非晶矽薄膜電晶體低溫特性與光漏電流之研究 - 9lib TW
文章推薦指數: 80 %
The main stream of Large-Area Displays is TFT-LCD(Thin Film Transistor-Liquid Crystal Display) and it's applied a-Si:H TFT (the hydrogenated Amorphous Silicon ...
menu
Upload
menu
Loading...
Home
 
其他
非晶矽薄膜電晶體低溫特性與光漏電流之研究
95
26
Download
(0)
顯示更多(94頁)
顯示更多(頁)
立即下載(95頁)
全文
(1)國立中山大學光電工程研究所碩士論文.非晶矽薄膜電晶體低溫特性與光漏電流之研究InvestigationonElectricalCharacteristicsatLowTemperatureandPhotoLeakageCurrentofa-SiThinFilmTransistor.研究生:黃靜美撰指導教授:張鼎張博士中華民國九十七年一月.(2)(3)(4)誌謝.本論文得以順利完成,首先要感謝我的指導教授張鼎張博士,除了提供優質完整的研究環境與設備,並且在兩年間辛勤的指導,於研究期間不只傳授許多寶貴的知識,更教導如何分析、處理問題,在處事態度方面也惠益良多,師恩難忘,永誌於心。
時光飛逝,研究生生活即將結束,在實驗室裡所有的點點滴滴都是最美好的回憶。
在這兩年生活中,感謝所有伴我走過這段日子的實驗室成員。
感謝伯鈞學長包容我的笨拙,耐心教導帶領我完成整個實驗;還有書瑋、世清、雅喨等學長於研究過程中給予建議;感謝漢博、書慶、詠恩、阿敏、冠張、正杰等實驗室的同學和學弟們,實驗過程中給予我幫助與鼓勵,實驗拖到半夜時通宵陪伴著我,今日我才能有這些研究上的成果。
感謝口試委員聯華電子黃正同經理、光電所朱安國教授和張榮芳學長撥冗審閱,給予論文指正與教導,特此致謝。
.(5)非晶矽薄膜電晶體低溫特性與光漏電流之研究研究生:黃靜美指導教授:張鼎張博士國立中山大學光電工程研究所碩士班.摘要人類生活中傳統的陰極射線管CRT已幾乎被平面顯示器(LCD、OLED、PDP)所取代,顯示器產業更被評為繼半導體產業之後的全球重大產業之一。
而市場上大面積的顯示面板主流為TFT-LCD(薄膜電晶體液晶顯示器),正是使用了非晶矽薄膜電晶體為液晶顯示器的畫素開關。
a-SiTFT的製程中,主動層材料(a-Si)的光導係數較高,在光源照射下有較大的漏電流,使得畫素開關動作不完全造成顏色顯示上的問題。
若在主動層製程中通入了SiF4,使主動層偏P型半導體及增加了主動層的缺陷密度,對光漏電流的有抑制效果。
又因為液晶的特性,TFT-LCD顯示器的畫素開關的驅動將會施加偏壓,形同對TFT做STRESS。
因此針對SPL作DCSTRESS的實驗,發現摻雜SiF4的元件比較不會劣化,可靠度較佳。
本論文主要研究a-Si:FTFT在低溫下的光漏電流變化並了解STRESS對TFT影響.I.(6)InvestigationonElectricalCharacteristicsatLowTemperatureandPhotoLeakageCurrentofa-SiThinFilmTransistor.Postgraduate:Ching-MeiHuang.Advisers:Dr.Ting-ChangChang.InstituteofDept.ofElectro-OpticalEngineeringNationalSun-YetSanUniversity.AbstractSincethetraditionalCRT(CathodeRayTube)replacedbyFPD(FlatPanelDisplay),e.g.LCD、OLED、PDP,FPDindustryisregardedastheimportantoneofglobalindustryfollowingSemi-conductorindustry.ThemainstreamofLarge-AreaDisplaysisTFT-LCD(ThinFilmTransistor-LiquidCrystalDisplay)andit’sapplieda-Si:HTFT(thehydrogenatedAmorphousSiliconThinFilmTransistor)aspixel-switchdeviceonLCD.Ina-Si:HTFTCellprocess,theactiveregionmaterial(a-Si:H)withhigherPhotoconductivityresultsintohigheroff-statecurrentunderlightilluminationandthatcausescolorperformancediscrepancyasincompleteOn/Offoperationofpixel-switchdevices.AslongastheintroductionofFintoa-Si:Hmodifythedensityofstatesinthegapofa-Si:H(:F),thatmayresulttheshiftoftheFermileveltowardthevalencebandedgeandThedensity-of-statesincreasing.It’seffectivetodecreasethephotoleakagecurrent.Duetoelectro-opticalpropertiesofliquidcrystal(LC),todrivePixel-switchdeviceinTFT-LCDshallforceOn/OffvoltagetochangeTwistAngleofLCiscorrespondingtohaveStressonTFTdevice.AccordingtoDCStressexperimentresults,it’sfoundTFTdevicewithSiF4dopantcanreachbetterreliability.II.(7)Thisissueisaimedtoresearchthephotoleakagecurrentvariationofa-Si:HTFTatlowtemperatureandON/OffstateeffectbystressonTFTdevice..III.(8)ContentsChineseAbstract……………………...………………………….IEnglishAbstract…………………………..…………………….IIContent…………………………...…………………………………….IVTableCaptions…………………………………..…………………….VIIFigureCaptions………………………………………………………VIII.ChapterOne-Introduction1.1Introduction………………………………………………………………….11.1.1Overview1.1.2HydrogenatedAmorphousSilicon1.1.3AtomicStructureandtheElectronDensityofStates.1.2Photoleakagecurrentmechanism…...……………………….………….....51.3Somesolutionsforreducingphotoleakagecurrent……....……….......…..9.ChapterTwo-Fabrication2.1DepositionofHydrogenatedAmorphousSiliconbyPECVD……….….112.2DepositionofSiNxbyPECVD……………….…………………………….142.3Depositionofn+HydrogenatedAmorphousSiliconbyPECVD………162.4ProcessFlow………………………………………………………………..17.IV.(9)ChapterThree-ApparatusandParameters3.1ApparatusList………………………………………………………….…..183.2SetupinstrumentsforCurrent-Voltage(I-V)Measurement…...………193.2.1TheRoomTemperatureandHighTemperature3.2.2TheLowTemperature.3.3MethodofDeviceParameterExtraction…………..………...……….…...213.3.1Determinationofthethresholdvoltage3.3.2Determinationofthesubthresholdswing3.3.3Determinationofthefield-effectmobility.3.4DensityofStates……………………………………………………………243.4.1Overview3.4.2Evaluationofthedensityofstates--Activationenergymethod.ChapterFour–ExperimentsResultsandDiscussion4.1Overviewoftheexperimentssample..........................................304.1.1Characteristics4.1.2Relativeparameters.4.2CharacteristicsatLowTemperature……………………….…………..…334.2.1MotivationandExperimentSteps4.2.2Theelectricalcharacteristicsatlowtemperature4.2.3Measuredwithlightilluminatedatlowtemperature4.2.4Summary.4.3LightIlluminatedExperiment………………………….………..………..394.3.1MotivationandExperimentSteps4.3.2ADiscussiononExperimentResults4.3.3Summary.4.4ReliabilityExperiment—DCStress……………………………………..444.4.1MotivationandExperimentSteps.V.(10)4.4.2ADiscussiononExperimentsResults4.4.3Summary.ChapterFive–Conclusion…………………………………...