Steamed Panax notoginseng Attenuates Anemia in Mice With ...

文章推薦指數: 80 %
投票人數:10人

Panax notoginseng (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form ... DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Supplementaldata totalviews ViewArticleImpact SHAREON VincentKamWaiWong MacauUniversityofScienceandTechnology,Macao,SARChina LeiChen GuangdongOceanUniversity,China SongxiaoXu ZhejiangCancerHospital,UniversityofChineseAcademyofSciences,China CharlesJ.Malemud CaseWesternReserveUniversity,UnitedStates Theeditorandreviewer'saffiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. AbstractIntroductionMaterialsandMethodsResultsDiscussionConclusionsDataAvailabilityStatementEthicsStatementAuthorContributionsFundingConflictofInterestAbbreviationsSupplementaryMaterialReferences Opensupplementaldata Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex Checkforupdates Peoplealsolookedat ORIGINALRESEARCHarticle Front.Pharmacol.,21January2020Sec.Ethnopharmacology https://doi.org/10.3389/fphar.2019.01578 SteamedPanaxnotoginsengAttenuatesAnemiainMiceWithBloodDeficiencySyndromeviaRegulatingHematopoieticFactorsandJAK-STATPathwayZejunZhang1,YimingZhang1,MinGao1,XiumingCui1,YangYang1,BertvanDuijn2,3,MeiWang2,4,5,YupiaoHu1,ChengxiaoWang1andYinXiong1,2,3,4*1FacultyofLifeScienceandTechnology,KunmingUniversityofScienceandTechnology,Kunming,China2InstituteofBiologyLeiden,LeidenUniversity,Leiden,Netherlands3FytagorasBV,Leiden,Netherlands4LU-EuropeanCenterforChineseMedicine,LeidenUniversity,Leiden,Netherlands5SUBioMedicineBV,Leiden,NetherlandsPanaxnotoginseng(Burk.)F.H.Chenisamedicinalherbusedtotreatblooddisorderssinceancienttimes,ofwhichthesteamedformexhibitstheanti-anemiaeffectandactswitha“blood-tonifying”functionaccordingtotraditionaluse.Thepresentstudyaimedtoinvestigatetheanti-anemiaeffectandunderlyingmechanismofsteamedP.notoginseng(SPN)onmicewithblooddeficiencysyndromeinducedbychemotherapy.Blooddeficiencysyndromewasinducedinmicebycyclophosphamideandacetylphenylhydrazine.Anumberofperipheralbloodcellsandorgans(liver,kidney,andspleen)coefficientsweremeasured.ThemRNAexpressionofhematopoieticfunction-relatedcytokinesinthebonemarrowofmicewasdetectedbyRT-qPCR.Thejanuskinase-signaltransducerandactivatoroftranscription(JAK-STAT)signalingpathwaywasscreenedbasedonourpreviousanalysisbynetworkpharmacology.TheexpressionofrelatedproteinsandcellcyclefactorspredictedinthepathwaywasdeterminedbyWesternblotandRT-qPCR.SPNcouldsignificantlyincreasethenumbersofperipheralbloodcellsandreversetheenlargementofspleeninadose-dependentmanner.ThequantitiesofrelatedhematopoieticfactorsinbonemarrowwerealsoincreasedsignificantlyafterSPNadministration.SPNwasinvolvedinthecellcyclereactionandactivationofimmunecellsthroughtheJAK-STATpathway,whichcouldpromotethehematopoiesis.IntroductionBlooddeficiency,acommonsyndromeseenintheclinic,isapathologicalstateofblooddysfunctionandorgansdystrophyaccordingtothetheoryoftraditionalChinesemedicine(Liet al.,2015a).Thediagnosticindicatorofblooddeficiencysyndrome(BDS)mainlyreferstothereductionofbloodcellsorhemoglobin,whichissimilarasanemiainmodernmedicine.PatientsoranimalswithBDSoftensufferfromimpairedhemopoieticfunction,peripheralbloodpancytopenia,hypofunctionofinternalorgans,malnutrition,orevenmyelosuppressionduringseverediseases(Zhanget al.,2014a;Jiet al.,2017).TofindtherapiestoalleviateBDSandtreatanemiahasattractedtremendousattentioninrecentyears.Hematopoieticcytokines,suchasgranulocyte-macrophagecolony-stimulatingfactor(GM-CSF),interleukin-2(IL-2),erythropoietin(EPO),andthrombopoietin(TPO),aresometimesusedtoacceleratethehemopoieticrecoveryduringcancertherapy.However,duetotheunstableefficacy,highcost,andadverseeffectslikeosteomuscularpain,arthralgia,andallergicreactions(Dygaiet al.,2012)causedbythosetreatments,theapplicationsofabovecompoundsregimensarelimited.ItwasreportedthatmanyChineseherbalmedicineswithefficaciesofenrichingandregulatingblood,couldpreventandtreatBDSaswellasanemia(Liet al.,2012;ChenJ.etal.,2019;Liet al.,2015b).Panaxnotoginseng(PN)Burk.,aplantingenusPanax(Araliaceae),isahighlyvaluedChineseherbalmedicineusedtotreatblooddisordersinAsiaforthousandsofyears(Wanget al.,2006).Itwasrecordedin“SupplementsforCompendiumofMateriaMedica”(1786)byXueMinZhaoassuchthatPNrootcouldbeusedasahematinicdrug(Guoet al.,2010).Asteamingprocessisoftenusedtoenhancethe“blood-tonifying”functionofPN(Lauet al.,2003).Accordingtoourpreviousstudy,alongwiththedurationofsteaming,thelevelsofsomemajoractivesaponinsinrawPNweredecreasedandsomeothernewsaponinswereproducedorincreased(Xionget al.,2017a;Xionget al.,2017b).SuchtransformationofactiveconstituentsinrawandsteamedPN(SPN)contributestothedifferenceintheirefficacies,suchasthatSPNisbetteratnourishingthebloodandsupplementingqi(vitalenergy)(TheStatePharmacopoeiaCommissionofPeople'sRepublic,2005;Xionget al.,2017b).AlthoughmultiplepharmaceuticstudieshavebeencarriedouttoconfirmthetherapeuticeffectofSPNonBDS(TheStatePharmacopoeiaCommissionofPeople'sRepublic,2005;Zhouet al.,2014;Xionget al.,2017a;Xionget al.,2017b),theunderlyingactionmechanismisstillunclear,whichhindersthedevelopmentofanti-anemiadrugsfromthisherbalmedicineofwhichsideeffectsareonlyrarelyreported.TobetterelucidatethemechanismofSPNtreatingBDS,theclassicalBDSmodelinducedbyacetylphenylhydrazine(APH)andcyclophosphamide(CY)wasusedinthisstudy(Zhanget al.,2014a).BasedonourpreviousanalysisofthepossiblesignalingpathwaysrelatedtothehematiniceffectofSPNusingthenetworkpharmacology,thejanuskinase-signaltransducerandactivatoroftranscription(JAK-STAT)signalingpathwaywaschosentofurtherelucidatesinceitwaspredictedtobeoneofthepathwayswithalargenumberofpotentialtargetsinvolved(FigureS1)(Xionget al.,2019).Thepathwayinvolvesmanymembersofthecytokinereceptorsuperfamily,includingGM-CSF,EPO,TPO,interferons,andnumerousinterleukins,whichmakesitcentraltohematopoieticcellbiologyandhematologictherapyalike(Darnellet al.,1994;Wardet al.,2000).Inthisstudy,basedontheclassicalBDSmicemodel,thehematopoieticeffectandworkingmechanismofSPNwereinvestigatedbyevaluatingtheroutinebloodparameters,organcoefficients,andhematopoiesis-relatedfactorsinvolvedintheJAK-STATpathway.ThesedataprovideatheoreticalbasisfortheuseofSPNanditsproductsinhumanhealthandprovidescluesfordevelopingnewdrugstotreatBDSaswellasanemia.MaterialsandMethodsPreparationandChemicalAnalysisofSteamedPanaxnotoginsengSampleswerecollectedfromWenshan,YunnaninChina(104°077ˊE,23°188ˊN),whichwereidentifiedtobethedriedrootandrhizomeofP.notoginseng(Burkill)F.H.ChenbyProf.XiumingCuifromKunmingUniversityofScienceandTechnology.Thespecimen(No.WSPN15101)isdepositedinYunnanKeyLaboratoryofP.notoginseng,KunmingUniversityofScienceandTechnology(FigureS2),whichcanbefullyvalidatedusinghttp://mpns.kew.org/mpns-portal/?