKay,R.J(2000)."ScientificMethod,StatisticalMethodandtheSpeedofLight".StatisticalScience.15(3):254–278.doi:10.1214/ss/1009212817.MR 1847825. ^abNewcomb,Simon(1911)."Light" .InChisholm,Hugh(ed.).EncyclopædiaBritannica.Vol. 16(11th ed.).CambridgeUniversityPress.p. 624. ^Michelson,A.A.(January1927)."MeasurementsofthevelocityoflightbetweenMountWilsonandMountSanAntonio".AstrophysicalJournal.65:1.Bibcode:1927ApJ....65....1M.doi:10.1086/143021. ^HarvardNewsOffice(24January2001)."HarvardGazette:Researchersnowabletostop,restartlight".News.harvard.edu.Archivedfromtheoriginalon28October2011.Retrieved8November2011. ^"SpectrumandtheColorSensitivityoftheEye"(PDF).Thulescientific.com.Retrieved29August2017. ^"ReferenceSolarSpectralIrradiance:AirMass1.5".Retrieved12November2009. ^Tang,Hong(1October2009)."MayTheForceofLightBeWithYou".IEEESpectrum.46(10):46–51.doi:10.1109/MSPEC.2009.5268000.S2CID 7928030. ^See,forexample,nano-opto-mechanicalsystemsresearchatYaleUniversity. ^Svitil,KathyA.(5February2004)."AsteroidsGetSpunBytheSun".DiscoverMagazine. ^"SolarSailsCouldSendSpacecraft'Sailing'ThroughSpace".NASA.31August2004. ^"NASAteamsuccessfullydeploystwosolarsailsystems".NASA.9August2004. ^P.Lebedev,UntersuchungenüberdieDruckkräftedesLichtes,Ann.Phys.6,433(1901). ^Nichols,E.F;Hull,G.F.(1903)."ThePressureduetoRadiation".TheAstrophysicalJournal.17(5):315–351.Bibcode:1903ApJ....17..315N.doi:10.1086/141035. ^Einstein,A.(1909).Onthedevelopmentofourviewsconcerningthenatureandconstitutionofradiation.Translatedin:TheCollectedPapersofAlbertEinstein,vol.2(PrincetonUniversityPress,Princeton,1989).Princeton,NewJersey:PrincetonUniversityPress.p. 391. ^Antognozzi,M.;Bermingham,C.R.;Harniman,R.L.;Simpson,S.;Senior,J.;Hayward,R.;Hoerber,H.;Dennis,M.R.;Bekshaev,A.Y.(August2016)."Directmeasurementsoftheextraordinaryopticalmomentumandtransversespin-dependentforceusinganano-cantilever".NaturePhysics.12(8):731–735.arXiv:1506.04248.Bibcode:2016NatPh..12..731A.doi:10.1038/nphys3732.ISSN 1745-2473.S2CID 52226942. ^Singh,S.(2009).FundamentalsofOpticalEngineering.DiscoveryPublishingHouse.ISBN 9788183564366. ^O'Connor,JJ;Robertson,EF(August2002)."Lightthroughtheages:AncientGreecetoMaxwell".Archivedfromtheoriginalon19March2017.Retrieved20February2017. ^PtolemyandA.MarkSmith(1996).Ptolemy'sTheoryofVisualPerception:AnEnglishTranslationoftheOpticswithIntroductionandCommentary.DianePublishing.p. 23.ISBN 978-0-87169-862-9. ^abc"ShastraPratibha2015SeniorsBooklet"(PDF).Sifuae.com.Retrieved29August2017. ^abTheoriesoflight,fromDescartestoNewtonA.I.SabraCUPArchive,1981p.48ISBN 0-521-28436-8,978-0-521-28436-3 ^FokkoJanDijksterhuis,LensesandWaves:ChristiaanHuygensandtheMathematicalScienceofOpticsinthe17thCentury,KluwerAcademicPublishers,2004,ISBN 1-4020-2697-8 ^JamesR.Hofmann,André-MarieAmpère:EnlightenmentandElectrodynamics,CambridgeUniversityPress,1996,p.222. ^DavidCassidy;GeraldHolton;JamesRutherford(2002).UnderstandingPhysics.Birkhäuser.ISBN 978-0-387-98756-9. ^abLongair,Malcolm(2003).TheoreticalConceptsinPhysics.p. 87. ^Cassidy,D(2002).UnderstandingPhysics.SpringerVerlagNewYork. ^Barrow,GordonM.(1962).IntroductiontoMolecularSpectroscopy(ScannedPDF).McGraw-Hill.LCCN 62-12478. ^Hignett,Katherine(16February2018)."PhysicsCreatesNewFormofLightThatCouldDriveTheQuantumComputingRevolution".Newsweek.Retrieved17February2018. ^Liang,Qi-Yu;et al.