……..47.References..…………………………………….……………..……….48Tables…………………………………………………………….…..56Figures…………………………………….................……….………..57.VI.(11)TableCaptionsChapterTwoTable2-1Physicalpropertiesofadevice-qualitya-Si:H..ChapterThreeTable3-1Typicalvaluesoftheparametersfortheexponentialmodelof.DOSforintrinsica-Si:HCompiledfromRef.10..VII.the.(12)FigureCaptionsChapterOneFigure.1.1Theelectronenergylevelsofsiliconindifferentbondingstates.Figure.1.2Aschematicdiagramoftheelectrondensityofstatesforanamorphoussemiconductor,suchasa-SiH.Figure.1.3TypicalTFTtransfercharacteristicsimulatedunderillumination.Figure.1.4TFTintheOFF-state(regime(III))underillumination.Figure.1.5Figure1.5SimulatedvariationsoftheelectronandholeFermipotentialsalongthemainTFTcurrentpath(theTFTbeingilluminated)..ChapterTwoFigure.2.1Cross-sectionalviewofaBCETFTwheretheSiNxgateinsulatorinthisexperiment..ChapterThreeFigure.3.1Microscope、Hotchuck、ProbestationFigure.3.2AgilentB2201A(Switch)andKeithley4200-SCS.Figure.3.3Temperaturecontroller.Figure.3.4Agilent4156C、AgilentE5250A(Switch)andAgilent41501B(highpower)Figure.3.5IllustrationoftheCryogenicsSystem(TTP-6ProbeStation)Figure.3.6Illustrationofthedensityofstates(DOS)inintrinsica-Si:H.(AfterShawandHack,Ref.10.©1988AIP.)Figure.3.7Representativedependenceoftheactivationenergyvs.gatevoltagedependenceforthetransistorswithincorporatedn+contactlayers..VIII.(13)Figure.3.8Densityofstatesvs.activationenergy.ChapterFourFigure.4.1TherelationshipbetweentheFermilevelandtheincreaseof.acceptor-likedeepstateSketchFigure.4.2TheID-VDtransfercharacteristicsoftheSiF4-9sccmanda-SiTFTwithtemperatureat300Kand100K,individually.(a)300K,(b)100KFigure.4.3TheID-VGtransfercharacteristicsoftheSiF4-9sccmanda-SiTFTwithtemperatureat300Kto100K.Figure.4.4ShowstheONresistanceoftheSiF4-9sccmanda-Si:HTFTatlowtemperatureFigure.4.5The△%ofVT(△VT/VT300K)andcarriermobility(△μ/μ300K)Figure.4.6TheID-VDtransfercharacteristicsoftheSiF4-9sccmanda-SiTFTwithlightilluminatedbytemperatureat(a)300Kand(b)100K,individually.Figure.4.7ThetransfercharacteristicsVG-IDinthelinearregimeof(a)theSTDa-SiTFTdevicesand(b)theSiF4-9sccma-SiTFTwithlightilluminatedbytemperatureat300Kand100K,individually.Figure.4.8AtVG=-7V,-10V,-15V,changeofPhotoLeakageCurrentoftheSiF4-9sccma-SiTFTandtheSTDa-SiTFT.Figure.4.9Arrheniusplotofcarrierandemissiontimeforanindividualinterfacetrap.Figure.4.10Ionizedchargeconcentrationversustemperatureforsilicon.Figure.4.11TheparasiticalresistancesofN+from100Kto300K.Figure.4.12Thedevicewasilluminatedundertwodirection:(a)underfront-side.illumination(Top-Light)and(b)gate-sideillumination(Bottom-Light).Figure.4.13ThecomparisonofVG-IDcharacteristicsbetweentoplightilluminated.IX.(14)andbottomlightilluminated.(a)STD(b)9sccmFigure.4.14ThechangeofphotoleakagecurrentunderhighandlowlightilluminatedFigure.4.15ThecomparisonofVG-IDcharacteristicsbetweentoplightilluminatedandbottomlightilluminatedFigure.4.16Illustrationofregionforlightilluminatedandelectron–holepairst(a)Toplightilluminated(b)BottomlightilluminatedFigure.4.17ID-VGtransfercharacteristicsofstresswith(a)theSTDa-SiTFTand(b)theSiF4-9sccma-SiTFT,individually.Figure.4.18ID-VGtransfercharacteristicsoftheSTDa-SiTFT.Afterandbeforestresswith(a)Toplightilluminatedand(b)Bottomlightilluminated,individually.Figure.4.19ID-VGtransfercharacteristicsoftheSiF4-9sccma-SiTFT.Afterandbeforestresswith(a)Toplightilluminatedand(b)Bottomlightilluminated,individually.Figure.4.20Afterandbeforestress,(a)Theactivationenergy–gatevoltage(Ea-VG)and(b)DensityofstatescharacteristicoftheSTDa-SiTFTFigure.4.21Afterandbeforestress,(a)Theactivationenergy–gatevoltage(Ea-VG)and(b)DensityofstatescharacteristicoftheSiF4-9sccma-SiTFTFigure.4.22Afterandbeforestress,ID-VGtransfercharacteristicsoftheSTDa-SiTFTandtheSiF4-9sccma-SiTFTwith(a)no-lightilluminatedand(b)bottomlightilluminated,individually..X.(15)ChapterOne-Introduction1.1Introduction1.1.1OverviewThin-filmtransistors(TFTs)includinganactivelayerofamorphoussiliconorpolycrystallinesiliconhavebeenwidelyemployedasthepixel-drivingelementsofaliquidcrystaldisplay(LCD).a-Si:HTFTisparticularlyadvantageoustotheproductionoflargescreendisplaysandfacilitatesmassproduction.[1-1]Whenemployingana-Si:Hlayer,themainobjectivesaretoenhancethefieldeffectmobilityandtoreducetheoff-stateleakagecurrentunderlightillumination.Theincreaseoffieldeffectmobilityresultsinwideapplicationofa-Si:HTFTsinhighresolutionLCDs.Ontheotherhand,a-Si:Hhashighphotoconductivitywhichresultsinhighoff-stateleakagecurrentsofa-Si:HTFTunderlightillumination.