_ga=1.111763972.1427522246.1459077346.AndthequalityofsampleswasconsistentwiththerequirementsofChinesePharmacopoeiaof2015edition(ChinesePharmacopoeiaCommission,2015).ThepreparationofSPNwasdescribedinourpreviousstudy(Xionget al.,2017b).Inshort,SPNsampleswerepreparedbysteamingthecrushedrawmaterialsinanautoclave(ShanghaiBoxunIndustryandCommerceCo.,Ltd,China)for6hat120°C.Thesteamedpowderwasthendriedinaheating-airdryingovenatabout45°Ctoconstantweight,thenpowderedandsievedthrougha40-meshsieve.QualitativeandquantitativeanalysesofSPNwereperformedaspreviousreport(Xionget al.,2017a).Inbrief,notoginsenosideR1andginsenosidesRg1,Re,20(R)-Rh1,Rb1,Rd,Rk3,Rh4,20(S)-Rg3,20(R)-Rg3(SichuanWeikeqiBiologicalTechnologyCo.,Ltd.Sichuan,China)withpurity≧98%wereusedasstandardcompounds.TheanalysiswasperformedonanAgilent1260HPLCsystem(AgilentTechnologies)equippedwithaG1311BPump,aG4212BDADdetector,andaG1329Bautosampler.Chromatographicseparationwascarriedoutat30°ConaVisionHTC18column(250×4.6mm,5μm).ThemobilephasewascomprisedofA(ultrapurewater)andB(methylcyanide).Thegradientmodewasasfollows:0–20min,80%A;20–45min,54%A;45–55min,45%A;55–60min,45%A;60–65min,100%B;65–70min,80%A;70–90min,80%A.Theflowratewassetat1.0ml/min.Thedetectionwavelengthwassetat203nmandsamplevolumewassetat10μl.TheHPLCchromatogramofSPNsampleandchemicalstructuresofdominatingcompoundscharacterizedwereshowninFigureS3.AnimalAnimalexperimentalproceduresinthestudywerestrictlyconformtheGuidefortheCareandUseofLaboratoryAnimalsandrelatedethicsregulationsofKunmingUniversityofScienceandTechnology.TheprotocolwasapprovedbytheExperimentalAnimalWelfareandEthicsCommittee,KunmingUniversityofScienceandTechnology.SixtyKunming(KM)mice,halfmaleandhalffemale,weighing18–22g,werepurchasedfromTianqinBiotechnologyCo.Ltd.,Changsha,China[SCXK(Xiang)2014-0011].Micewererandomlydividedintosixgroups,namelythecontrolgroup,modelgroup,FufangE'jiaoJiang(FEJ)group,high-doseSPN(H-SPN)group,moderate-doseSPN(M-SPN)group,andlow-doseSPN(L-SPN)group,10miceineachgroup(thepoweranalysistodeterminethesamplesizewasgiveninTableS1).Theexperimentalmethodwasdescribedinourpreviousstudy(Xionget al.,2017a).“TheBDSmodelwasestablishedbyintraperitonealinjectionof0.07g·kg-1ofCYforthefirst3daysandahypodermicinjectionof0.02g·kg-1ofAPHonthefourthday.Afterthat,miceinthecontrolgroupwereadministeredwith0.9%normalsaline,whereasothergroupswereadministeredwithFEJ(8ml/kg-1),orSPNpowder(1.8,0.90,and0.45g·kg-1,respectively),respectively,bygavagefor12days.”BloodRoutineTestHalfanhourafterthelastexperimentaladministration(saline,FEJ,orSPN),themicewereslightlyanesthetizedwithasmallamountofdiethylether,andbloodwastakenfromtheorbitandcollectedintoasterilecentrifugetubecontainingsodiumcitrate.BloodwassubjectedtoaperipheralhemogramanalysisbyaHEMAVET950full-automaticbloodcellanalyzer(DrewScientificGroup,Dallas,TX,USA),forthequantificationofredbloodcells(RBCs),whitebloodcells(WBCs),hemoglobin(Hb)andplatelets(PLTs).OrganCoefficientAftertheanesthetizationandbloodcollectionasdescribedin2.3,themiceweresacrificedbycervicaldislocation.Theliver,kidney,andspleenswerewashedinnormalsalinesolution,driedwithfilterpaper,andweighedimmediately.ThespleenswerestoredinliquidnitrogenforWesternblotanalysis.Organcoefficientwascalculatedbythefollowingequation:organcoefficient=[organwetweight(g)/bodyweight(g)]×100%(Zhanget al.,2014b).AnalysisofEPO,EPOReceptor(EPOR),TPO,TPOReceptor(C-Mpl),GM-CSF,andGATA-1inMiceBoneMarrowNucleatedCellsOnefemurwasisolatedafterthesacrificeofeachmouse.Theattachedmuscleswereremovedbygauzepolishing.Thefemurwasbrieflysoakedin75%ethanolbeforewashingwithphosphatebufferedsolutionforthreetimesunderasepticconditions.Thebonemarrowcellswerewashedoutofthefemurwithphosphatebufferedsolutionseveraltimesandfilteredwitha0.4mmdiameterneedle.Thebonemarrowcellsuspensionswereseparatedwithmicelymphocyteseparationsolutiontopreparethebonemarrownucleatedcells,afterwhich800μlofRNAisoPluskit(TaKaRa,Kusatsu,Japan)wasaddedbeforestorageat−80°Cuntilreal-timequantitativepolymerasechainreaction(RT-qPCR)analysiswasdone.TotalRNAfromthebonemarrownucleatedcellswasextractedusingtheRNAisoPluskit(TaKaRa,Kusatsu,Japan)inaccordancewiththemanufacturer'sprotocols.ThentotalRNA(microgram)wasreverse-transcribedintocDNAusingaPrimer-ScriptFirstStrandcDNAsynthesiskit(TaKaRa,Kusatsu,Japan)(Yanget al.,2018).Thedesignofgene-specificprimerswasdonewithPrimer5.0softwarebasedonpublishedmicesequencesfromtheGeneBank/NationalCenterforBiotechnologyInformationdatabaseandtheyweresynthesizedbyTsingKeBiologicalTechnology(Beijing,China).ThenucleotidesequencesprimersusedforPCRwereshowninTable1.TheRT-qPCRprogramwasconductedusingaLightCycler®96System(DBI®Bioscience,Ludwigshafen,Germany).Thermocyclingparametersincludedaninitialphaseof95°Cfor2minfollowedby40cyclesof95°Cfor10sand60°Cfor32s.Therelativegeneexpressionvalueswerecalculatedwiththe2−△△Ctmethod(Chenet al.,2017).TABLE1Table1Primerssequenceandparametersforareferencegeneandsixtargetgenes.PathwayandTargetsAnalysesPredictionBasedonpreviousresearch(Xionget al.,2019),20compoundsincludingginsenosidesofF2,Rb1,Rb2,Rb3,Rc,Rd,Re,Rg1,Rh2,Rh4,Rk3,20(R)-Rg2,20(S)-Rg2,20(R)-Rg3,20(S)-Rg3,20(R)-Rh1,and20(S)-Rh1;andnotoginsenosidesofC,R1,andR2reportedinSPNwereselectedtoconstructthenetwork.“ThechemicalstructuresofthecompositecompoundsinSPNwereobtainedfromtraditionalChinesemedicineDatabase@Taiwan(TDT)ordrawnwithChemDrawprofessional15.0(Chen,2011).ThetargetsofconstituentswerepredictedbytheonlinetargetpredictionsoftwareofPharmmapperwithacriterionof“fitscore”>4(http://lilab.ecust.edu.cn/pharmmapper/index.php)(Wanget al.,2017).GeneandproteintargetsassociatedwiththediseaseofanemiawerecollectedfromtheOnlineMendelianInheritanceinMan(OMIM)database(Ambergeret al.,2015).DatabaseofInteractingProteinsforprotein-proteininteractions(PPI)wasemployedtoidentifythepossibleinteractionsoftheaforementionedtargets.AllproteinIDcodeswereconvertedtoUniProtIDs(Weiet al.,2016).”WeusedtheDAVID(aDatabaseforAnnotation,Visualization,andIntegratedDiscovery)FunctionalAnnotationBioinformaticsMicroarrayAnalysis(https://david.ncifcrf.gov/)forpathwayenrichmentanalysisandtheKyotoEncyclopediaofGenesandGenomes(KEGG)toconstructthe“SPNcomponents-target-anemia”networkwithprotein-proteininteractionsinformation.Threetopologicalparametersof“degree,”“betweennesscentrality”and“closecentrality,”andCytoscape4.3wereappliedtoscreenpotentialtargetsforSPNtreatinganemia(Xionget al.,2019).TheserelevantproteinswereputintoDAVIDtoperformgeneontologytermsandKEGGpathwayanalysis.VerificationTotalProteinExtractionandWesternBlottingAnalysisSpleenproteinswereextractedusingRIPAlysisbuffer(Solarbio,Beijing,China)andcentrifugedat12,000 gfor10 min