非晶矽薄膜電晶體光漏電流與電性物理機制之研究
文章推薦指數: 80 %
在TFT導通時,電荷會經由TFT儲存於液晶電容及輔助電容中,在TFT關閉後利用上述兩 ... 因電容的電壓必須維持定值至少1/30秒,光漏電流過大會造成TFT在關閉時仍有通道讓 ...
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(167.99.71.17)您好!臺灣時間:2022/05/0615:38
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:楊伯鈞研究生(外文):Po-ChengYang論文名稱:非晶矽薄膜電晶體光漏電流與電性物理機制之研究論文名稱(外文):InvestigationonPhotoLeakageCurrentandElectricalMechanismofa-SiThinFilmTransistor指導教授:張鼎張學位類別:碩士校院名稱:國立中山大學系所名稱:物理學系研究所學門:自然科學學門學類:物理學類論文種類:學術論文論文出版年:2006畢業學年度:94語文別:英文論文頁數:94中文關鍵詞:光漏電流、薄膜電晶體外文關鍵詞:photoleakagecurrent、thinfilmtransistor相關次數:
被引用:1點閱:560評分:下載:102書目收藏:2
拜科技之賜,顯示器由傳統的陰極射線管CRT進步到液晶顯示器LCD,非晶矽薄膜電晶體極多晶矽薄膜電晶體已經用於製造液晶顯示器的畫素開關,尤其是非晶矽薄膜電晶體更是已經大量用於製造大面積的顯示面板。
在製作a-SiTFT的主動層時,有兩個主要改進的目標:增加其場效mobility及降低其在背光源照射下的漏電流;增加其場效mobility是為了用於大面積高解析度的面板,另外一方面因為a-Si的光導係數較高因此在光照射下會有較大的漏電流,當面板應用於須以強背光照射的產品如多媒體顯示器、液晶電視時光漏電流就會造成顏色顯示上的問題。
在TFT導通時,電荷會經由TFT儲存於液晶電容及輔助電容中,在TFT關閉後利用上述兩個電容所產生的電壓使液晶轉動,因為電視每秒顯示30張畫面,因電容的電壓必須維持定值至少1/30秒,光漏電流過大會造成TFT在關閉時仍有通道讓電荷通過,電容中的電荷就會由此通道流失,所提供的電壓就會減少,造成液晶旋轉的角度不足,所顯示的顏色不準確。
鑑於此,本論文將研究薄膜電晶體在背光源照射下,所產生的電性變化,探討在製作主動層時通入不同流量的SiF4是否會對光漏電流有所影響。
發現主動層製程中通入了SiF4,造成了主動層偏P型半導體及增加了主動層的缺陷密度,因此對光漏電流的抑制效果也越好。
Thehydrogenatedamorphoussiliconthin-filmtransistors(a-Si:HTFTs)havebeenwidelyusedasswitchingdeviceforlarge-areaelectronicssuchasactivematrixliquidcrystaldisplays(AM-LCDs).a-SiTFTisparticularlyadvantageoustotheproductionoflargescreendisplaysandfacilitatesmassproduction.Whenemployingana-Si:Hlayer,themainobjectivesaretoenhancethefieldeffectmobilityandtoreducetheoff-statecurrentunderlightillumination.Theincreaseoffieldeffectmobilityresultsinwideapplicationofa-Si:HTFTsinhighresolutionLCDs.Ontheotherhand,a-Si:Hhashighphotoconductivitywhichresultsinhighoff-statecurrentofa-Si:HTFTunderlightillumination.Theoff-stateleakagecurrentunderlightilluminationis,inparticular,aseriousproblemintheprojectionand/ormultimediadisplaysthatrequirehighintensitybacklightillumination.Minimizingtheoff-currentincreasebya-Siphotosensitivityisanimportantdesignconsiderationforachievinghighimage-qualityLCDs.TFToff-currentincreasebyphotoilluminationofa-SidecreasesthechargestoredonthepixelduringtheTFToff-time,andresultsingray-scaleshading,flicker,crosstalkandotherdisplaynonuniformityintheLCD.Thefluorineincorporatedamorphoussilicon[a-Si:H(:F)]andamorphoussilicon(a-Si:H)wereilluminatedwithbacklighttoinvestigateelectricalcharacteristics.Theeffectofdifferent[SiF4]/[SiH4]ratioontheperformanceofa-Si:H(:F)TFTswasalsostudied.Wefoundthedensityofstatesinthegapofa-Si:H(:F)willbemodifiedbytheintroductionofFintoa-Si:HandresultingtheshiftoftheFermileveltowardthevalencebandedge.Thedensity-of-statesincreasingcausemorerecombinationcentersforelectronsandholestoincreasethecarrierrecombinationrate.TheshiftintheFermilevelleadstoareductionofthephotoconductivityofa-Si:H(:F).Duetothesetwoimportantfactor,thephotoleakagecurrentdecreases.