[1-2]Theoff-stateleakagecurrentunderlightilluminationis,inparticular,aseriousproblemintheprojectionand/ormultimediadisplaysthatrequirehighintensitybacklightillumination.Recently,thefullyself-aligneda-Si:HTFTwasdevelopedtoreducetheparasiticcapacitancebetweensource/drainandgateelectrodes.However,ithashighoff-stateleakagecurrentunderlightilluminationcomparedtoconventionalTFT.[1-3]Therefore,toreducetheoff-stateleakagecurrentina-Si:HTFTunderilluminationisveryimportanttoobtainahighqualityTFT-LCD..1.1.2HydrogenatedAmorphousSiliconHydrogenatedAmorphousSilicon(a-Si:H)firstcametoprominenceasa.1.(16)potentiallyusefulelectronicmaterialthroughtheworkofSpearandcoworkersinthe1970s.[1-4]Sincethen,therehasbeensignificantresearchanddevelopmentworldwidetobringa-Si:HtothecurrentstateinwhichitisroutinelyusedinTFTswithalargeswitchingratio(<106)andalowoffstatecurrentbetweenthesourceanddrainwhichissuitableforcontrollingAMLCDs.[1-5]Alargebodyofresearchintothismaterialhasbeenrequiredduetoitscomplexnature.Althoughmanyofthepropertiesofa-SI:Harereminiscentofcrystallinesilicon,theamorphousnatureofthematerialhasaneffectupontheelectronenergybandstructureandthecarriertransportproperties.Thepresenceofhydrogenanddanglingbondsinsidethedisorderedstructurefurthercomplicatesthesystem.[1-6].1.1.3AtomicStructureandtheElectronDensityofStatesCrystallinesilicon(c-Si)hasawell-definedtetrahedrallatticestructurewithabondlength(a)of0.35nmbetweenadjacentatomsandacorrespondingbondangle(θ)of109°.Inthecaseofa-Si:H,althoughthematerialhaslittleornolongrangeatomicorder,onshortlengthscales(upto~1nm)thetetrahedralstructureofthesiliconnetworkispreserved.Thetetrahedralstructureisadirectresultoftheelectronicstructureofthesiliconatom,whichhasfourvalenceelectrons.Whenunbonded,twoelectronsexistsinthe3sstateandtwointhe3pstate.Fig.1.1showsthissituationintermsoftheenergyoftheelectronsineachstate.[1-7]Ineachstate,oneelectronexistsin“spinup”configurationandoneina”spindown”configurationsoastosatisfythePauliExclusionPrinciple.However,suchaconfigurationonlyallowstwocovalentbondstobeformedwithneighboringsiliconatoms.Inordertomaximizethe.2.(17)numberofbondspossible,thesandpelectronstatescombinetoformfoursp3statesatanenergybetweenthesandtheplevels,andthispermitsbondingwithuptofoursiliconatomsatthetetrahedralangles,aseachbondisequivalent.ThisisshownasthebondingconfigurationinFig.1.1.Whenansp3orbitalformsduringbonding,asecondelectroniscontributedtothestatebytheotheratom,andinteractionbetweenthetwoelectronslowerstheenergyofthestate.Therefore,thesp3energylevelsplitsintoabondinglevel,andananti-bondinglevel(Fig.1.1).Inarealsolid,thereisaCoulombinteractionbetweentheatomcoresandelectrons,andsothebondingandanti-bondingenergylevelssplitformingacontinuumofextendedstates,withthebandofbondingstatesandtheanti-bondingstatesbeingtheconductionband.Intheapproach,thea-Si:HnetworkisconsideredtoconsistofidenticalSi-Sibonds,asinc-Si..Inreality,theamorphousstructureintroducesadegreeofdisorderintothesystemsothatthereisarangeofbondlengths(△a)andbondangles(△θ)aroundthecrystallinecase.Fordevicequalitya-Si:H,itisfoundthat△aisabout2%ofthecrystallinebondlength(a)while△θisabout10%ofthecrystallinebondangle(θ).Thisleadstowhatisbestdescribedasa“continuousrandomnetwork”ofsiliconatoms.[1-7]Thebondingdeviationina-Si:Hperturbstheenergyofthebondingandanti-bondingstatesinaparticularbond.Therefore,whereastheedgesoftheconductionandvalencebandsarewelldefinedinc-Si,inthea-Si:Hthebandedgesaresmearedout,leadingtotheformationoflocalized“bandtail”electronstateswhichextendintothebandgap,decreasingexponentiallyasshowninFig.1.2.[1-8]Asthedeviationinlengthandangleofaparticularbondincrease,thebondwillbecomeweakerandtheperturbationoftheelectronenergylevelswillincrease.Therefore,thebandtailsmaybeassociatedwiththeweakestbonds,thewidthof.3.(18)thebandtailsbecomesameasureofthedisorderinthenetwork.ThewidthofthetailsisknownastheUrbachenergy(orUrbachslope)[1-8],andmaybedeterminedexperimentallyusingeithertheconstantphotocurrentmethod(CPM)orphotothermaldeflectionspectroscopy(PDS).Itisnotsurprisingthatifaparticularbondishighlydeformed,thenitbecomessoweakthatthebreakingofthebondtoformtwo“danglingbonds”(otherwiseknownasco-ordinationdefects)representsalowerenergy.Theenergyofthisstatewillbeatthe“bondingconfiguration”sp3levelshowninFig.1.1.Abondbetweentwosiliconatomsnormallycontainstwoelectrons,andso,afterbreaking,eachdanglingbondwillcontainoneelectron.Eachdanglingbondhasthepotentialtocontaintwoelectrons(onespin-upandonespin-down)andsois50%occupied.TheFermilevelis,bydefinition,theenergyatwhichthereisa50%probabilitythatanelectronstateisoccupied.Therefore,theFermilevelmustbeatthedanglingbondsp3energy.Thebondingandanti-bondingstatesdonotsplitevenlyaroundthesp3energy(Fermilevel),andinfacttheconductionbandisfoundtobeslightlyclosertotheFermilevelthanthevalenceband.Thisleadstothephenomenon,whichisobservedexperimentally,thatundopeda-Si:Hisslightlyn-type.