at4°C.ProteinconcentrationwasassessedusingtheBCAProteinAssayKit(Biosharp,Beijing,China).Samplescontainingequalamountsofprotein(80μg)wereseparatedby10%sodiumdodecylsulfate-polyacrylamidegelelectrophoresisandthentransferredto0.45μmpolyvinylidenedifluoridemembranes(Biosharp,Beijing,China).Thenon-specificbindingsitesonthemembranewerethenblockedwith5%freshnon-fatdrymilkinTrisbufferedsalineTBSwithTween(10mMTris,150mMNaCl,pH7.4)with0.1%Tween20)for2h.Subsequently,theywereincubatedwithprimaryantibodies(anti-IL-2,anti-STAT1,anti-SHP2,anti-JAK1,andanti-p-JAK1;1:1000dilution;Abcam,Cambridge,UK)andprimaryβ-actinantibody(1:1,000dilution;abmart,Shanghai,China)overnightat4°C,respectively.Afterthis,themembranewaswashedfollowedbythree10minwashesinTBST,andthenincubatedwithanti−mousesecondaryantibody(1:2000dilution;CellSignalingTechnology,Shanghai,China)for2hatroomtemperaturefollowedbythree10minwashesinTTBS.Finally,thechemiluminescentsignalswereobservedwithamultifunctionalgelimagingsystem(Bio-Rad,USA)anddensitometryforimmunoreactivebandswasperformedwithNationalInstitutesofHealthsoftware(ImageJ).AnalysisofIL-2,STAT1,SHP2,p-JAK1,Bcl-2,Bcl-XL,c-Myc,andp21inMiceSpleenbyRT-qPCRTheanalysismethodreferstoitem2.5.IL-2,STAT1,SHP2,p-JAK1,Bcl-2,Bcl-XL,c-Myc,andp21genessequencesynthesizedbyTsingKeBiologicalTechnology(Beijing,China),andprimerssequenceareshowninTable2.TABLE2Table2PrimerssequenceandparametersforIL-2,STAT1,SHP2,p-JAK1,Bcl-2,Bcl-XL,c-Myc,andp21genes.StatisticalAnalysesAlldataareexpressedasmeans±standarddeviation.SPSS21.0software(StatisticalProgramforSocialSciences,SPSSInc,USA)wasappliedtocarryoutthetwo-tailedunpairedt-test.AvalueofP<0.05wasconsideredtoindicateasignificantdifference.AvalueofP<0.01wasconsideredtoindicateahighlysignificantdifference.QuantitativegeneexpressionsweredeterminedbyRT-qPCRandhistogramsweredrawnbyGraphPadPrism7software(GraphPadSoftware,USA).ResultsGeneralBehaviorofMiceThechangeofgeneralbehaviorofmicecanreflecttheoccurrenceandrecoveryofBDSofmicetocertaindegree(Liet al.,2012).AftertheinductionofBDS,miceinthemodelgroupbecamesluggish,exhaustedandsomnolent,alongwithweightloss,sparsehair,paleearsandtail,andlossofappetite.ThosesymptomswereconsistentwiththedescriptionofBDSinChinesemedicine(Jiet al.,2017).Incontrast,miceinthecontrolgroupandBDS-inducedmicetreatedwithFEJorSPNwererelativelyvigorousandstrong,presentingthickandlustroushair,pinkandmoistnoseandlips,roundandpinktail,gainedweightandbetterappetite.BloodRoutineTestAftertheadministrationofsaline,FEJorSPNfor12days,thequantitiesofWBC,RBC,Hb,andPLTfromtheperipheralbloodofmiceweredetermined(Figure1).Comparedtothecontrolgroup,thelevelsofWBC,RBC,Hb,andPLTinthemodelgroupweredecreasedsignificantly(p<0.01),indicatingtheanemiamodelwasestablishedsuccessfully.ComparisonwithinthemodelgroupshowsthatWBC,RBC,HbandPLTlevelsinmicetreatedwithFEJandH-SPNwereincreasedsignificantly(p<0.01orp<0.05).Inparticular,allthreedoses(H,M,andL)ofSPNsignificantlyimprovedthelevelofWBC(p<0.01).RBCandHblevelsinmicetreatedwithM-SPNandL-SPNwerenotsignificantlyincreased.FIGURE1Figure1Thebloodparametersofthecontrolandmodelmiceaftertreatmentwithsalinesolution(model),FEJanddifferentamountsdosesofSPN.(A)ThenumberofWBC.(B)ThenumberofRBC.(C)ThecontentofHb.(D)ThenumberofPLT.Eachvaluerepresentsthemean±SD(n=10);*p<0.05and**p<0.01,comparedtothecontrolgroup;▲p<0.05and▲▲p<0.01,comparedtothemodelgroup.OrganCoefficientsTheresultsfororgancoefficientsareshowninFigure2.Comparedtothecontrolgroup,theliverandkidneyofthemodelgroupwererelativelysmall,butthespleenwasabnormallyenlarged.Exceptforthespleencoefficient,therewasnosignificantdifferenceinotherorgancoefficientsbetweentheexperimentalgroups(model,FEJ,H-SPN,M-SPN,andL-SPNgroup)andthecontrolgroup.Comparedtothecontrolgroup,thespleencoefficientofthemodelgroupwasincreasedsignificantly(p<0.01).ComparisonwithinthemodelgroupshowsthatthespleencoefficientsoftheFEJandH-SPNgroupsweredecreasedsignificantly(p<0.01),theM-SPNgroupwasdecreasedsignificantly(p<0.05),whereastherewasnosignificantdifferencefortheL-SPNgroup.Accordingtheresults,SPNinducesareversingeffectontheenlargementofspleeninadose-dependentway.FIGURE2Figure2Theorgancoefficientsofcontrolandmodelmiceaftertreatmentwithsalinesolution(model),FEJanddifferentdosesofSPN.(A)Thelivercoefficient.(B)Thespleencoefficient.(C)Thekidneycoefficient.Eachvaluerepresentsthemean±SD(n=10);**p<0.01,comparedtothecontrolgroup;▲p<0.05and▲▲p<0.01,comparedtothemodelgroup.EffectofSPNonEPO,EPOR,TPO,c-Mpl,GM-CSF,andGATA-1inMiceBoneMarrowTheeffectsofFEJandSPNonthemRNAexpressionofhematopoieticfunction-relatedcytokinesinthebonemarrowofmiceisshowninFigure3.Comparedtothecontrolgroup,thelevelsofEPO,EPOR,TPOandc-Mplinthemodelgroupwereincreasedsignificantly(p<0.01orp<0.05).ComparisonwithinmodelgroupshowsthatthelevelsoftheabovecytokinesinmicetreatedwithFEJandH-SPNwereincreasedsignificantly(p<0.01).IncreasestodifferentdegreeswerealsoseenintheM-SPNandL-SPNgroups.Comparedtothecontrolgroup,thelevelsofGM-CSFandGATA1inthemodelgroupweredecreasedsignificantly(p<0.01orp<0.05).ComparisonwithinthemodelgroupshowsthatbothcytokinesweresignificantlyincreasedinmicetreatedwithFEJ,H-SPN,M-SPNandL-SPN(p<0.01orp<0.05).ThemRNAexpressionlevelsofthesehematopoieticrelatedcytokineswerechangedinaSPNdose-dependentmanner.FIGURE3Figure3ThemRNAexpressionof(A)EPO,(B)EPOR,(C)TPO,(D)c-Mpl,(E)GM-CSF,and(F)GATA1incontrolandmodelmiceaftertreatmentwithsalinesolution(model),FEJanddifferentdosesofSPN.Eachvaluerepresentsthemean±SD(n=10);*p<0.05and**p<0.01,comparedtothecontrolgroup;▲p<0.05and▲▲p<0.01,comparedtothemodelgroup.PathwayandTargetsAnalysesPredictionAccordingtothepathwayenrichmentanalysis,theJAK-STATsignalingpathwaywaspredictedtobeoneofthemostenrichedpathways(FigureS1).BasedontheKEGGanalysis,threeanemia-relatedtargetsareinvolvedinthepathwayandcorrespondingactiveconstituentsinPNarepredictedandshowninTable3(Xionget al.,2019).Anotherkinaseprotein,JAK1,betweenIL-2andSTAT1orSHP2,alsoplaysasignificantpivotalroleintheJAK-STATpathway(Figure4).Therefore,theexpressionofIL-2,JAK1,p-JAK1,andSTAT1proteinsinBDSmicewasinvestigatedinthefollowinganalysis.Inaddition,themRNAexpressionofdownstreamcytokinesincludingBcl-2,Bcl-XL,c-Myc,andp21relatedtothecellcyclewasinvestigatedbasedonthepredictionandreferencestudies(Fröjmarket al.,2010;Karimianet al.,2016).TABLE3Table3TheinformationofthreetargetsandtheircorrespondingactiveconstituentsinvolvedinJAK-STATsignalpathwaypredictedbyKEGG.FIGURE4Figure4Targetproteins(IL-2,SHP2,andSTAT1)predictedtobeinvolvedintheJAK-STATpathwayandthedownstreamcytokines(Bcl-2,Bcl-XL,c-Myc,andp21).IL-2,interleukin-2;JAK1,januskinase-1;SHP2,tyrosine-proteinphosphatasenon-receptortype11;GRB,growthfactorreceptor-boundprotein;SOS,guaninenucleotideexchangefactor;STAT1,signaltransducerandactivatoroftranscription;Bcl-2,B-celllymphoma-2;Bcl-XL,Bcl-2like1;c-Myc,v-mycavianmyelocytomatosisviraloncogenehomolog;andp21,cki.WesternBlottingAnalysisTheproteinexpressionofJAK1,p-JAK1,STAT1,SHP2,andIL-2inthespleenofmiceineachgroupisshowninFigure5.TheresultsofthegrayscaleanalysisareshowninTable4.Accordingtotheresults,therewasnosignificantdifferenceinJAK1expressionamongthegroups(p>0.05).Theexpressionlevelofp-JAK1inthemodelgroupwassignificantlyhigherthaninthecontrolgroup(p<0.01).BothFEJ,H-,andM-SPNresultinsignificantlylowerproteinexpressionlevelsthaninthemodelgroup(p<0.01).Comparedtothecontrolgroup,theexpressionlevelsofproteinSTAT1,SHP2andIL-2inthemodelgroupweresignificantlydecreased(p<0.01orp<0.05).ComparisonwithinthemodelgroupshowsthattheexpressionlevelsoftheproteinIL-2aftertreatmentwithFEJ,H-SPN,M-SPNorL-SPNweresignificantlyincreased(p<0.01orp<0.05).TheexpressionlevelsoftheproteinSTAT1andSHP2inFEJandH-SPNgroupsweresignificantlyhigherthanthoseinthemodelgroup,andthedifferenceswerestatisticallysignificant(p<0.01orp<0.05),whilethoseforinM-SPNandL-SPNgroupswerenotstatisticallysignificant(p>0.05).FIGURE5Figure5TheexpressionofpredictedtargetproteinbyWesternblot.Lanes1–6representcontrol,model,FEJ,H-SPN,M-SPN,andL-SPNgroup,respectively.TABLE4Table4Grayvalueratioofpredictedtargetproteins/β-actinbyWesternblot.QuantificationofIL-2,STAT1,SHP2andp-JAK1byRT-qPCRinMiceSpleenTheexpressionofIL-2,STAT1,SHP2andp-JAK1mRNAinthespleenofmiceisshowninFigure6.Comparedtothecontrolgroup,theexpressionofIL-2andSHP2mRNAinthemodelgroupwassignificantlydown-regulated(p<0.01).ComparisonwithinthemodelgroupshowsthataftertreatmentwithFEJordifferentdoseofSPN,theexpressionofIL-2andSHP2mRNAintheadministeredgroupswasincreasedtovaryingdegreesinadose-dependentmanner.TherewasnosignificantdifferenceintheexpressionofIL-2andSHP2betweentheL-SPNgroupandthemodelgroup(p>0.05),othersarestatisticallysignificant(p 