ChineseAbstract……………………………………………iEnglishAbstract……………………………………………iiiChineseAcknowledgment……………………………………vContent……………………………………………………viiTableCaptions………………………………………………xFigureCaptions……………………………………………xiChapterOne-Introduction1.1Introduction………………………………………………………11.1.1Introduction………………………………………………11.1.2HydrogenatedAmorphousSilicon…………………………11.1.3AtomicStructureandtheElectronDensityofStates…21.2Photoleakagecurrentmechanism………………………51.3Somesolutionsforreducingphotoleakagecurrent………9ChapterTwo-Fabrication2.1DepositionofHydrogenatedAmorphousSiliconbyPECVD………………………………………………………112.2DepositionofSiNxbyPECVD…………………………………142.3Depositionofn+HydrogenatedAmorphousSiliconbyPECVD………………………………………………………162.4ProcessFlow……………………………………………………17ChapterThree-ApparatusandParameters3.1Apparatus………………………………………………………183.2SetupinstrumentsforI-V……………………………………193.3MethodofDeviceParameterExtraction……………………203.3.1Determinationofthethresholdvoltage………………213.3.2Determinationofthesubthresholdswing………………213.3.3Determinationofthefield-effectmobility……………213.4DensityofStates………………………………………………22ChapterFour–BacklightIlluminatedexperiment4.1Introduction……………………………………………………244.2Motivation………………………………………………………254.3Experiments……………………………………………………264.4Electricalcharacteristicunderbacklightillumination……274.5Conclusion………………………………………………………31ChapterFive-ActivationEnergyMeasurementexperiment5.1Introduction……………………………………………………325.2Motivation………………………………………………………335.3Experiments……………………………………………………345.4ResultsandDiscussion…………………………………………355.5Conclusion………………………………………………………39ChapterSix-DoubleLayerStructureMeasurement5.1Introduction……………………………………………………405.2Motivation………………………………………………………415.3Experiments……………………………………………………425.4ResultsandDiscussion…………………………………………435.5Conclusion………………………………………………………45References…………………………………………………46Tables………………………………………………………55Figures……………………………………………………57
ChapterOne–Introduction1.F.B.Ellis,Jr.,R.G.Gordon,W.Paul,andB.G.Yacobi,J.Appl.Phys.55,4309(1984).2.J.K.Yoon,Y.H.Jang,B.K.Kim,H.S.Choi,B.C.Ahn,andC.Lee,J.Non-Cryst.Solids164-166,747(1993).3.M.Akiyama,T.Kiyota,Y.Ikeda,T.Koizumi,M.Ikeda,andK.Suzuki,SID95Digest(SocietyforInformationDisplay,Florida,1995),p.158.4.B.G.Streetman,SolidStateElectronicDevices,Chapter1.3,London:PrenticeHall,19905.M.J.Powell,“ThePhysicsofAmorphous-siliconThin-filmTransistors,”IEEETrans.Electron.Devices,36,2753(1989).6.Y.Kuo,TheFilmTransistors–MaterialandProcesses,vol.1,p17,TexasA&MUniversity,U.S.A.2004.7.W.H.Zachariasen,“TheAtomicArrangementinGlass,”J.Am.Chem.Soc.,54,3841(1932).8.F.Urbach,“TheLong-wavelengthEdgeofPhotographicSensitivityandoftheElectronicAbsorptionofSolids,”Phys.Rev.,92,1324(1953).9.W.E.SpearandP.G.LeComber,“SubstitutionalDopingofAmorphousSilicon,”SolidStateComm.,17,1193(1975).10.Y.Kuo,TheFilmTransistors–MaterialandProcesses,vol.1,p17,TexasA&MUniversity,U.S.A.2004.11.SandrineMartin,JerzyKanicki,NicolasSzydlo,AlainRolland“Analysisoftheamorphoussiliconthinfilmtransistorsbehaviorunderillumination”AM-LCD‘9712.J.K.Yoon,Y.H.Jang,B.K.Kim,H.S.Choi,B.C.Ahn,andC.Lee,J.Non-Cryst.Solids164–166,747(1993).13.N.Hirano,N.Ikeda,H.Yamaguchi,S.Nishida,Y.Hirai,andS.Kaneko,IDRC’94Digest,InternationalDisplayResearchConference,CA,1994,p.369.14.W.E.Spear,J.Non-Cryst.Solids59–60,1(1983).15.K.S.Lee,J.H.Choi,S.K.Kim,H.B.Jeon,andJ.Jang,“Lowoff-stateleakagecurrentthin-filmtransistorusingClincorporatedhydrogenatedamorphoussilicon,”Appl.Phys.Lett.,vol.69,pp.2403–2405,1996.16.J.N.BullockandS.Wagner,Mater.Res.Soc.Symp.Proc.336,97(1994).17.T.Oshima,K.Tamaguchi,A.Yamada,M.Koganai,andK.Takahashi,Mater.Res.Soc.Symp.Proc.336,91(1994).18.M.NakataandS.Wagner,Appl.Phys.Lett.65,1940(1991).19.S.K.Kim,K.S.Lee,J.H.Choi,C.S.Kim,andJ.Jang,“Highperformancea-Si:H(:Cl)TFT,”inProc.Electrochem.Soc.,1996,vol.96–23,pp.138–145.20.W.B.JacksonandN.M.Amer,Phys.Rev.B25,5559(1982).ChapterTwo-Fabrication1.W.M.M.Kessels,A.H.M.Smets,D.C.Marra,E.S.Aydil,D.C.Schram,andM.C.M.vandeSanden,“Onthegrowthmechanismofa-Si:H,”ThinSolidFilms,vol.383,pp.154-160,2000.2.K.Nomoto,Y.Urano,J.L.Guizot,G..Ganguly,andA.Matsuda.“Roleofhydrogenatomsintheformationprocessofhydrogenatedmicrocrystallinesilicon,”Jpn.J.Appl.Phys.,vol.29,pp.L1372-L1375,1990.3.A.Asano,“Effectsofhydrogenatomsonthenetworkstructureofhydrogenatedamorphousandmicrocrystallinesiliconthinfilms,”Appl.Phys.Lett.,vol.56,pp.533-535,1990.4.C.C.Tasi,G.B.Anderson,andR.Thompson,“Growthofamorphous,microcrystalline,andepitaxialsiliconinlow-temperatureplasmadeposition,”Mat.Res.Soc.Symp.Proc.,vol.192,pp.475-480,1990.5.J.MortandF.Jansen,“Plasma-DepositedThinFilms,”p.28-33(CRCPress,BocaRaton,FL,1986).6.F.J.KampasandR.W.Griffith,“Hydrogeneliminationduringtheglow-dischargedepositionofa-Si:Halloys,”Appl.Phys.Lett.,vol.39,pp.407-409,19817.F.J.Kampas,“Reactionsofatomichydrogeninthedepositionofhydrogenatedamorphoussiliconbyglowdischargeandreactivesputtering,”J.Appl.Phys.,vol.53,pp.6408-6412,1982.8.P.A.Longeway,“SemiconductorsandSemimetals21A,”pp.179-193(In:J.I.Pankove,ed.,AcademicPress,NewYork,1984).9.F.Giorgis,C.F.Pirri,andE.Tresso,“Structuralpropertiesofa-Si1-xNx:Hfilmsgrownbyplasma-enhancedchemicalvapordepositionbySiH4+NH3+H2gasmixtures,”ThinSolidFilms,vol.307,pp.298-305,1997.10.R.Ishihara,H.Kanoh,Y.Uchida,O.Sugiura,andM.Matsumura,“Low-temperaturechemicalvapordepositionofsiliconnitridefromtetrasilaneandhydrogenazide,”Mat.Res.Soc.Symp.Proc.,vol.284,pp.3-8,1992.11.S.Yamakawa,S.Yabuta,A.Ban,M.Okamoto,M.Katayama,Y.Ishii,andM.Hijikigawa,“Theeffectofplasmatreatmentontheoff-currentcharacteristicsofa-SiTFTs,”SID98Digest,pp.443-446