[1-9]Forcomparison,undopedcrystallinesilicon,bydefinition,hasnodanglingbonds,andsotheFermilevelliesexactlyinthemiddleofthemobilitygap,andsoisgenuinelyintrinsicinnature.[1-6].4.(19)1.2Photoleakagecurrentmechanism[1-10]Thenumericalsimulationprogramsolvessimultaneouslythethreeequationsdescribingthesteadystateconductioninsemiconductors(Poissonequation,electronandholecontinuityequations),outofthermalequilibrium,usingtheShockleyReadmodelforthecarrierrecombinationrate.Theamorphoussilicondensity-of-statesiscomposedoftwoexponentialbandtailsandtwogaussiandistributionsofmonovalentstates,wheretherecombinationprocesstakesplace.Theprogramtakesintoaccountboththeinterface(a-Si/a-SiNandbackchannelinterfaces)andthebulkstatedensities.Thegateinsulatorisassumedtobeidea,whichmeansthatthereisnochargetrappingorfixedchargepresentintheinsulatorlayer.TheTFTisilluminatedfromthesource-drainside,andtheoriginalassumethatthewholea-Si:Hlayerisexposedtothelight.Fig.1.3isatransfercharacteristicsimulatedunderauniformillumination.TheanalysisofthesimulatedresultshasshownthattheoriginalcandistinguishboththeTFTelectronandholethresholdvoltages,thatdelimitthreemainTFToperatingregimes:(I):electronaccumulationlayercreatedatthea-Si:H/a-SiNinterface,(II):noaccumulationlayer,(III):holeaccumulationlayercreatedatthea-Si:H/a-SiNinterface.Intheregime(I),theTFTdraincurrentisassociatedwiththedrift-diffusionofelectronsintheaccumulationlayer(conductionchannel).Intheregime(II),theTFTdraincurrentresultsfromthesamemechanismthaninregime(I),buttheconductionoccursuniformlyinthewholeamorphous.5.(20)siliconlayer(channelandbulk),asthereisnocarrieraccumulationattheamorphoussilicon/siliconnitrideinterface.Becausethecarrierdensitiesinthewholeamorphoussiliconlayerdependmostlyonthelight-inducedgenerationandcarriersrecombinationrates,inthisregime,theTFTdraincurrentissensitivetotheamorphoussiliconthicknessandtothebulkdensity-of-statesofamorphoussilicon.Intheregime(III),theexistenceoftheholeaccumulationlayeratthea-Si:H/a-SiNinterfaceincombinationwiththen+a-Si:Hsource/draincontactlayers,resultsinthecreationoftwoPNjunctionlocatedatthesourceanddrainaccessareas.Forapositivedrainvoltage,astheoriginalhaveshowninFig.1.4,thesourceanddrainjunctionsarerespectivelyintheON-andOFF-state.Withintheregime(III),thereareactuallytwodifferentconductionregimesthatdependontherelativeimportanceoftwodifferentphysicalmechanisms.Inregime(III.a),thedrift-diffusionofholeintheaccumulationlayer(conductionchannel)ispredominant,whereasinregime(III.b)therecombinationofelectronsandholesinthedrain(OFF-state)PNjunctiondepletionregionisthemostimportant.TheoriginalhaveplottedFig.1.5thesimulatedvariationsoftheelectronandholeFermipotentialsalongtheusualTFTcurrentpathbetweenthesourceanddraincontacts.Wecanseethat,intheregime(III.a)(VG=-7.5V),themainvariationoftheFermipotentialhappensintheaccumulationlayer,wherethedrift-diffusionofholesoccurs.TheconductioninthisregimeissimilartotheconductionwhentheTFTisinaccumulationregime(gatevoltagelargerthantheelectronthresholdvoltage);however,inthisregime,themajoritycarriersaretheholesinsteadoftheelectrons.Onthecontrary,intheregime(III.b)(VG=-20V),themainvariationoftheFermipotentialsoccursinthedrainPNjunctiondepletionregion,wheretherecombinationofelectronsandholesistakingplace.Inthiscase,theTFTcurrent6.(21)dependsonlyonthelight-inducedgenerationandrecombinationofelectronsandholesinthedrainPNjunctiondepletionregion.Actually,forhighnegativevoltages,therecombinationratecanbeneglectedandtheTFTcurrentisthereforeonlysetbythelight-inducedgenerationofelectronsandholes(asinaphotodiodecase).Inparticular,inthisregime,thereisnolongeranyinfluenceofthegatevoltage(saturationphenomenon)orchannellengthontheTFTdraincurrent.TheparametersthatinfluencetheTFTdraincurrentdependontheTFToperationregimetobeconsidered.Theanalysisoftheoriginalsimulatedresultshasshownthat:Theelectronandholethresholdvoltagesdependmostlyontheamorphoussilicondensity-of-statesassociatedwithboththea-Si:H/a-SiNinterfaceandwiththebulkthedifferencebetweenthetwothresholdvoltagesishigherforalargerdensity-of-states.Intheregime(II),theTFTdraincurrentdependsstronglyontheamorphoussiliconthickness,butalsoonthea-Si:Hbulkdensity-of-states:itincreaseswiththea-Si:Hthicknessanddecreaseswiththea-Si:Hdensity-of-states.Thedraincurrentintheregime(III.b)dependsonlyonthelight-inducedgenerationofelectron-holepairsinthedrainPNjunctiondepletionregion(betweenthedraincontactandthea-Si:H/a-SiNinterface):itincreaseswiththeilluminationintensityandwiththePNjunctionarea.TherelativeimportanceofthetwomainmechanismsinvolvedintheTFTselectricalinstabilities(modificationofthea-Si:Hdensity-of-statesandchargetrappingintheinsulatorlayer)isnotyetperfectlyaccepted.Ingeneral,thechargetrappingintheinsulatorlayerresultsinvariationsofboththeelectronandtheholethresholdvoltagesinthesamedirection,whilemodificationsoftheamorphoussilicondensity-of-statesresultsinvariationsofthethresholdvoltagesinoppositedirection.7.