0.05).Therewasnosignificantdifferenceintheexpressionofp-JAK1betweentheM-SPNgroupandthemodelgroup(p>0.05).Andtherewassignificantdifferencebetweentheothergroups(p<0.01).FIGURE6Figure6ThemRNAexpressionof(A)IL-2,(B)STAT1,(C)SHP2,and(D)p-JAK1incontrolandmodelmiceaftertreatmentwithsalinesolution(model),FEJanddifferentdosesofSPN.Eachvaluerepresentsthemean±SD(n=10);*p<0.05and**p<0.01,comparedtothecontrolgroup;▲p<0.05and▲▲p<0.01,comparedtothemodelgroup.QuantificationofJAK1-STAT1DownstreamCytokinesinMiceSpleenbyRT-qPCRTheexpressionofBcl-2,Bcl-XL,c-Myc,andp21mRNAinthespleenofmiceisshowninFigure7.Comparedtothecontrolgroup,theexpressionofBcl-2andBcl-XLmRNAinthemodelgroupwashighlysignificantlydown-regulated(P<0.01).ComparisonwithinthemodelgroupshowsthataftertreatmentwithFEJordifferentdoseofSPN,theexpressionofBcl-2andBcl-XLmRNAintheadministeredgroupwasincreasedtovaryingdegreesinadose-dependentmanner.ExceptthattherewasnosignificantdifferencebetweentheBcl-2mRNAofL-SPNandthemodelgroup(p>0.05),andtheothergroupswerestatisticallysignificant(p<0.01).Comparedtothecontrolgroup,theexpressionofc-Mycandp21mRNAinthemodelgroupwashighlysignificantlyup-regulated(p<0.01).ComparisonwithinthemodelgroupshowsthataftertreatmentwithFEJordifferentdoseofSPN,theexpressionofc-Mycandp21mRNAintheadministeredgroupdecreasedandwasnegativelyrelatedtothedrugconcentration.ExceptthattherewasnosignificantdifferencebetweentheL-SPNandthemodelgroup(p>0.05),andtheothergroupswerestatisticallysignificant(p<0.01).FIGURE7Figure7ThemRNAexpressionof(A)Bcl-2,(B)Bcl-XL,(C)c-Myc,and(D)p21incontrolandmodelmiceaftertreatmentwithsalinesolution(model),FEJanddifferentdosesofSPN.Eachvaluerepresentsthemean±SD(n=10);*P<0.05and**P<0.01,comparedtothecontrolgroup;▲P<0.05and▲▲P<0.01,comparedtothemodelgroup.DiscussionAccordingtotraditionalChinesemedicinetheory,thepathogenesisofblooddeficiencycouldbethedisharmonyofYin-Yang,qideficiency,bloodstasis,andthedysfunctionofinternalorgans.Therefore,herbalmedicineswhichcannourishqiandblood,aswellasinvigoratethespleenandkidneyareoftenusedintheclinictotreatblooddeficiencyandanemia(Hijikataet al.,2009;Wuet al.,2013;Sunet al.,2016).Forexample,FEJ,thepositivecontrolinthestudy,isawidelyusedimmune-boostingtraditionalChineseformulawhichhasbeenclearlyconfirmedtopromotetherecoveryofbonemarrowhemopoieticactivityandenhancetheimmunefunction(Liuet al.,2014;Shenet al.,2016).WhileforSPN,anothertonicandhemostaticdrugusedformorethan400years,thepossiblemechanismofthe“blood-tonifying”effectisunclearyet.Afterthemodeling,therewasanobviouschangeintheappearanceofmice,includinghairloss,movementretardation,andweightloss,withthesignificantdecreaseintheperipheralWBC,RBC,Hb,andPLT,whicharecharacteristicclinicalmanifestationsofblooddeficiencyaswellasanemia(Sunet al.,2016).WiththeH-SPNandFEJtreatments,thedecreaseofperipheralbloodcellswasreversedsignificantly(Figure1),suggestingthatH-SPNandFEJcouldenhancethehematopoieticeffectofmicewithBDS,consistentwiththetraditionaluseofSPNandFEJtotonifytheblood(Guet al.,2015).Meanwhile,M-SPNandL-SPNcouldnotincreasethenumbersofRBC,HbandPLTsignificantly,suggestingthatahigherdosageofSPNwasrequiredtoachieveamoreobvioustherapeuticeffect,whichwasconsistentwithourpreviousstudy(Xionget al.,2017a).Anotherdiagnosticconsiderationforanemiaistheenlargedsizeofspleen,whichisoneofthemostcommonandearlyorganstobeaffectedindifferenttypesofanemia(Dhaliwalet al.,2004;Alsalem,2011).Itisgenerallyacceptedthatthehematopoieticdeficiencyisassociatedtoamassivemigrationofbonemarrowprogenitorcellsoutofthemarrow,viatheblood,leadingtoanaccumulationinthespleen(Queirozet al.,2004).AndthepoolingofRBCsintheenlargedspleencanexacerbatethesyndromeofanemiainturn(Gasparet al.,2015).Therefore,thedeclineofRBCsincirculationandanemiacanbebothcorrelatedwiththeextentoftheenlargementofthespleen(Wagneret al.,2000).AccordingtoFigure3,theweightandsizeofspleeninthemodelgroupwereincreased.WhilethespleenofmicetreatedwithFEJ,H-SPN,andM-SPNwaskeptfromenlargingcomparedtothemodelgroup(Figure2C).ItindicatesthatFEJ,H-SPN,andM-SPNcouldalleviatethesideeffectsofchemotherapyonthespleenandprotecttheimmuneorgan.Theprocessofbloodcellformation,bywhichasmallnumberofself-renewingstemcellsgiverisetolineagecommittedprogenitorcellsthatsubsequentlyproliferateanddifferentiatetoproducethecirculatingmaturebloodcells,isregulatedbyaseriesofrelatedhematopoieticrelatedcytokines(Sieff,1987).Hematopoieticgrowthfactors(HGFs)includingEPO,TPO,GM-CSF,andIL-3arecytokinesinvolvedintheregulationofhematopoiesis(Ferrettiet al.,2006;Genovaet al.,2016).Amongthem,EPOisaglycoproteinhormoneandamajoragonistfortheproductionofWBC(Frankeet al.,2013).EPObindstoitsreceptorEPOR,activatesthedownstreamJAK-STATsignalingpathway,promotesthegrowthanddifferentiationoferythroidprogenitorcells,inhibitstheirapoptosis,andmobilizeshematopoieticstemcells(HSCs)(Madonnaet al.,2009;Elliottet al.,2014).TheresultsinFigures3A,BshowthattheexpressionsofEPOandEPORmRNAinthemodelgroupwashigherthanthoseinthecontrolgroup,suggestingthatthechemotherapy-inducedanemiacausedafeedbackincreaseinEPOcontent,andtheninducedtheexpressionofEPOR.Thisisacompensatorymechanism.Duetothedamageofchemotherapydrugstobonemarrowcells,thereactivityofreactivecellstoHGFsisreduced.SoahigherconcentrationofHGFsisrequiredtopromotetherecoveryofhematopoieticfunction,whichisconsistentwiththeaboveliteraturereports.Whileaftertreatingwiththedrugs,theexpressionofEPOandEPORmRNAintheadministrationgroups(FEJ,H-SPN,M-SPN,andL-SPNgroups)washigherthanthatinmodelgroup,indicatingthatFEJandSPNcouldpromotetherecoveryoferythropoiesisbypromotingthesynthesisandsecretionofEPOinmicebonemarrow.AsimilartendencywasalsoobservedinthelevelchangeofTPOanditsreceptorc-Mplinthebonemarrowofmice(Figures3C, D),theformerofwhichisthemostimportantregulatorofplateletproduction,aswellasamajorcytokinerequiredforthedevelopmentofHSCs,monocytes,granulocytes,mastcellsanddendriticcells(Chen,2004;Kirshenbaumet