(16February2018)."Observationofthree-photonboundstatesinaquantumnonlinearmedium".Science.359(6377):783–786.arXiv:1709.01478.Bibcode:2018Sci...359..783L.doi:10.1126/science.aao7293.PMC 6467536.PMID 29449489. Externallinks MediarelatedtoLightatWikimediaCommons ThedictionarydefinitionoflightatWiktionary QuotationsrelatedtoLightatWikiquote vteRadiation(physicsandhealth)MainarticlesNon-ionizingradiation Acousticradiationforce Infrared Light Starlight Sunlight Microwave Radiowaves Ultraviolet Ionizingradiation Radioactivedecay Clusterdecay Backgroundradiation Alphaparticle Betaparticle Gammaray Cosmicray Neutronradiation Nuclearfission Nuclearfusion Nuclearreactors Nuclearweapons Particleaccelerators Radioactivematerials X-ray Earth'senergybudget Electromagneticradiation Synchrotronradiation Thermalradiation Black-bodyradiation Particleradiation Gravitationalradiation Cosmicbackgroundradiation Cherenkovradiation Askaryanradiation Bremsstrahlung Unruhradiation Darkradiation Radiationandhealth Radiationsyndrome acute chronic Healthphysics Dosimetry Electromagneticradiationandhealth Lasersafety Lasersandaviationsafety Medicalradiography Radiationprotection Radiationtherapy Radiationdamage Radioactivityinthelifesciences Radioactivecontamination Radiobiology Biologicaldoseunitsandquantities Wirelessdeviceradiationandhealth Wirelesselectronicdevicesandhealth Radiationheat-transfer Linearenergytransfer Radiationincidents Listofcivilianradiationaccidents 1996CostaRicaaccident 1987Goiâniaaccident 1984Moroccanaccident 1990Zaragozaaccident Relatedarticles Half-life Nuclearphysics Radioactivesource Radiationhardening Havanasyndrome SeealsothecategoriesRadiationeffects,Radioactivity,Radiobiology,andRadiationprotection vteColourtopicsColourscienceColourphysics Electromagneticspectrum Light Rainbow Visible Spectralcolours Chromophore Structuralcolouration Animalcolouration Colourofchemicals Water OnVisionandColours Metamerism Spectralpowerdistribution Colourperception Colourvision Colourblindness Achromatopsia test Tetrachromacy Colourconstancy Colourterm Colourdepth Colourphotography Spotcolour Colourprinting Webcolours Colourmapping Colourcode Colourmanagement Chrominance Falsecolour Chromakey Colourbalance Colourcast Colourtemperature Eigengrau Thedress Colourpsychology Coloursymbolism Colourpreferences Lüschercolourtest Kruithofcurve Politicalcolour Nationalcolours Chromophobia Chromotherapy ColourphilosophyColourspace Colourmodel additive subtractive Colourmixing Primarycolour Secondarycolour Tertiarycolour(intermediate) Quaternarycolour Quinarycolour Aggressivecolour(warm) Recedingcolour(cool) Pastelcolours Colourgradient Colourscheme Colourtool Monochromaticcolours Complementarycolours Analogouscolours Achromaticcolours(Neutral) Polychromaticcolours Impossiblecolours Light-on-dark Tincturesinheraldry Colourtheory Chromaticitydiagram Coloursolid Colourwheel Colourtriangle Colouranalysis(art) Colourrealism(artstyle) ColourtermsBasicterms Blue Green Red Yellow Pink Purple Orange Black Grey White Brown Culturaldifferences Linguisticrelativityandthecolournamingdebate Blue–greendistinctioninlanguage Colourhistory Colourblueinculture ColourinChineseculture TraditionalcoloursofJapan Humanskincolour