(22)Moreprecisely,anincreaseinthebulkdensity-of-stateswillresultmainlyinashiftoftheelectronandholethresholdvoltagestowardmorepositiveandnegativegatevoltagesrespectively,andinareductionoftheTFTdraincurrentintheregime(II).Theinterfacedensity-of-stateswillalsoaffectthethresholdvoltages.Butintheregime(II),thewholea-Si:Hlayerisinvolvedintheconduction;thereforetheinfluenceofinterfacedensity-of-statesonthedraincurrentisnotsignificantincomparisontotheinfluenceofbulkdensity-of-states..8.(23)1.3Somesolutionsforreducingphotoleakagecurrenta-Si:Hhashighphotoconductivitywhichresultsinahighoff-stateleakagecurrentforana-Si:HTFTunderbacklightillumination[1-2].Theoff-stateleakagecurrentcanbeloweredbyreducingthethicknessofundopeda-Si:H,however,thisalsodecreasesthefieldeffectmobilityoftheTFT.[1-11]Theoff-stateleakagecurrentofa-Si:HTFTismainlyduetoholesinducedatthea-Si:Hinterfacetoagateinsulator.However,underlightillumination,electronsarethemajoritycarrierswhenanegativegatevoltageisappliedtotheTFTbecauseelectronmobilityismuchhigherthanthatofhole.[1-12]Theoff-stateleakagecurrentofa-Si:HTFTunderlightilluminationisrelatedwithitsphotoconductivity.Thephotoconductivityofa-Si:H(:Cl)isatleasttwoordersofmagnitudelowerthanthatofundopeda-Si:H.[1-13]Recently,Clincorporatedhydrogenatedamorphoussilicon[a-Si:H(:Cl)]hasbeenpreparedbyvariousdepositionmethodsusingSiH2Cl2mixturestoimprovefilmquality,[1-14]stability[1-15]ortoincreasedepositionrate.[1-16]However,theperformanceofthea-Si:H(:Cl)TFTswasfoundtodegradewithincreasing[SiH2Cl2]/[SiH4]ratiowhichwasusedtodepositthea-Si:H(:Cl).[1-17]Thea-Si:H(:Cl)filmsshowp-typeconduction,leadingtolowerphotoconductivity.Theoff-statedarkleakagecurrentofa-Si:H(:Cl)TFTsislowerthanthatofa-Si:HTFTs,whichisduetothepositionoftheFermilevelofa-Si:H(:Cl).TheFermilevelofa-Si:H(:Cl)thatexistsislowerthanthatofa-Si:H.But,withincreasing[SiH2Cl2]/[SiH4],thefieldeffectmobilitydecreasesslightlyandthethresholdvoltageincreases.Theincreaseinthethresholdvoltagemaybeduetotheincreaseinthedefect9.(24)densitybyClincorporationand/orduetotheshiftoftheFermilevelinthebandgaptowardthevalencebandedge.Thedensityofstatesinthegapofa-Si:H(:Cl)willbemodifiedbytheintroductionofClintoa-Si:H,resultingintheshiftoftheFermileveltowardthevalencebandedge.TheFermilevelofa-Si:Hisdeterminedfromthechargeneutralitycondition.Theacceptor-likestatesareextendedfromtheconductionbandedgeandthedonor-likestatesfromthevalencebandedge;danglingbondsexistaroundmidgap.Ofthese,somestatesarechargedpositivelyandotherstatesarenegativelychargedbythesameamount.ThepositionoftheFermilevelcanbeloweredbyareductionofdonor-likestatesorbyanincreaseofacceptor-likestates.ThemodificationinthedensityofthestatesinthegapbytheincorporationofClatomsina-Si:HshouldbestudiedinthefutureinordertounderstandtheoriginoftheshiftoftheFermileveltowardthevalencebandedgebyClincorporation.TheshiftintheFermilevelleadstoareductionofthephotoconductivityofa-Si:H(:Cl).Thephotoconductivityofa-Si:HisstronglyrelatedtothepositionoftheFermilevel.[1-18]Theoff-stateleakagecurrentofana-Si:HTFTunderlightilluminationisrelatedtoitsphotoconductivity,sothephotoconductivityforthea-Si:H(:Cl)filmswasinvestigated.Thephotoconductivityofa-Si:H(:Cl)isatleasttwoordersofmagnitudelowerthanthatofintrinsica-Si:H.ThepositionoftheFermilevelfora-Si:H(:Cl)filmliesbelowthemidgap,sothatthea-Si:H(:Cl)showsp-typebehavior.Itshouldbenotedthatthephotoconductivityofp-typea-Si:Hismuchlowerthanthatofn-typea-Si:Hbecausethemobilityofelectronsismuchhigherthanthatofholes..10.(25)ChapterTwo-Fabrication2.1DepositionofHydrogenatedAmorphousSiliconbyPECVDThea-Si:HandSiNxutilizedinTFTarrayfabricationarepreparedbyPECVD.TheTFTperformancedependsonthepreparationconditions,suchassubstratetemperature,RFpower,andgasdilution.Oxygenincorporationduringa-Si:HdepositioninparticularhasbeenfoundtogreatlydegradeTFTperformance,becauseitincreasesthedefectdensityintheundopeda-Si:H.Hydrogenatedamorphoussiliconhasashort-rangeorder,whichmeansthatthecoordinationnumber,bondangle,andbondlengthareclosetothoseforasinglecrystallineSiwithin2or3atomicdistances,butthereisnoperiodicityinthelongrange.Becauseofthisthereareaconsiderablenumberoflocalizedstatesinthegap.Thehydrogeninthea-Si:Hreducesthedanglingbondsbypassivation.Therefore,thedanglingbonddensityof~1020cm-3invacuum-evaporateda-Siorsputtereda-Siisreducedto1015~1016cm-3inPECVDa-Si:H,wherehydrogencontentis10-30at.