8 Megapixel CCD Scientific Cameras for Microscopy

文章推薦指數: 80 %
投票人數:10人

Thorlabs' 8 Megapixel CCD Cameras, which offer up to 17.1 frames per second at 40 MHz quad-tap readout of the full sensor (US Patent 9,380,241 B2), ... 8MegapixelCCDScientificCamerasforMicroscopy 8MegapixelMonochromeandColorCCDCameras Scientific-GradeCameraswithLowReadNoise Upto17.1FramesperSecondfortheFullSensor SupportforLabVIEW,MATLAB,µManager,andMetaMorph ApplicationIdea 8051M-USBScientificCCDCameraMountedonaThorlabsCerna®WidefieldMicroscope8051M-USB Non-CooledMonochromeCamera8051C-USB-TE HermeticallySealedTwo-StageCooledColorCameraS805MU1 CamerawiththeSensorFace PlateRemovedandaWedgedWindowInstalledHideOverviewOVERVIEW ScientificCameraSelectionGuide CMOS&sCMOSSensors Zelux®CMOS(SmallestProfile) Kiralux®CMOS KiraluxPolarization-SensitiveCMOS Quantalux®sCMOS(<1e-ReadNoise) CCDSensors 1.4MPCCD 4MPCCD 8MPCCD VGAResolutionCCD(200FramesPerSecond) JasonMillsGeneralManager,ThorlabsScientificImaging Feedback?Questions?NeedaQuote? ClicktoEnlargeAbrightfieldmicroscopyimageacquiredwithoneofour8megapixelcamerasshowingki-67labeledtonsilcells.Ki-67isanantigenwhichappearsonlyinthenucleiofcellsundergoingdivision,andthereforeisanexcellentmarkertoindicatethegrowthfractionofacellpopulation.Formoreimagesamples,pleaseseetheApplicationstab. Features 4/3"Format,3296x2472MonochromeorColorCCDSensor(OnSemiKAI-08051MorKAI-08051-FBA)forLargeFieldofView AvailableinNon-CooledStandardPackagingorHermeticallySealedTE-CooledPackaging ConfigurationOfferedwiththeSensorFacePlateRemovedtoReduceFringinginCoherentLightApplications,suchasBeamProfiling LowReadNoiseImprovestheThresholdofDetectabilityUnderLowLightConditions Software-Selectable20 MHzor40 MHzReadout:MaximizeFrameRate(40 MHz)orMinimizeNoise(20 MHz) AsynchronousReset,Triggered,andBulbExposureModes(SeeTriggeringTabforDetails) ThorCamGUIwith32-and64-BitWindows®7or10Support SDKandProgrammingInterface Support: C,C++,C#,Python,andVisualBasic.NETAPIs LabVIEW,MATLAB, µManager,andMetaMorphThird-PartySoftware 1/4"-20TappedHolesforPostMounting Thorlabs'8MegapixelCCDCameras,whichofferupto17.1framespersecondat40 MHzquad-tapreadoutofthefullsensor(USPatent9,380,241B2),arespecificallydesignedfordemandingscientificimagingapplicationssuchasmicroscopyorthoserequiringcoherentlight.Thesecamerasareidealforbrightfieldmicroscopy,inspection,andothertechniquesthatwouldbenefitfromalow-noise,largefieldofviewimager. WiththeexceptionoftheS805MUxmodels,eachcameracomeswithauser-removableIRfilter;forcompletedetailsonthetransmissionpleaseseetheSpecstab.Ifthefilterisremoved,itcanbereplacedwithauser-suppliedØ1"(Ø25 mm)filteroranotheropticupto4mmthick;pleaseseethecameramanual,foundundertheredDocsicons() below,fordetails.OurS805MU1andS805MU2camerasareidenticaltothe8051M-USBcamera,exceptthatthesensorfaceplateisremovedandtheIRfilterisreplacedwithawedgedwindow. Thesemodelsareidealforapplicationsthataresensitivetointerferencepatternscausedbyreflectionsfromthesensorfaceplate.  