al.,2004).AfteradministrationofFEJandSPN,theexpressionofTPOandc-MplmRNAinbonemarrowwassignificantlyincreased,whichwouldbebeneficialtopromotetherecoveryofmegakaryocyteshematopoiesisandincreasethenumberofperipheralPLTinmicewithBDS.AnotherimportantHGFisGM-CSF,whichmainlyactsonHSCs/HPCsandbonemarrowstromalcellsorfibroblasts,andplaysanimportantroleinregulatinghematopoiesisandleukocyteformation(Kimuraet al.,1997;Waller,2007).TheresultsinFigure3EshowedthatAPHandCYsignificantlyinhibitedtheexpressionofGM-CSFmRNA,whichwasincreasedsignificantlyaftertheadministrationofFEJandSPN.ItindicatedthatFEJandSPNcouldinhibitthecytotoxicityofCYandAPHtosomeextent.GM-CSFlevelwasinducedtoincrease,promotingtherecoveryofgranulocytichematopoieticfunction.WealsoinvestigatedthechangeofGATA1,anecessarytranscriptionfactorforthedevelopmentandmaturationofnormalerythrocytes.TheincreasedexpressionofGATA1mRNAaftertreatingFEJandSPNwasconsistentwiththeabovementionedcytokines(Figure3F).Fromtheresultsofresponsesofthehematinicfunction-relatedcytokines,wenotedthattheexpressionofthemwerecloselyrelatedtothesignalpathwayofJAK-STAT,whichplaysacriticalroleintransductionofextracellularsignalsfromcytokinesandgrowthfactorsinvolvedinhematopoiesis,immuneregulationandinflammation(VainchenkerandConstantinescu,2013;Chenet al.,2016).Accordingtoourpreviousanalysisofnetworkpharmacology,JAK-STATwasalsopredictedtobeoneofthemajorpathwaysrelatedtothetreatmentofanemiawithSPN(FigureS1).IL-2,STAT1,andSHP2inFigure4,werepredictedtobethemajorthreetargetsinvolvedintheJAK-STATpathwaytotreatanemia(Xionget al.,2019).Toverifytheprediction,weinvestigatedtheeffectofSPNontheexpressionofthethreetargetsandalsothedownstreamcytokinesofJAK-STATincludingBcl-2,Bcl-XL,c-Myc,andp21.Accordingtotheresults,thetreatmentbyAPHandCYcouldsignificantlyinhibittheexpressionofIL-2andSHP2proteins(Figure5)andthecorrespondedmRNA's(Figures6A,C).SinceIL-2isaTh1typecytokinesecretedbyTcells(Vafadariet al.,2012)andSHP2playsanup-regulationroleinthedevelopmentandfunctionofhematopoieticcells(Kratzet al.,2007;Zhuet al.,2011),thechemotherapy-inducedanemiacouldberelatedtothedevelopmentofimmunosuppressionandcytotoxicityonhematopoieticcells.Afterthedrugadministration,theexpressionofIL-2andSHP2wasincreased,suggestingthatFEJandSPNcouldmakeapositiveeffectonenhancingtheTcellimmunityandreducingthecytotoxicity.Meanwhile,itwasreportedthatSHP2directlymediatesmanycytokinesandgrowthfactorreceptorslikeGM-CSFandEPOreceptors(Myerset al.,1998).TheincreasedmRNAexpressionofGM-CSFandEPORshowninFigure3couldbepartlyattributedtotheup-regulationroleofSHP2intervenedbySPN.Theroleofdrugsonanotherimportantsignaltransducerandactivatoroftranscription,STAT1,wasinvestigatedbyWesternblotandRT-qPCR.AsshowninFigure6B,thechemotherapy-inducedtheexpressionofSTAT1mRNA,whichwasdecreasedinadose-dependentwaywhentreatedwithSPN.However,theactivationofSTAT1proteinlevel(Figure5)wasinconsistentwithitsmRNAexpression.Thismightbeduetothatthepost-transcriptionalRNAandthebindingsitesofregulatoryproteinschangedthemodeoftranslationandthenaffectedtheexpressionofproteins.Suchphenomenonwasalsoinvestigatedinpreviousstudies(Saunderset al.,2007;Nicolosoet al.,2016).Anotherpossibleexplanationmaybethatthepost-translationalmodificationledtoadecreaseinthestabilityorhalf-lifeoftheprotein.Also,theactivityofJAK1anditsphosphorylatedform,theenzymesessentialforthereceptorsignalinglocatedintheupstreamofSTAT1,wasinvestigated.Accordingtotheresults,thetreatmentofdrugsmadenosignificanteffectontheexpressionofJAK1,whereastheexpressionofp-JAK1wasincreasedafterthechemotherapyandthendecreasedaftertreatingwithFEJandH-SPN.ItsuggestedthatFEJandH-SPNmightregulatethehematinicfunctionthroughphosphorylatingJAK1.Besidestheabovetargetsinvolvedinthepathway(Figure8),networkpharmacologyalsoprovidesthechemicalinformationrelatedtotheefficacyofSPN,whichisthereforebeneficialtouncoveringtheinteractionsbetweenactiveconstituentsinSPNandthecomplexsyndromesystems(Taoet al.,2013;Shenget al.,2014).Bytheanalysisofnetworkpharmacology,sixcompoundsinSPNwerepredictedtobetheanti-anemiaonescorrespondingtothethreetargetsinvolvedintheJAK-STATsignalpathway,whichwereginsenosidesRh4,Rk3,Rb2,20(R)-Rg3,Rd,andnotoginsenosideC(Figure9).Differencesinginsenosidestructurewhichincludethetype,position,andnumberofsugarmoietiesattachedbyaglycosidicbondcancharacteristicallyinfluencethebiologicalresponses(Tenget al.,2017;Chenetal.,2019).Amongthem,20(R)-Rg3,Rh4,andRk3showedincreasedlevelsalongwiththedurationofsteamingandhadakeyroleintheactivitiesofSPNinourpreviousstudy(Xionget al.,2017b).Zhouet al.(2016)reportedthatRg3helpedrepairblooddisorderssuchasanemia,leukopenia,andthrombocytopenia.20(R)-Rg3couldalsostimulatedtheproductionofIL-2andenhancethecellularimmunityintumor-bearingmice(Wuet al.,2014),whichwasconsistentwithourresultofIL-2expression.GinsenosidesRh4andRk3wereconsideredtobenewtherapeuticdrugsfortreatinganemiasinceRk3promotedbonemarrowandextramedullaryhematopoiesiswhileRh4promotedextramedullaryhematopoiesis(Weiet al.,2018).DifferentfromRg3,Rb2andRdhaveanadditionofoneglucosemoietyandtwoglucosemoietiesattachedatC-20position.Rb2couldprotectthehematopoieticsystemfromtheirradiation-causedinjuryandpromotethesynthesisofserumproteinandDNAofmarrowcells(Leeet al.,2011;Zhanget al.,2017).GinsenosidesRdcouldregulatetheexpressionofBcl-2(Wanget al.,2013).NotoginsensideCwasonlymentionedinafewreports(Yoshikawaet al.,2001;Chenet al.,2010)whichcouldhavetheanti-tumorandimmunologicaladjuvantactivity.Infurtherstudies,theeffectsofthoseconstituentsandrelatedmechanismwillbeinvestigatedandconfirmed.FIGURE8Figure8(A)ChangesofbodyparametersandcytokinesinBDSmicecomparedtothecontrolgroup.(B)ChangesofbodyparametersandcytokinesinSPNadministrationgroupsmicecomparedtothemodelgroup.IL-2,interleukin-2;JAK1,januskinase-1;SHP2,tyrosine-proteinphosphatasenon-receptortype11;GRB,growthfactorreceptor-boundprotein;SOS,guaninenucleotideexchangefactor;STAT,signaltransducerandactivatoroftranscription;Bcl-2,B-celllymphoma-2;Bcl-XL,Bcl-2like1;c-Myc,v-mycavianmyelocytomatosisviraloncogenehomolog;p21,cki.FIGURE9Figure9ThesixcompoundscorrespondingtothethreetargetsinvolvedintheJAK-STATsignalpathwayrelatedtothetreatmentofBDSwithSPN.