%.Thehydrogenreducesthetail-statedensityinadditiontothereductionofdanglingbonds,becausethedisorderisdecreasedbyhydrogenincorporation.Typically,undpoeda-Si:HforTFTapplicationsispreparedatasubstratetemperatureof220-350℃.Thehydrogenina-Si:HmaybeincorporatedasSiHorSiH2;however,onlyfilmswithhydrogenbondedasSi-HaresuitableforTFTapplication.[2-1]PrecursorgasesforPECVDdepositionofa-Si:HmaybeSiH4orSi2H6,withH2,He,and/orArbeingusedascarriers/diluentstodecreasethedensityoflocalizedstatesormodifythematerialintoμc-Si.Theμc-Siisdepositedby11.(26)PECVDundersimilardepositionconditionsusedfora-Si:H,exceptwithhighdilutionofsilanewithhydrogen.Thegrainsizeisusuallylessthan50nm,andfilmshowsacolumnargrowth.Becausethegrainsizeisquitesmallandtherearealotofdefectsinsidethegrainsthefield-effectmobilityofμc-Siiscomparabletothatofhigh-qualitya-Si:HTFTs.Moreover,theoff-statedraincurrentismuchhigherthanthatofa-Si:HTFTbecauseofitshighconductivity(>10-6S/cm)andhighdensityofdefects.Thehydrogen/silanedilutionratioistypicallyhigherthan30forthegrowthofμc-Si,andtheRFpowerisalsoanimportantparameter.TheroleofhydrogenduringthedepositioninthePECVDchambercanbesummarizedasfollows:1.HydrogenatomscoverthegrowingsurfaceandincreasethediffusionlengthoftheSiprecursors.Therefore,theprecursorscanmigratetoamorestableposition.[2-2]2.AtomichydrogendiffusesintothesiliconnetworkdowntoafewnanometersandthusenhancestherelaxationofSiatoms,leadingtothemorestablestructure.[2-3]3.AtomichydrogenetchestheweakSi-SibondsandthusmorestableSi-Sibondsareformed.[2-4]Theprecursorfora-Si:HdepositionisSiH3.[2-5]Filmsofa-Si:HdepositedbyPECVDatlowerRFpowerhavebetterstepcoverageandlowdefectdensity,whereasa-SifilmsdepositedathigherRFpowergenerallyhavemoredefects.Particlescanbeformedbyplasmapolymerizationofradicalsand/orionsinthePECVDchamber.Inaddition,theplasmapotentialduringdepositioncancauseiondamageofthegrowingfilm,whichisespeciallyaproblemathighRFpower.[2-6]Amongthevariousdepositioncontrolvariables,suchasgasflowrate,gaspressure,RFpower,andsubstratetemperature,thehydrogencontentofthefinal.12.(27)filmisgreatlyaffectedbythesubstratetemperature.Thehydrogencontentdecreaseswithincreasingsubstratetemperaturebecauseoftheenhancedout-diffusionofhydrogenfromthefilm.Therefore,theopticalbandgapdecreaseswhenincreasingthesubstratetemperature,sincetheopticalbandgapincreaseswithhydrogencontentinthea-Si:H.Thedepositionrateincreasewiththegasflowrate,butathighflowratesthereismoregas-phase,plasmapolymerization.Attoolowaflowrate,moreiondamageisexpectedbecauseoftheincreasedplasmapotential.Therefore,anoptimumintermediateflowrateisimportantforthedepositionofdevice-qualitya-Si:H.Duringa-Si:Hdeposition,theprecursorarrivingatthegrowingsurfaceismainlySiH3,anditbondswiththesurfaceatoms,resultinginthedepositionofa-Si:Handout-diffusionofhydrogen.TheproductscanbeH2and/orSiH4.Depositionoccursbyheterogeneousreactionatthegrowingsurface[2-7],andionbombardmentofthesurfacecanaffectthefilmproperty.IncreasingtheRFpowerdecreasesthesurfacediffusionlengthofprecursorradicalsandincreasesthestickingcoefficienttothesubstrate.Table2.1showsthephysicalpropertiesofdevice-qualitya-Si:HusedforTFTfabrication..13.(28)2.2DepositionofSiNxbyPECVDPlasma-depositedsiliconnitride,SiNx,isusedforthepassivationofelectronicdevicesandasthegateinsulatorofchoicefora-Si:HTFTs.Asapassivationfilm,siliconnitrideprotectsagainstthediffusionofwatervapor,sodium,andoxygenintotheactivedevice.Thehydrogencontentofplasma-depositedsiliconnitrideis10-40at.%,andmostofthehydrogenatomsarebondedasSi:Hand/orN-H,dependingonthepreparationconditions,suchasRFpower,feedinggas,andsubstratetemperature.TotalhydrogencontentdecreaseswithincreasingsubstratetemperatureorincreasingRFpower.[2-8]Siliconnitridehasanamorphousstructure,andpropertiesdependontherelativeatomicconcentrationsofsilicon,nitrogen,andhydrogen.Forgood-electrical-qualitya-Si:HTFTs,PECVD-depositedSiNxismuchmoresuitablethanstoichiometricSi3N4.Siliconnitridedepositedat300-350℃(abbreviatedasSiNxorSiN:H)isquiteadifferentmaterialfromSi3N4producedbyCVDat700-900℃.[2-9]Hydrogeninsaturatingthetraps,sothedefectdensityismuchlessthanthatofaCVDSi3N4.Theinterfacechargedensitybetweena-Si:HandSiNxistypicallyintherangeof2×1011to7×1012eV-1cm-2,anditstronglydependsonthedepositionconditions:itincreaseswithdecreasingsubstratetemperatureordecreasingRFpower.NotethatthetrapdensityinSiNxincreasesonheatingabove400℃,becausethehydrogenisout-diffusedasaresultofbreakageofhydrogenbondsinSi-Hand/orN-Hmodes.