These camerashaveaUSB3.0interface.AUSBcable,apowersupply,andsoftwarearesuppliedwithallcameras;seetheShippingListtabformoreinformation. Aframegrabbercardisavailableseparately.FormoredetailsontheUSB3.0interfaceandrecommendedcomputerspecifications,pleaseseetheInterfacetab. Ourcamerashavetriggeringoptionsthatenablecustomtimingandsystemcontrol;formoredetails,pleaseseetheTriggeringtab.Externaltriggeringrequiresaconnectiontotheauxiliaryportofthecamera.Accessorycablesandboardsto"breakout"theindividualsignalsareavailablebelow. HideSpecsSPECSClicktoEnlargeClickforRawDataThiscurveshowsthequantumefficiencyforthecolorcamerasensor'sred, green,andbluepixels.  ClicktoEnlargeClickforRawDataThiscurveshowsthequantumefficiencyforthemonochromecamerasensor. SampleFrameRatesat1msExposureTime CCDSizeandBinninga SingleTap DualTap QuadTapb 20MHz 40MHz 20MHz 40MHz 20MHz 40MHz FullSensor(3296x2472) 2.3fps 4.5fps 4.4fps 8.5fps 8.8fps 17.1fps FullSensor,Binby2(1648x1048) 4.4fps 8.5fps 8.3fps 15.7fps 16.6fps 31.2fps FullSensor,Binby10(329x247) 17.0fps 29.9fps 29.0fps 47.1fps 56.8fps 92.3fps CameraFrameRateisimpactedbytheVerticalHardwareBinningparameter.Forcolorcameras,whentheImageTypesettinginThorCamisanythingotherthan"Unprocessed"only1x1binningisavailable.WhensettoUnprocessed,thecameracanbinupto24x24,buttheimageproducedwillbemonochrome. Quad-tapoperationisonlyavailablewithUSB3.0versions;GigEonlysupportsSingle-andDual-tapoperation. CommonSpecificationsa SensorType ONSemiconductorKAI-08051 NumberofActivePixels  3296x2472(HorizontalxVertical) ImagingArea 18.13mmx13.60mm(HorizontalxVertical) PixelSize  5.5µmx5.5µm OpticalFormat  4/3"Format(22mmDiagonal) PeakQuantumEfficiency Monochrome:51%at460nmColor:SeeGraph totheRight ExposureTime 0to1000sin1msIncrementsb CCDPixelClockSpeed 20or40MHz ADCGainc 0to1023Steps(0.036dB/Step) OpticalBlackClamp 0to1023Steps(0.25ADU/Step)d VerticalHardwareBinninge ContinuousIntegerValuesfrom1to10 HorizontalSoftwareBinninge ContinuousIntegerValuesfrom1to10 RegionofInterest 1x1Pixelto3296x2472Pixels,Rectangular ReadNoisef <10e-at20MHz ThespecifiedperformanceisvalidwhenusingacomputerwiththerecommendedspecificationslistedontheInterfacetab. Exposuretimevarieswithoperatingmode;exposuretimesshorterthan1msmaybepossiblewhenusinganexternaltrigger. ADC=Analog-to-DigitalConverter ADU=Analog-to-DigitalUnit CameraFrameRateisimpactedbytheVerticalHardwareBinningparameter.Forcolorcameras,whentheImageTypesettinginThorCamisanythingotherthan"Unprocessed"only1x1binningisavailable.WhensettoUnprocessed,thecameracanbinupto24x24,buttheimageproducedwillbemonochrome. Ifyourapplicationisread-noiselimited,werecommendusingthelowerCCDpixelclockspeedof20MHz.Formoreinformationaboutreadnoise,andforexamplesofhowtoestimatethelimitingfactoroftotalcameranoise,pleaseseetheCameraNoiseTab. MonochromeItem#a S805MU1 S805MU2 8051M-USB 8051M-USB-TE ColorItem#a N/A N/A 8051C-USB 8051C-USB-TE NumberofTaps(SoftwareSelectable) Single,Dual,Quad DigitalOutput 14Bit HostPCInterfacea USB3.0 Cooling No SensorCoolsto-10°Cat20°CAmbient Temperature LensMount 1.375"-32Threading C-Mount(1.000"-32) BuiltinOptics(ClickforGraphs) WedgedWindow(400-700nm)b WedgedWindow(700-1100nm)b IRBlockingFilterc PleaseseetheInterfacetabformoreinformation. Clickhereforwedgedwindowreflectance rawdata. Clickherefor IRblockingfiltertransmissionrawdata. ClicktoEnlargeNon-CooledStandardPackaging ClicktoEnlargePackagingforCameraswiththeSensorFacePlateRemoved ClicktoEnlargeHermeticallySealedCooled PackagingHideAppsAPPSThorlabs'Scientific-GradeCCDCamerasareidealforavarietyofapplications.Thephotogallerybelowcontainsimagesacquiredwithour1.4megapixel,4megapixel,8megapixel,andfastframeratecameras. Todownloadsome