Colourdimensions Hue Dichromatism Colourfulness Luminance Lightness Darkness Brightness Iridescence Fluorescence Grayscale Tint,shadeandtone Shadesof: Red Orange Yellow Green Cyan Blue Violet Purple Magenta Pink Brown White Gray Black Colourorganizations Pantone ColorMarketingGroup ColorAssociationoftheUnitedStates InternationalColourAuthority InternationalCommissiononIllumination(CIE) InternationalColourConsortium InternationalColourAssociation Lists Listofcolours:A–F Listofcolours:G–M Listofcolours:N–Z Listofcolours(compact) Listofcoloursbyshade Listofcolourpalettes Listofcolourspaces ListofCrayolacrayoncolours history Colourchart ListofRALcolours Listofwebcolours Related Vision Digitalimageprocessing Multi-primarycolourdisplay Quattron Qualia Lighting Localcolour(visualart) Category Index Authoritycontrol:Nationallibraries Spain France(data) Germany Israel UnitedStates Japan CzechRepublic Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Light&oldid=1099219718" Categories:LightRadiationHiddencategories:WebarchivetemplatewaybacklinksCS1French-languagesources(fr)Wikipediaarticlesincorporatingacitationfromthe1911EncyclopaediaBritannicawithWikisourcereferenceArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataWikipediaindefinitelysemi-protectedpagesWikipediaindefinitelymove-protectedpagesUsedmydatesfromSeptember2019AllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromJanuary2012ArticleswithunsourcedstatementsfromJanuary2010AllaccuracydisputesArticleswithdisputedstatementsfromJune2018ArticleswithunsourcedstatementsfromJune2018CommonscategorylinkisonWikidataArticleswithBNEidentifiersArticleswithBNFidentifiersArticleswithGNDidentifiersArticleswithJ9UidentifiersArticleswithLCCNidentifiersArticleswithNDLidentifiersArticleswithNKCidentifiers Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk English Views ReadViewsourceViewhistory More Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommonsWikiquote Languages AfrikaansAlemannischአማርኛالعربيةAragonésܐܪܡܝܐԱրեւմտահայերէնArmãneashtiঅসমীয়াAsturianuAvañe'ẽAymararuAzərbaycancaتۆرکجهবাংলাBân-lâm-gúБашҡортсаБеларускаяБеларуская(тарашкевіца)BikolCentralБългарскиBoarischBosanskiBrezhonegCatalàЧӑвашлаCebuanoČeštinaChiShonaCymraegDanskالدارجةDeitschDeutschEestiΕλληνικάEspañolEsperantoEstremeñuEuskaraفارسیFijiHindiFrançaisFryskGaeilgeGalegoГӀалгӀай贛語ગુજરાતીगोंयचीकोंकणी/GõychiKonknni한국어Հայերենहिन्दीHrvatskiIdoIlokanoBahasaIndonesiaInterlinguaÍslenskaItalianoעבריתJawaಕನ್ನಡქართულიҚазақшаKiswahiliKreyòlayisyenKriyòlgwiyannenKurdîКыргызчаLatinaLatviešuLëtzebuergeschLietuviųLigureLimburgsLa.lojban.LugandaLombardMagyarМакедонскиMalagasyമലയാളംमराठीმარგალურიمصرىمازِرونیBahasaMelayuMìng-dĕ̤ng-ngṳ̄MirandésМонголမြန်မာဘာသာNāhuatlNaVosaVakavitiNederlandsNedersaksiesनेपालीनेपालभाषा日本語NapulitanoNordfriiskNorskbokmålNorsknynorskNouormandNovialOccitanଓଡ଼ିଆOromooOʻzbekcha/ўзбекчаਪੰਜਾਬੀپنجابیPatoisPiemontèisPolskiPortuguêsRomânăRunaSimiРусиньскыйРусскийसंस्कृतम्ᱥᱟᱱᱛᱟᱲᱤScotsSeelterskShqipSicilianuසිංහලSimpleEnglishسنڌيSlovenčinaSlovenščinaŚlůnskiSoomaaligaکوردیСрпски/srpskiSrpskohrvatski/српскохрватскиSundaSuomiSvenskaTagalogதமிழ்TaqbaylitТатарча/tatarçaతెలుగుไทยᏣᎳᎩTürkçeУдмуртУкраїнськаاردوVènetoTiếngViệtVolapükVõroWalon文言Winaray吴语XitsongaייִדישYorùbá粵語Žemaitėška中文 Editlinks



請為這篇文章評分?