[2-10]Theabilitytoformagoodinsulatingfilmatlowtemperature(lessthan350℃)havingalowinterfacestatedensitywitha-Si:H(~1011eV-1cm-2)makesSiNxa14.(29)goodgateinsulator.Inaddition,theabilitytoemploythesamePECVDequipmentusedtodepositthea-Si:Hisanimportantadvantage.SiNxistypicallydepositedfromamixtureofSiH4,NH3,N2,andHeat300-350℃.TheRFpoweristypicallyhigherthanusedfora-Si:Hdeposition,andthebestmaterialfortheTFTsisaN-richSiNx.[2-11]Thefield-effectmobilityinthelinearregionisofprimeimportanceforpixelcharginginTFT-LCDapplication.TheinterfacebetweenSiNxanda-Si:Haffectsthefield-effectmobility;inparticular,thesurfaceroughnessoftheSiNxlayerisimportantbecauseitaffectstheinitialgrowthofa-Si:H,whichformstheactivechannellayerfortheTFT[2-12]..15.(30)2.3Depositionofn+HydrogenatedAmorphousSiliconbyPECVDDepositionofann+-a-Si:Hlayerbetweenundopeda-Si:Handametalallowstheformationofanohmiccontactbetweenthem.Theohmiccontactalsoactsahole-blockinglayerbecauseitactstodepressthepositionofthecontactingsemiconductorvalencebandwithrespecttotheFermilevelofthemetal.Theresistivityofn+-a-Si:Hisabout100Ω-cm,whichismuchhigherthanthatofn+crystallinesilicon.Eventhoughtheresistivityisrelativelyhigh,thecurrentisnotgenerallylimitedbythen+contactitself,becausethedraincurrentisontheorderofmicroamps.FortypicalAMLCDTFTchannellengths(~10µm)andforthicknessofa-Si:Hbelow~100nm,theuseofn+poly-Siorn+µc-Sicontactlayersdosenotappreciablyincreasethedraincurrentoverthatofstandardn+-a-Si:Hcontact.Inmostcases,n+-a-Si:HisdepositedbyPECVDusingasilanemixturecontaining~1%PH3.PECVDdepositionusingthisdopinggasmixturedilutedataratioof~1:50inhydrogenallowstheformationofn+µc-Si.Addingmorethan~1%PH3tosilanedoesnotfurtherdecreasetheresistivityofn+-a-Si:H,becausethedefectdensityofthematerialbeginstogrowinproportiontotheaddeddopant,negatinganyfurtherenhancementofthefreecarrierpopulation.[2-13].16.(31)2.4ProcessFlowInverted-staggereda-Si:HTFTswithback-channel-etched(BCE)process,werefabricatedonglasssubstrateforthestudyofelectricalcharacteristics,whereAlisusedassource/drainmetalasshowninFig.2.1.Thedevicefabricationprocesswasdescribedasfollowed.Aftera3000-Å-thickCrgateelectrodewaspatternedontheglasssubstrate,a3000-Å-thicksilicon-nitride(SiNx)layer,a2000-Å-thicka-Si:H(:F)activelayeranda500-Å-thickn+-a-Si:Hwerecontinuouslydepositedbyplasmaenhancedchemicalvapordeposition(PECVD)method.Theundopeda-Si:H(:F)wasdepositedwithagasmixtureof9sccmSiF4and50sccmSiH4at200°C.Then+-a-Si:HlayerintheTFTchannelregionwouldtobeetchedoffusingthesource/drainpatternasamask,aftertheelectrodesareformedforTFTs.Inordertodecreasethedevicedegradationofa-Si:H(:F)layer,thea-Si:H/a-Si:H(:F)doublechannellayerstructurewasalsofabricatedforthisstudy.Thethicknessofa-Si:Handa-Si:H(:F)indoublelayerstructurewere40nmand160nmrespectively.ThechannellengthofTFTdevicesvariedfrom5to16µmandthechannelwidthwaskeptconstant24µm.Similarly,theconventionala-Si:HTFTwithoutgasmixtureofSiF4werealsofabricatedasareferencesample.ThecharacteristicsoftheamorphousSiTFTsdemonstratedthefiled-effectmobility~0.1cm2/V-s,theminimumsubthresholdswing~1.08V/dec,thethresholdvoltage~1.95Vdefinedatconstantcurrent10nA,andtheION/IOFFratio~106atVDS=10V.Theleakagecurrentthroughgateinsulatorislessthan10-13AThephotoleakagecurrentmeasurementwascarriedbylightilluminationtocomparethedifferenceintheoff-statephotoleakagecurrentsbetweenthea-Si:H(:F)TFTandtheconventionalone..17.(32)ChapterThree-ApparatusandParameters3.1ApparatusList3.1.1Theroomtemperatureandhightemperature(1)Microscope、Hotchuck、Probestation,asshowninFig.3.1.(2)AgilentB2201A(Switch)andKeithley4200-SCS,asshowninFig.3.2.(3)TemperaturecontrollerasshowninFig.3.3..3.1.2Thelowtemperature(1)Agilent4284A、Agilent4156C、AgilentE5250A(Switch)Agilent41501B(highpower),asshowninFig.3.4.(2)CryogenicsSystem--TTP-6ProbeStation,Fig3.5..3.1.3.Softwareofmeasurement.ICS(InteractiveCharacterizationSoftware)UsetheSoftwaretoget:1.VD-ID2.VG-ID(LinearRegionVD=1V,3V)3.VG-ID(SaturationRegionVD=10V)4.VG-GmNote:.VD:DrainVoltage.ID:Draincurrent.VG:GateVoltage.IG:Gatecurrent.Gm:VG-IDmaxslope.18.(33)3.2SetupinstrumentsforCurrent-Voltage(I-V)Measurement.3.2.1TheroomtemperatureandhightemperatureThecurrent–voltagecharacteristicmeasurementofthinfilmtransistordeviceswasperformedby4200-SCSsemiconductorparameteranalyzerwithsourcegroundedandbodyfloating.Theelectricaltestsetupof4200-SCSsemiconductorparameteranalyzer,illustratedatFig.3.2,aprobestationsituatedinsideadarkbox.Thegroundprobestationisfurnishedwithanelectricallyisolated,water-cooledthermalchuck.ThechuckiscontrolledbyTEMPTRONICTPO315Athermalcontroller,whichcanoperatetemperaturefrom25℃to300oC.AnKeithley4200-SCSprecisionsemiconductorparameteranalyzerprovidesI-Vmeasurement,biasforBTS.The4200-SCSareconnectedtoE5250Alowleakageswitchmainframe,andthenlinktodarkbox.Thecurrent-voltage(I-V)characteristicsmeasurementsweregottenbyusingp-TFTstructurewithKeithley4200-SCSprecisionparameteranalyzer.Keithley4200-SCScanmeasuretheminimumleakagecurrent:1f(A)..3.2.2ThelowtemperatureThesystemisillustratedinFig.3.5.ThephotoshowstheTTPwiththe.19.