(A)GinsenosidesRh4,(B)ginsenosidesRk3,(C)ginsenosidesRb2,(D)ginsenosides20(R)-Rg3,(E)ginsenosidesRd,and(F)notoginsenosideC.Bcl-2,Bcl-XL,c-Myc,andp21arecellcycle-relatedfactorsofJAK1-STAT1.SPNcouldactontheJAK1-STAT1signalingpathwayandsimultaneouslyaffectthedownstreamcytokines,improvingthecellapoptosisofmicewithBDS.AccordingtoFigure7A,theexpressionofBcl-2wasup-regulatedalongwiththedoseincreaseofSPN,whichcouldmaintainthesurvivalandproliferationoferythroidprogenitorcellswhenGATA-1wasreducedinthemodelofanemia(Figure3F)(KapurandZhang,2001).Anotheranti-apoptoticproteinofBcl-XLwasalsoup-regulatedwhentreatingwithSPN(Figure7B),whichmightbeduetothemediationofGATA1,EPOandTPOthroughtheJAK/STATspathway,supportingthesurvivalofhematopoieticcells(Chibaet al.,1991;Kitajima,2006).c-Mycandp21,theexpressionofwhichwereoftenincreasedinhematologicalmalignanciescausedbyBDSorDNAdamage,werebothdown-regulatedsignificantlyaftergivingSPN(Figure7C),suggestingthatSPNmightattenuateanemiabyinhibitingthearrestofcellcyclebecauseofDNAdamage.Therefore,theexpressionofvarioushematopoieticfactorscouldbecloselyrelatedtothecellapoptosis.ThisisconsistentwiththereportofĆmielováandŘezáčová,(2011).ConclusionsThehematopoieticeffectandmechanismofSPNonmicewithBDSwasstudiedatthreelevels.Firstly,SPNrevertedthedecreaseinthenumberofperipheralbloodcellsandpreventedtheenlargementoftheextramedullaryhematopoieticorganofspleen.Secondly,SPNpromotedtheexpressionofrelatedhematopoieticcytokinesincludingEPO,EPOR,TPO,c-Mpl,GM-CSF,andGATA-1inbonemarrownucleatedcellsofmice.Thirdly,SPNwasinvolvedintheactivationofJAK-STATsignalingpathway,throughregulatingthetargetsexpressionofIL-2,p-JAK,STAT1,andSHP,andalsothedownstreamcellcyclefactorsofBcl-2,Bcl-XL,c-Myc,andp21(Figure8).SPNcouldinfluencethecellcycleandpossiblytheapoptosisprocess,enablingthedamagedcellstoobtainafavorablesurvivalconditioninablooddeficiencyenvironment.ThepresentstudyprovidesfurtherguidancefordevelopmentsintheclinicaluseandaswellasprovidescluesfordrugdevelopmentofSPN.DataAvailabilityStatementAlldatasetsgeneratedforthisstudyareincludedinthearticle/SupplementaryMaterial.EthicsStatementTheanimalstudywasreviewedandapprovedbytheExperimentalAnimalWelfareandEthicsCommittee,KunmingUniversityofScienceandTechnology.AuthorContributionsYXsupervisedtheprojectandparticipatedinthedesignofthestudy.ZZperformedtheexperimentsandstatisticalanalysisaswellasthewritingofthepaper.YYgaveexperimentalguidance.MGprovidedtherevisionandcorrectionworks.YZ,YH,CW,andXCcollectedandprocessedsamples.BDandMWguidedthedesignandmodifiedthemanuscript.FundingThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(81660661),theYunnanAppliedBasicResearchProject(2016FD040),andtheNationalResearchProgramofChina(2017YFC02503).ConflictofInterestAuthorBDwasemployedbycompanyFytagorasBV.Theremainingauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest.AbbreviationsAPH,acetylphenylhydrazine;Bcl-2,B-celllymphoma-2;BDS,blooddeficiencysyndrome;c-Mpl,thrombopoietinreceptor;c-Myc,v-mycavianmyelocytomatosisviraloncogenehomolog;CY,cyclophosphamide;EPO,erythropoietin;EPOR,erythropoietinreceptor;FEJ,FufangE'jiaoJiang;GM-CSF,granulocyte-macrophagecolony-stimulatingfactor;Hb,hemoglobin;IL-2,interleukin-2;JAK-STAT,januskinase-signaltransducerandactivatoroftranscription;KEGG,KyotoEncyclopediaofGenesandGenomes;PN,Panaxnotoginseng;PLT,platelet;RBC,redbloodcell;PT-qPCR,real-timequantitativepolymerasechainreaction;SHP-2,tyrosine-proteinphosphatasenon-receptortype11;SPN,steamedPanaxnotoginseng;TPO,thrombopoietin;WBC,whitebloodcell.SupplementaryMaterialTheSupplementaryMaterialforthisarticlecanbefoundonlineat:https://www.frontiersin.org/articles/10.3389/fphar.2019.01578/full#supplementary-materialReferencesAlsalem,A.H.(2011).Spleniccomplicationsofsicklecellanemiaandtheroleofsplenectomy.Isrn.Hematol.2011,1–7.doi:10.5402/2011/864257CrossRefFullText|GoogleScholarAmberger,J.S.,Bocchini,C.A.,Schiettecatte,F.,Scott,A.F.,Hamosh,A.(2015).OMIM.org:OnlineMendelianInheritanceinMan(OMIM®),anonlinecatalogofhumangenesandgeneticdisorders.NucleicAcidsRes.43(1),789–798.doi:10.1093/nar/gku1205CrossRefFullText|GoogleScholarChen,G.,Yi,J.Y.,Wang,L.,Liu,J.H.(2010).DeterminationmethodfornotoginsenosideCinmouseplasma.J.JilinUniv.(EarthSci.Edition).48(3),516–519.doi:10.1016/S1872-2067(10)60116-7CrossRefFullText|GoogleScholarChen,L.,Teng,H.,Fang,T.,Xiao,J.B.(2016).AgrimonolidefromAgrimoniapilosasuppressesinflammatoryresponsesthroughdown-regulationofCOX-2/iNOSandinactivationofNF-κBinlipopolysaccharide-stimulatedmacrophages.Phytomedicine23(8),846–855.doi:10.1016/j.phymed.2016.03.016PubMedAbstract|CrossRefFullText|GoogleScholarChen,Y.L.,Wang,H.M.,Hu,W.,Wang,S.S.,Wang,Y.H.,Snider,J.L.,etal.(2017).Combinedelevatedtemperatureandsoilwaterloggingstressesinhibitcellelongationbyalteringosmolytecompositionofthedevelopingcotton(GossypiumhirsutumL.)fiber.PlantSci.256,196–207.doi:10.1016/j.plantsci.2017.01.001PubMedAbstract|CrossRefFullText|GoogleScholarChen,J.,Wang,F.,Huang,S.,Liu,X.,Li,Z.,Qi,A.,etal.(2019).Jian-Pi-Yi-Shendecoctionrelievesrenalanemiain5/6nephrectomizedrats:productionoferythropoietinviahypoxiainduciblefactorsignaling.Evid-Based.Compl.Alt.2019,1–8.doi:10.1155/2019/2807926CrossRefFullText|GoogleScholarChen,W.(2004).ThrombopoietincooperateswithFLT3-ligandinthegenerationofplasmacytoiddendriticcellprecursorsfromhumanhematopoieticprogenitors.Blood103(7),2547–2553.doi:10.1182/blood-2003-09-3058PubMedAbstract|CrossRefFullText|GoogleScholarChen,C.Y.(2011).TCMdatabaseatTaiwantheworld'slargesttraditionalChinesemedicinedatabasefordrugscreeninginsilico.Plos.One6(1),e15939.doi:10.1371/journal.pone.0015939PubMedAbstract|CrossRefFullText|GoogleScholarChiba,T.,Ikawa,Y.,Todokoro,K.(1991).GATA-1transactivateserythropoietinreceptorgene,anderythropoietinreceptor-mediatedsignalsenhanceGATA-1geneexpression.NucleicAcidsRes.19(14),3843–3848.doi:10.1093/nar/19.14.3843PubMedAbstract|CrossRefFullText|GoogleScholarChinesePharmacopoeiaCommission.(2015).PharmacopoeiaofthePeople"sRepublicofChina(Beijing,China:ChineseMedicalScienceandTechnologyPress).GoogleScholarĆmielová,J.,Řezáčová,M.(2011).Proteinanditsfunctionbasedonasubcellularlocalization.J.CellBiochem.112(12),3502–3506.doi:10.1002/jcb.23296PubMedAbstract|CrossRefFullText|GoogleScholarDarnell,J.,Kerr,I.,Stark,G.(1994).Jak-STATpathwaysandtranscriptionalactivationinresponsetoIFNsandotherextracellularsignalingproteins.Science264(5164),1415–1421.doi:10.1126/science.8197455PubMedAbstract|CrossRefFullText|GoogleScholarDhaliwal,G.,Cornett,P.A.,Tierney,L.M.(2004).Hemolyticanemia.Am.Fam.Physician69(11),2599–2606.doi:10.1016/j.pop.2004.04.007PubMedAbstract|CrossRefFullText|GoogleScholarDygai,A.M.,Goldberg,V.E.,Artamonov,A.V.,Bekarev,A.A.,Vereschagin,E.I.,Madonov,P.G.,etal.(2012).Effectsandmechanismsofhemopoiesis-stimulatingactivityofimmobilizedoligonucleotidesunderconditionsofcytostaticmyelosuppression.B.Exp.Biol.Med.152(4),451–455.doi:10.1007/s10517-012-1551-9CrossRefFullText|GoogleScholarElliott,S.,Sinclair,A.,Collins,H.,Rice,L.,Jelkmann,W.(2014).Progressindetectingcell-surfaceproteinreceptors:theerythropoietinreceptorexample.Ann.Hematol.93(2),181–192.doi:10.1007/s00277-013-1947-2PubMedAbstract|CrossRefFullText|GoogleScholarFerretti,G.,Papaldo,P.,Cognetti,F.(2006).Lineage-Specifichematopoieticgrowthfactors.New.Engl.J.Med.355(5),526–527.doi:10.1056/NEJMc061587CrossRefFullText|GoogleScholarFranke,K.,Gassmann,M.,Wielockx,B.(2013).Erythrocytosis:theHIFpathwayincontrol.Blood122(7),1122–1128.doi:10.1182/blood-2013-01-478065PubMedAbstract|CrossRefFullText|GoogleScholarFröjmark,A.S.,Badhai,J.,Klar,J.,Thuveson,M.,Schuster,J.,Dahl,N.(2010).Cooperativeeffectofribosomalproteins19andPim-1kinaseonmurinec-Mycexpressionandmyeloid/erythroidcellularity.J.Mol.Med.88(1),39–46.doi:10.1007/s00109-009-0558-9PubMedAbstract|CrossRefFullText|GoogleScholarGaspar,B.L.,Sharma,P.,Das,R.