,1998.12.K.Takechi,H.Uchida,andS.Kaneko,“Mobility-improvementmechanismina-Si:HTFTswithSmootha-Si:H/SiNxInterface,”Mat.Res.Soc.Symp.Proc.,vol.258,pp.955-960,1992.13.C.R.Kagan,P.Andry,TheFilmTransistors,p52-p57,IBMT.J.WatsonResearchCenter,YorktownHeights,NewYork,U.S.A.2003.ChapterThree-ApparatusandParameters1.R.A.Street,HydrogenatedAmorphousSilicon,CambridgeUniversityPress,1991.2.W.E.SpearandP.G.LeComber,“InvestigationoftheLocalizedStateDistributioninAmorphousSiFilm,”J.Non-Cryst.Solids,8-10,727-738(1972).3.M.J.Powell,“AnalysisofField-effect-conductanceMeasurementsonAmorphousSemiconductors,”Phil.Mag.B,43(1),93(1981).4.C.Y.Huang,S.Guha,andS.J.Hudgen,“StudyofGapStatesinHydrogenatedAmorphousSiliconbyTransientandSteady-statePhotoconductivityMeasurement,”Phys.Rev.B,27(12),7460(1983)5.J.D.Cohen,D.V.Lang,andJ.P.Harbison,“DirectMeasurementoftheBulkDensityofGapStatesinn-typeHydrogenatedAmorphousSilicon,”Phys.Rev.Lett.,45(3),197(1980).6.M.Hirose,T,Suzuki,andG.H.Döhler,“ElectronicDensityofStatesinDischarge-producedAmorphousSilicon,”Appl.Phys.Lett.,34(3),234(1979).7.P.ViktorovitchandG.Moddel,“InterpretationoftheConductanceandCapacitanceFrequencyDependenceofHydrogenatedAmorphousSiliconSchottkyBarrierDiodes,”J.Appl.Phys.,51(9),4847(1980).8.M.ShurandM.Hack,“PhysicsofAmorphousSiliconBasedAlloyField-effectTransistors,”J.Appl.Phys.,55(10),3831(1984).9.S.Kishida,Y.Naruke,Y.Uchida,andM.Matsumura,“TheoreticalAnalysisofAmorphous-siliconField-effect-transistors,”Jpn.J.Appl.Phys.,22(3),511(1983).10.J.G.ShawandM.Hack,“AnAnalyticalModelforCalculatingTrappedChargeinAmorphousSilicon,”J.Appl.Phys.,64(9),4562(1988).11.M.S.Shur,M.D.Jacunski,H.C.Slade,andM.Hack,“AnalyticalModelsforAmorphous-siliconandPoly-siliconThin-filmTransistorsforHigh-definition-displayTechnology,”J.oftheSID,3-4,223(1995)12.Y.Kuo,TheFilmTransistors–MaterialandProcesses,vol.1,p83,TexasA&MUniversity,U.S.A.2004.ChapterFour-BacklightIlluminatedexperiment1.M.Wakagi,M.Ando,T.WatanabeandT.Miemura:AM-LCD97Dig.(1997)p.79.2.J.K.Yoon,Y.H.Jang,B.K.Kim,H.S.Choi,B.C.AhnandC.Lee:J.Non-Cryst.Solids164–166(1993)747.3.S.Martin,J.Kanicki,N.SzydloandA.Rolland:AM-LCD97Dig.(1997)p.211.4.J.S.Byun,H.B.Jeon,K.H.Lee,andJ.Jang,“EffectofClincorporationonthestabilityofhydrogenatedamorphoussilicon,”Appl.Phys.Lett.,vol.67,pp.3786–3788,1995.5.W.B.JacksonandN.M.Amer,Phys.Rev.B25,5559(1982).6.SandrineMartin,JerzyKanicki,NicolasSzydlo,AlainRolland“Analysisoftheamorphoussiliconthinfilmtransistorsbehaviorunderillumination”AM-LCD‘977.W.E.Spear,J.Non-Cryst.Solids59/60,1(1983)8.M.J.Powell,C.Glasse,P.W.Green,I.D.French,andI.J.Stemp,IEEEELECTRONDEVICELett.21(3),104(2000)9.S.LuanaandGeroldW.Neudeck,J.Appl.Phys.72(2),p.766(1992).ChapterFive-ActivationEnergyMeasurementexperiment1.F.B.Ellis,Jr.,R.G.Gordon,W.Paul,andB.G.Yacobi,J.Appl.Phys.55,4309(1984).2.J.K.Yoon,Y.H.Jang,B.K.Kim,H.S.Choi,B.C.Ahn,andC.Lee,J.Non-Cryst.Solids164-166,747(1993).3.M.Akiyama,T.Kiyota,Y.Ikeda,T.Koizumi,M.Ikeda,andK.Suzuki,SID95Digest(SocietyforInformationDisplay,Florida,1995),p.158.4.W.B.JacksonandN.M.Amer,Phys.Rev.B25,5559(1982).5.R.S.MullerandT.I.Kamins,DeviceElectronicsforIntegratedCircuits2nded.