(34)microscopeandcamerainstalled.TheremainingcomponentsnecessarytorunthesystemareconnectedtotheTTP.Tousethesystem,samplesareplacedinsidetheTTPchamber,thesystemisevacuatedwiththeturbovacuumsystem,andthesampleiscooledwithacryogen.Probesaremovedintoplaceonthesamplewhileobservingwiththemicroscope.Measurementsofsamplepropertiesarethenmadeviatheprobes[3-1].Whenthesystemisnotused,thechamberneedstobekeptthevacuum.Wemustventthechamberwithnitrogengastoloadasamplebeforemeasurement.Afterthat,sealthechamberandevacuateitusingturbopumpuntiltheIG(iongauge)readoutonthevacuumsystemis7.6E-5.InsertthebothendsofthetransferlineintoaDewarandthebayonetontheTTP,respectively,andsetthedesirabletemperatureonthetemperaturecontroller.Starttocoolthesampledowntothedesirablelowesttemperatureandperformtheexperiment.Weutilizemicroscopetoviewandmakemeasurementsofsampleviatheprobes.Then,enteringasetpointonthetemperaturecontrollertowarmthesystem,getbacktotheroomtemperatureorevenhightemperature.Afteraccomplishingtheexperiment,wemustmakethechambertemperatureatroomtemperaturebeforeventingit.Finally,unloadthesampleandkeepthechamberatvacuumstate.TheelectricaltestsetupofHP4156Csemiconductorparameteranalyzerisutilizedinthisexperiment,illustratedatFig.3.4.Thesameas4200-SCS,theAgilent4156CprecisionsemiconductorparameteranalyzercanprovideI-Vmeasurement,biasforBTS.WeemploytheICS(InteractiveCharacterizationSoftware)toobtaintheoutputandtransfercharacteristics,likeVD-ID,VG-ID(Linear),VG-ID(saturation),andextractthetypicalsemiconductorparameters..20.(35)3.3MethodofDeviceParameterExtractionInthissection,wewillintroducethemethodsoftypicalparameterextractionsuchasthresholdvoltage,subthresholdswing,field-effectmobilityµFE,channelresistanceandtheparasiticresistancefromdevicecharacteristics..3.3.1DeterminationofthethresholdvoltagePlentymethodsareusedtodeterminatethethresholdvoltagewhichisthemostimportantparameterofsemiconductordevices.ThemethodtodeterminatethethresholdvoltageinthisthesisistheconstantdraincurrentmethodthatthevoltageataspecificdraincurrentINistakenasthethresholdvoltage.ThistechniqueisadoptedinmoststudiesofTFTs.Itcangiveathresholdvoltageclosetothatobtainedbythecomplexlinearextrapolationmethod.Typically,thethresholdcurrentIN=ID/(Weff/Leff)isspecifiedat10nAforVD=-0.1Vand100nAforVD=-15Vinmostpaperstoextractthethresholdvoltageof.TFTs..3.3.2Determinationofthesub-thresholdswingSubthresholdswingS.S(V/dec)isatypicalparametertodescribethecontrolabilityofgatetowardchannel.Itisdefinedastheamountofgatevoltagerequiredtoincrease/decreasedraincurrentbyoneorderofmagnitude.Thesubthresholdswingshouldbeindependentofdrainvoltageandgatevoltage.However,inreality,.21.(36)thesubthresholdswingmightincreasewithdrainvoltageduetoshort-channeleffectssuchaschargesharing,avalanchemultiplication,andpunchthrough-likeeffect.Thesubthresholdswingisalsorelatedtogatevoltageduetoundesirablefactorssuchasserialresistanceandinterfacestate.Inthisexperiment,thesubthresholdswingisdefinedasone-secondofthegatevoltagerequiredtodecreasethethresholdcurrentbytwoordersofmagnitude.Thethresholdcurrentisspecifiedtobethedraincurrentwhenthegatevoltageisequaltothethresholdvoltage.[3-2].3.3.3Determinationofthefield-effectmobilityThefield-effectmobility(µFE)isdeterminedfromthetransconductancegmatlowdrainvoltage.Thetransfercharacteristicsofa-SiTFTsaresimilartothoseofconventionalMOSFETs,sothefirstorderI-VrelationinthebulkSiMOSFETscanbeappliedtothea-SiTFTs,whichcanbeexpressedasID=µFECox.Where.W12[(VG−VFB)VD−VD]L2.(3-1).Coxisthegateoxidecapacitanceperunitarea,Wischannelwidth,.Lischannellength,.VTHisthethresholdvoltage.IfVDismuchsmallerthanVG-VTH(i.e.VD<
延伸文章資訊
- 1非晶矽薄膜電晶體光漏電流與電性物理機制之研究
在TFT導通時,電荷會經由TFT儲存於液晶電容及輔助電容中,在TFT關閉後利用上述兩 ... 因電容的電壓必須維持定值至少1/30秒,光漏電流過大會造成TFT在關閉時仍有通道讓 ...
- 2非對稱與對稱型非晶矽薄膜電晶體元件之照光特性研究 - 碩博士 ...
在a-Si:H TFT元件中,主要有兩大漏電流途徑:其一為由半導體層中a-Si中之缺陷所引起之漏電流,另一為半導體層a-Si因光照射所產生之漏電流。由a-Si中之缺陷所引發之漏 ...
- 3對面板顯示技術感興趣的,一定要搞清楚,什麼是TFT?
場效應電晶體(Field-Effect Transistor, FET)是一類非常重要的半導體器件,其原理是通過柵極電壓來調控源極和漏極之間半導體溝道的電流。FET作為計算機中央 ...
- 4TFT LCD 面板的驅動與設計Part 3
3.2 TFT LCD畫素陣列. 3.2.2 初始設計. 3.2.2.2 TFT關電流之限制線. 3.2.2.2.1 漏電電流I leak. 3.2.2.1.2 電荷保持時間dt hold. 3...
- 5非晶矽薄膜電晶體低溫特性與光漏電流之研究 - 9lib TW
The main stream of Large-Area Displays is TFT-LCD(Thin Film Transistor-Liquid Crystal Display) an...