(2015).Anemiainmalignancies:Pathogeneticanddiagnosticconsiderations.Hematology20(1),18–25.doi:10.1179/1607845414y.0000000161PubMedAbstract|CrossRefFullText|GoogleScholarGenova,C.,Rijavec,E.,Grossi,F.(2016).Hematopoieticgrowthfactorsinlungcancer.Curr.Opin.Oncol.28(2),836–844.doi:10.1097/CCO.0000000000000268CrossRefFullText|GoogleScholarGu,C.Z.,Lv,J.J.,Zhang,X.X.,Qiao,Y.J.,Yan,H.,Li,Y.,etal.(2015).TriterpenoidswithpromotingeffectsonthedifferentiationofPC12cellsfromthesteamedrootsofPanaxnotoginseng..J.Nat.Prod.78(8),1829–1840.doi:10.1021/acs.jnatprod.5b00027PubMedAbstract|CrossRefFullText|GoogleScholarGuo,H.B.,Cui,X.M.,An,N.,Cai,G.P.(2010).Sanchiginseng(Panaxnotoginseng(Burk)F.H.Chen)inChina:distribution,cultivationandvariations.Genet.Resour.CropEv.57(3),453–460.doi:10.1007/s10722-010-9531-2CrossRefFullText|GoogleScholarHijikata,Y.,Kano,T.,Xi,L.(2009).TreatmentforintractableanemiawiththetraditionalChinesemedicinesHominisPlacentaandCerviCornusColla(deerantlerglue).Int.J.Gen.Med.2,83–90.doi:10.2147/IJGM.S5253PubMedAbstract|CrossRefFullText|GoogleScholarJi,P.,Wei,Y.M.,Hua,Y.L.,Zhang,X.S.,Yao,W.L.,Ma,Q.,etal.(2017).Anovelapproachusingmetabolomicscoupledwithhematologicalandbiochemicalparameterstoexplaintheenriching-bloodeffectandmechanismofunprocessedAngelicasinensisandits4kindsofprocessedproducts.J.Ethnopharmacol.211,101–116.doi:10.1016/j.jep.2017.09.028PubMedAbstract|CrossRefFullText|GoogleScholarKapur,R.,Zhang,L.(2001).Anovelmechanismofcooperationbetweenc-kitanderythropoietinreceptor:stemcellfactorinducestheexpressionofstat5anderythropoietinreceptor,resultinginefficientproliferationandsurvivalbyerythropoietin.J.Biol.Chem.276(2),1099–1106.doi:10.1074/jbc.M007442200PubMedAbstract|CrossRefFullText|GoogleScholarKarimian,A.,Ahmadi,Y.,Yousefi,B.(2016).Multiplefunctionsofp21incellcycle,apoptosisandtranscriptionalregulationafterDNAdamage.DNARepair42,63–71.doi:10.1016/j.dnarep.2016.04.008PubMedAbstract|CrossRefFullText|GoogleScholarKimura,T.,Sakabe,H.,Tanimukai,S.,Abe,T.,Urata,Y.,Yasukawa,K.,etal.(1997).Simultaneousactivationofsignalsthroughgp130,c-kit,andinterleukin-3receptorpromotesatrilineagebloodcellproductionintheabsenceofterminallyactinglineage-specificfactors.Blood90(12),4767–4778.doi:10.1006/bcmd.1997.0163PubMedAbstract|CrossRefFullText|GoogleScholarKirshenbaum,A.S.,Akin,C.,Goff,J.P.,Metcalfe,D.D.(2004).ThrombopoietinaloneorinthepresenceofstemcellfactorsupportsthegrowthofKIT(CD117)low/MPL(CD110)+humanmastcellsfromhematopoieticprogenitorcells.Exp.Hematol.33(4),413–421.doi:10.1016/j.exphem.2004.12.005CrossRefFullText|GoogleScholarKitajima,K.(2006).MultipotentialdifferentiationabilityofGATA-1-nullerythroid-committedcells.GeneDev.20(6),654–659.doi:10.1101/gad.1378206CrossRefFullText|GoogleScholarKratz,C.P.,Niemeyer,C.M.,Zenker,M.(2007).AnunexpectednewroleofmutantRas:perturbationofhumanembryonicdevelopment.J.Mol.Med.85(3),227–235.doi:10.1007/s00109-006-0135-4PubMedAbstract|CrossRefFullText|GoogleScholarLau,A.J.,Woo,S.O.,Koh,H.L.(2003).AnalysisofsaponinsinrawandsteamedPanaxnotoginsengusinghigh-performanceliquidchromatographywithdiodearraydetection.J.Chromatogr.A.1011(1),77–87.doi:10.1016/S0021-9673(03)01135-XPubMedAbstract|CrossRefFullText|GoogleScholarLee,K.T.,Jung,T.W.,Lee,H.J.,Kim,S.G.,Shin,Y.S.,Whang,W.K.(2011).TheantidiabeticeffectofginsenosideRb2viaactivationofAMPK.Arch.Pharm.Res.34(7),1201–1208.doi:10.1007/s12272-011-0719-6PubMedAbstract|CrossRefFullText|GoogleScholarLi,W.X.,Guo,J.M.,Tang,Y.P.,Wang,H.,Huang,M.Y.,Qian,D.W.,etal.(2012).PharmacokineticcomparisonofferulicacidinnormalandblooddeficiencyratsafteroraladministrationofAngelicasinensis,ligusticumchuanxiongandtheircombination.Int.J.Mol.Sci.13(12),3583–3597.doi:10.3390/ijms13033583PubMedAbstract|CrossRefFullText|GoogleScholarLi,P.L.,Sun,H.G.,Hua,Y.L.,Ji,P.,Zhang,L.,Li,J.X.,etal.(2015a).Wei,Y.M.MetabolomicsstudyofhematopoieticfunctionofAngelicasinensisonblooddeficiencymicemodel.J.Ethnopharmacol.166,261–269.doi:10.1016/j.jep.2015.03.010PubMedAbstract|CrossRefFullText|GoogleScholarLi,S.J.,Lin,H.,Qu,C.,Tang,Y.P.,Shen,J.,Li,W.X.,etal.(2015b).UrineandplasmametabonomicscoupledwithUHPLC-QTOF/MSandmultivariatedataanalysisonpotentialbiomarkersinanemiaandhematiniceffectsofherbpairGui-Hong.J.Ethnopharmacol.170,175–183.doi:10.1016/j.jep.2015.05.019PubMedAbstract|CrossRefFullText|GoogleScholarLiu,M.X.,Tan,H.N.,Zhang,X.K.,Liu,Z.,Cheng,Y.N.,Wang,D.L.,etal.(2014).HematopoieticeffectsandmechanismsofFufangE'jiaoJiangonradiotherapyandchemotherapy-inducedmyelosuppressedmice.J.Ethnopharmacol.152(3),575–584.doi:10.1016/j.jep.2014.02.012PubMedAbstract|CrossRefFullText|GoogleScholarMadonna,R.,Shelat,H.,Xue,Q.,Willerson,J.T.,Caterina,D.,Geng,Y.J.(2009).Erythropoietinprotectsmyocardin-expressingcardiacstemcellsagainstcytotoxicityoftumornecrosisfactor-α.Exp.CellRes.315(17),2921–2928.doi:10.1016/j.yexcr.2009.07.016PubMedAbstract|CrossRefFullText|GoogleScholarMyers,M.G.,Mendez,R.,Shi,P.,Pierce,J.H.,Rhoads,R.,White,M.F.(1998).TheCOOH-terminaltyrosinephosphorylationsitesonIRS-1bindSHP-2andnegativelyregulateinsulinsignaling.J.Biol.Chem.273(41),26908–26914.doi:10.1074/jbc.273.41.26908PubMedAbstract|CrossRefFullText|GoogleScholarNicoloso,M.S.,Hao,S.,Spizzo,R.,Kim,H.,Wickramasinghe,P.,Shimizu,M.,etal.(2016).Single-nucleotidepolymorphismsinsidemicroRNAtargetsitesinfluencetumorsusceptibility.CancerRes.70(7),2789–2798.doi:10.1158/0008-5472.CAN-09-3541CrossRefFullText|GoogleScholarQueiroz,M.L.S.,Valadares,M.C.,Bincoletto,C.,Dieamant,G.C.(2004).EhrlichAscitesTumorasaToolintheDevelopmentofCompoundswithImmunomodulatoryProperties.J.Immunopharmaco.26(4),511–525.doi:10.1081/IPH-200042289CrossRefFullText|GoogleScholarSaunders,M.A.,Liang,H.,Li,W.H.(2007).HumanpolymorphismatmicroRNAsandmicroRNAtargetsites.P.Natl.Acad.Sci.104(9),3300–3305.doi:10.1073/pnas.0611347104CrossRefFullText|GoogleScholarShen,L.,Chen,H.,Zhu,Q.,Wang,Y.,Wang,S.,Qian,J.,etal.(2016).Identificationofbioactiveingredientswithimmuno-enhancementandanti-oxidativeeffectsfromFufang-Ejiao-SyrupbyLC–MSncombinedwithbioassays.J.Pharm.Biomed.Anal.117,363–371.doi:10.1016/j.jpba.2015.09.024PubMedAbstract|CrossRefFullText|GoogleScholarSheng,S.,Wang,J.,Wang,L.,Liu,H.,Li,P.B.,Liu,M.H.,etal.(2014).NetworkpharmacologyanalysesoftheantithromboticpharmacologicalmechanismofFufangXueshuantongCapsulewithexperimentalsupportusingdisseminatedintravascularcoagulation.J.Ethnopharmacol.154(3),735–744.doi:10.1016/j.jep.2014.04.048PubMedAbstract|CrossRefFullText|GoogleScholarSieff,C.A.(1987).Hematopoieticgrowthfactors.J.Clin.Invest.79(6),1549–1557.doi:10.1172/JCI112988PubMedAbstract|CrossRefFullText|GoogleScholarSun,J.,Zhang,L.,He,Y.,Zhang,K.,Wu,L.,Fan,Y.,etal.(2016).ToUnveiltheMolecularMechanismsofQiandBloodthroughSystemsBiology-BasedInvestigationintoSi-Jun-Zi-TangandSi-Wu-Tangformulae.Sci.Rep.6,34328.doi:10.1038/srep34328PubMedAbstract|CrossRefFullText|GoogleScholarTao,W.,Xu,X.,Wang,X.,Li,B.H.,Wang,Y.H.,Li,Y.,etal.(2013).Networkpharmacology-basedpredictionoftheactiveingredientsandpotentialtargetsofChineseherbalRadixCurcumaeformulaforapplicationtocardiovasculardisease.J.Ethnopharmacol.145(1),1–10.doi:10.1016/j.jep.2012.09.051PubMedAbstract|CrossRefFullText|GoogleScholarTeng,H.,Chen,L.,Fang,T.,Yuan,B.Y.,Lin,Q.Y.