(Wiley,NewYork,1986),p.427.6.T.Globus,H.C.Slade,M.S.Shur,andM.Hack,“Densityofdeepbandgapstatesinamorphoussiliconfromthetemperaturedependenceofthinfilmtransistorcurrent”,Mat.Res.Soc.Proc.,vol.336,pp.823,1994.7.DosiDosev,JosepPallaresandJoaquimPuigdollers,“Fabrication,CharacterisationandModellingofNanocrystallineSiliconThin-FilmTransistorsObtainedbyHot-WireChemicalVapourDeposition”,p.64.8.M.S.Shur,M.D.Jacunski,H.C.Slade,andM.Hack,“AnalyticalModelsforAmorphous-siliconandPoly-siliconThin-filmTransistorsforHigh-definition-displayTechnology,”J.oftheSID,3-4,223(1995)9.W.E.Spear,J.Non-Cryst.Solids59/60,1(1983)ChapterSix-DoubleLayerStructureMeasurement1.F.B.Ellis,Jr.,R.G.Gordon,W.Paul,andB.G.Yacobi,J.Appl.Phys.55,4309(1984).2.J.K.Yoon,Y.H.Jang,B.K.Kim,H.S.Choi,B.C.Ahn,andC.Lee,J.Non-Cryst.Solids164-166,747(1993).3.M.Akiyama,T.Kiyota,Y.Ikeda,T.Koizumi,M.Ikeda,andK.Suzuki,SID95Digest(SocietyforInformationDisplay,Florida,1995),p.158.4.M.S.Shur,M.D.Jacunski,H.C.Slade,andM.Hack,“AnalyticalModelsforAmorphous-siliconandPoly-siliconThin-filmTransistorsforHigh-definition-displayTechnology,”J.oftheSID,3-4,223(1995)5.W.E.Spear,J.Non-Cryst.Solids59/60,1(1983)
電子全文
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
非晶矽薄膜電晶體低溫特性與光漏電流之研究
2.
高效能薄膜電晶體之製作與研究
1.
(13)張淑昭、李啟誠、謝屏(2004)大陸台商集團企業策略運籌與組織運作之研究—以統一集團與頂新集團為例,商管科技季刊第四卷第一期。
1.
非晶矽薄膜電晶體低溫特性與光漏電流之研究
2.
非晶矽薄膜電晶體之技術研究
3.
薄膜電晶體光漏電研究及新穎微晶矽薄膜電晶體之開發
4.
金屬氧化物薄膜電晶體在不同結構下之電性分析與物理機制研究
5.
非晶態薄膜電晶體應用於大面積顯示器之電性分析與製程研究
6.
低溫多晶矽薄膜電晶體光漏電流的研究
7.
低溫複晶矽薄膜電晶體及前瞻金屬氧化物薄膜電晶體應用於次世代平面顯示器之電性分析及物理機制研究
8.
薄膜電晶體之光電特性研究
9.
非晶態金屬氧化物薄膜電晶體之環境敏感性與可靠度
10.
新穎薄膜電晶體技術之研究
11.
In-out非晶矽薄膜電晶體光漏電流之改善
12.
新型低光致漏電非晶矽薄膜電晶體之製作與機制研究
13.
低溫複晶矽薄膜電晶體之電性分析與物理機制研究
14.
薄膜電晶體液晶顯示器中光漏電導致水痕顯示瑕疵之改善
15.
高性能非晶矽薄膜電晶體元件製作及特性研究
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1工學院半導體材料與製程設備學程
善電晶體效能的試片,來探討NILC-LTPS TFT 漏電流產生的來源,及其改 ... voltage)上升及漏電流(Leakage current)的增加,造成元件操作效能降低。於.
- 2對面板顯示技術感興趣的,一定要搞清楚,什麼是TFT?
場效應電晶體(Field-Effect Transistor, FET)是一類非常重要的半導體器件,其原理是通過柵極電壓來調控源極和漏極之間半導體溝道的電流。FET作為計算機中央 ...
- 3探索液晶顯示器用之矽薄膜電晶體 - 材料世界網
本文以下即介紹以a-Si為主角的TFT概述。 ... Channel) (見圖6(b)),這也就是習知的TFT漏電流(Current Leakage)機制之一,一般隨a-Si膜厚減薄或者較大 ...
- 4非晶矽薄膜電晶體光漏電流與電性物理機制之研究
在TFT導通時,電荷會經由TFT儲存於液晶電容及輔助電容中,在TFT關閉後利用上述兩 ... 因電容的電壓必須維持定值至少1/30秒,光漏電流過大會造成TFT在關閉時仍有通道讓 ...
- 5TFT LCD 面板的驅動與設計Part 3
3.2 TFT LCD畫素陣列. 3.2.2 初始設計. 3.2.2.2 TFT關電流之限制線. 3.2.2.2.1 漏電電流I leak. 3.2.2.1.2 電荷保持時間dt hold. 3...