(2017).Rb2inhibitsα-glucosidaseandregulatesglucosemetabolismbyactivatingAMPKpathwaysinHepG2cells.J.Funct.Foods28,306–313.doi:10.1016/j.jff.2016.10.033CrossRefFullText|GoogleScholarTheStatePharmacopoeiaCommissionofPeople'sRepublic.(2005).ChinapharmacopoeiaofthePeople"sRepublic(China(Beijing):ChemicalIndustryPress).GoogleScholarVafadari,R.,Weimar,W.,Baan,C.C.(2012).Phosphospecificflowcytometryforpharmacodynamicdrugmonitoring:AnalysisoftheJAK-STATsignalingpathway.Clin.Chim.Acta413(17-18),1398–1405.doi:10.1016/j.cca.2011.12.023PubMedAbstract|CrossRefFullText|GoogleScholarVainchenker,W.,Constantinescu,S.N.(2013).JAK/STATsignalinginhematologicalmalignancies.Oncogene32(21),2601–2613.doi:10.1038/onc.2012.347PubMedAbstract|CrossRefFullText|GoogleScholarWagner,K.U.,Claudio,E.,Rucker,E.B.,Riedlinger,G.,Broussard,C.,Schwartzberg,P.L.,etal.(2000).ConditionaldeletionoftheBcl-xgenefromerythroidcellsresultsinhemolyticanemiaandprofoundsplenomegaly.Development127(22),4949–4958.doi:10.1007/s004290000125PubMedAbstract|CrossRefFullText|GoogleScholarWaller,E.K.(2007).Theroleofsargramostim(rhGM-CSF)asimmunotherapy.Oncologist12(2),22–26.doi:10.1634/theoncologist.12-S2-22CrossRefFullText|GoogleScholarWang,C.Z.,Mcentee,E.,Wicks,S.,Wu,J.A.,Yuan,C.S.(2006).PhytochemicalandanalyticalstudiesofPanaxnotoginseng(Burk.)F.H.Chen.J.Nat.Med.60(2),97–106.doi:10.1007/s11418-005-0027-xCrossRefFullText|GoogleScholarWang,Y.,Li,X.,Wang,X.L.,Lau,W.,Wang,Y.J.,Xing,Y.,etal.(2013).GinsenosideRdattenuatesmyocardialischemia/reperfusioninjuryviaAkt/GSK-3βsignalingandinhibitionofthemitochondria-dependentapoptpticpathway.PloSOne8(8),e70956.doi:10.1371/journal.pone.0070956PubMedAbstract|CrossRefFullText|GoogleScholarWang,X.,Shen,Y.,Wang,S.,Li,S.,Zhang,W.,Liu,X.,etal.(2017).Lai,L.;Pei,J.;Li,H.Pharmmapper2017update:awebserverforpotentialdrugtargetidentificationwithacomprehensivetargetpharmacophoredatabase.NucleicAcidsRes.45(1),356–360.doi:10.1093/nar/gkx374CrossRefFullText|GoogleScholarWard,A.C.,Touw,I.,Yoshimura,A.(2000).TheJak-Statpathwayinnormalandperturbedhematopoiesis.Blood95(1),19–29.doi:10.1016/S1083-8791(00)70031-0PubMedAbstract|CrossRefFullText|GoogleScholarWei,S.Z.,Niu,M.,Wang,J.,Wang,J.B.,Su,H.B.,Luo,S.Q.,etal.(2016).AnetworkpharmacologyapproachtodiscoveractivecompoundsandactionmechanismsofSan-CaoGranulefortreatmentofliverfibrosis.DrugDes.Dev.Ther.10,733–743.doi:10.2147/DDDT.S96964CrossRefFullText|GoogleScholarWei,B.,Duan,Z.G.,Zhu,C.H.,Deng,J.J.,Fan,D.D.(2018).Anti-anemiaeffectsofginsenosideRk3andginsenosideRh4onmicewithribavirin-inducedanemia.FoodFunct.9(4),2447–2455.doi:10.1039/C8FO00368HPubMedAbstract|CrossRefFullText|GoogleScholarWu,F.F.,Li,H.Q.,Jin,L.J.,Li,X.Y.,Ma,Y.S.,You,J.S.,etal.(2013).DeerantlerbaseasatraditionalChinesemedicine:Areviewofitstraditionaluses,chemistryandpharmacology.J.Ethnopharmacol.145(2),403–415.doi:10.1016/j.jep.2012.12.008PubMedAbstract|CrossRefFullText|GoogleScholarWu,R.H.,Ru,Q.,Chen,L.,Ma,B.M.,Li,C.Y.(2014).StereospecificityofginsenosideRg3inthepromotionofcellularimmunityinhepatomaH22-bearingmice.J.FoodSci.79(7),1430–1435.doi:10.1111/1750-3841.12518CrossRefFullText|GoogleScholarXiong,Y.,Chen,L.J.,Man,J.H.,Hu,Y.P.,Cui,X.M.(2017a).ChemicalandbioactivecomparisonofPanaxnotoginsengrootandrhizomeinrawandsteamedforms.J.GinsengRes.43(3),385–393.doi:10.1016/j.jgr.2017.11.004PubMedAbstract|CrossRefFullText|GoogleScholarXiong,Y.,Chen,L.J.,Hu,Y.P.,Cui,X.M.(2017b).UncoveringactiveconstituentsresponsiblefordifferentactivitiesofrawandsteamedPanaxnotoginsengroots.Front.Pharmacol.8,745.doi:10.3389/fphar.2017.00745PubMedAbstract|CrossRefFullText|GoogleScholarXiong,Y.,Hu,Y.P.,Chen,L.J.,Zhang,Z.J.,Zhang,Y.M.,Niu,M.,etal.(2019).UnveilingactiveconstituentsandpotentialtargetsrelatedtothehematiniceffectofsteamedPanaxnotoginsengusingnetworkpharmacologycoupledwithmultivariate.Front.Pharmacol.9,1514.doi:10.3389/fphar.2018.01514PubMedAbstract|CrossRefFullText|GoogleScholarYang,Y.,Dai,C.Y.,Guo,L.P.,Qu,Y.,Yang,X.Y.,Liu,D.Q.,etal.(2018).SalicylicacidreducestheaccumulationofaluminuminPanaxnotoginsenrootcellwallpectinviatheNOsignalingpathway.PlantSoil430(1-2),171–184.doi:10.1007/s11104-018-3722-6CrossRefFullText|GoogleScholarYoshikawa,M.,Morikawa,T.,Yashiro,K.,Murakami,T.,Matsuda,H.(2001).Bioactivesaponinsandglycosides.XIX.Notoginseng(3):Immunologicaladjuvantactivityofnotoginsenosidesandrelatedsaponins:Structuresofnotoginsenosides-L,-M,and-NfromtherootsofPanaxnotoginseng(Burk.)FHChen.Chem.Pharm.Bull.49(11),1452–1456.doi:10.1248/cpb.491452PubMedAbstract|CrossRefFullText|GoogleScholarZhang,H.,Wang,H.F.,Liu,Y.,Huang,L.J.,Wang,Z.F.,Li,Y.(2014a).ThehaematopoieticeffectofPanaxjaponicusonblooddeficiencymodelmice.J.Ethnopharmacol.154(3),818–824.doi:10.1016/j.jep.2014.05.008PubMedAbstract|CrossRefFullText|GoogleScholarZhang,R.F.,Zhang,L.J.,Jiang,D.S.,Zheng,K.,Cui,Y.B.,Li,M.,etal.(2014b).MouseorgancoefficientandabnormalspermrateanalysiswithexposuretotapwaterandsourcewaterinNanjingreachofYangtzeRiver.Ecotoxicology23(4),641–646.doi:10.1007/s10646-014-1228-4PubMedAbstract|CrossRefFullText|GoogleScholarZhang,Z.,Teng,Y.R.,Lv,Z.Y.,Wu,W.,Liu,S.Y.(2017).PharmacokineticandmetabolicstudiesofginsenosideRb2inrats.Chin.J.Anal.Chem.45(2),191–198.doi:10.11895/j.issn.0253-3820.160684CrossRefFullText|GoogleScholarZhou,X.H.,Long,L.L.,Li,C.M.,Zhao,R.H.,Zhang,R.P.,Mao,X.J.(2014).RawversussteamedPanaxnotoginsenginpharmacologicaleffects.Glob.Trad.Chin.Med.7(6),420–426.doi:10.3969/j.issn.1674-1749.2014.06.005CrossRefFullText|GoogleScholarZhou,B.,Yan,Z.Y.,Liu,R.,Shi,P.,Qian,S.,Qu,X.D.,etal.(2016).Prospectivestudyoftranscatheterarterialchemoembolization(TACE)withginsenosideRg3versusTACEaloneforthetreatmentofpatientswithadvancedhepatocellularcarcinoma.Radiology280(2),630–639.doi:10.1148/radiol.2016150719PubMedAbstract|CrossRefFullText|GoogleScholarZhu,H.H.,Ji,K.,Alderson,N.,He,Z.,Li,S.W.,Liu,W.,etal.(2011).Kit-Shp2-Kitsignalingactstomaintainafunctionalhematopoieticstemandprogenitorcellpool.Blood117(20),5350–5361.doi:10.1182/blood-2011-01-333476PubMedAbstract|CrossRefFullText|GoogleScholarKeywords:steamedPanaxnotoginseng,networkpharmacology,JAK-STATsignalingpathway,anemia,blooddeficiencysyndrome,hematopoiesisCitation:ZhangZ,ZhangY,GaoM,CuiX,YangY,vanDuijnB,WangM,HuY,WangCandXiongY(2020)SteamedPanaxnotoginsengAttenuatesAnemiainMiceWithBloodDeficiencySyndromeviaRegulatingHematopoieticFactorsandJAK-STATPathway.Front.Pharmacol.10:1578.doi:10.3389/fphar.2019.01578Received:27August2019;Accepted:05December2019;Published:21January2020.Editedby:VincentKamWaiWong,MacauUniversityofScienceandTechnology,MacauReviewedby:SongxiaoXu,ArtronBioResearchInc.,CanadaLeiChen,FujianAgricultureandForestryUniversity,ChinaCharlesJayMalemud,CaseWesternReserveUniversity,UnitedStatesCopyright©2020Zhang,Zhang,Gao,Cui,Yang,vanDuijn,Wang,Hu,WangandXiong.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.*Correspondence:YinXiong,[email protected] Peoplealsolookedat Download



請為這篇文章評分?