oftheseimagesashigh-resolution,16-bitTIFFfiles,pleaseclickhere.Itmaybenecessarytouseanalternativeimageviewertoviewthe16-bitfiles.WerecommendImageJ,whichisafreedownload. Thorlabs'ScientificCameraApplications(ClickImagesforDetails) IntracellularDynamics BrightfieldMicroscopy Ophthalmology(NIR) FluorescenceMicroscopy MultispectralImaging Neuroscience SEM/TEM Thorlabs'ScientificCameraRecommendedforAboveApplication 1.4MegapixelFastFrameRate 4Megapixel8Megapixel 1.4Megapixel 4Megapixel1.4Megapixel 4Megapixel1.4Megapixel 1.4Megapixel 1.4Megapixel4MegapixelFastFrameRate MultispectralImaging MultispectralImagingVideo Thevideototherightisanexampleofamultispectralimageacquisitionusingaliquidcrystaltunablefilter(LCTF)infrontofamonochromecamera.Withasampleslideexposedtobroadbandlight,theLCTFpassesnarrowbandsoflightthataretransmittedfromthesample.Themonochromaticimagesarecapturedusingamonochromescientificcamera,resultinginadatacube–astackofspectrallyseparatedtwo-dimensionalimageswhichcanbeusedforquantitativeanalysis,suchasfindingratiosorthresholdsandspectralunmixing. Intheexampleshown,amaturecapsellabursa-pastorisembryo,alsoknownasShepherd's-Purse,israpidlyscannedacrossthe420nm-730nmwavelengthrangeusingThorlabs'KURIOS-WB1LiquidCrystalTunableFilter.Theimagesarecapturedusingourlegacy1501M-GEScientificCamera,whichisconnected,withtheliquidcrystalfilter,toaCerna®SeriesMicroscope.Theoverallsystemmagnificationis10X.Thefinalstacked/recoveredimageisshownbelow. ClicktoEnlargeFinalStacked/RecoveredImage   ThrombosisStudies Thrombosisistheformationofabloodclotwithinabloodvesselthatwillimpedetheflowofbloodinthecirculatorysystem.Thevideosbelowarefromexperimentalstudiesonthelarge-vesselthrombosisinMiceperformedbyDr.BrianCooleyattheMedicalCollegeofWisconsin.Threelasers(532nm,594nm,and650nm)wereexpandedandthenfocusedonamicrosurgicalfieldofanexposedsurgicalsiteinananesthenizedmouse.Acustom1.4MegapixelCamerawithintegratedfilterwheelwereattachedtoaLeicaMicroscopetocapturethelow-lightfluorescenceemittedfromthesurgicalsite.Seethevideosbelowwiththeirassociateddescriptionsforfurtherinfromation. ArterialThrombosis AtherogeneticVideo Inthevideoabove,agentle30-secondelectrolyticinjuryisgeneratedonthesurfaceofacarotidarteryinanatherogenicmouse(ApoE-nullonahigh-fat,“Western”diet),usinga100-micron-diameterironwire(creatingafree-radicalinjury).Thesite(arrowhead)andthevesselareimagedbytime-lapsefluorescence-capture,low-lightcameraover60minutes(timerisshowninupperleftcorner–hours:minutes:seconds).Plateletswerelabeledwithagreenfluorophore(rhodamine6G)andanti-fibrinantibodieswitharedfluorophore(Alexa-647)andinjectedpriortoelectrolyticinjurytoidentifythedevelopmentofplateletsandfibrininthedevelopingthrombus.Flowisfromlefttoright;thearteryisapproximately500micronsindiameter(baratlowerright,350microns). VenousThrombosis ThrombosisVideo Inthevideoabove,agentle30-secondelectrolyticinjuryisgeneratedonthesurfaceofamurinefemoralvein,usinga100-micron-diameterironwire(creatingafree-radicalinjury).Thesite(arrowhead)andthevesselareimagedbytime-lapsefluorescence-capture,low-lightcameraover60minutes(timerisshowninupperleftcorner–hours:minutes:seconds).Plateletswerelabeledwithagreenfluorophore(rhodamine6G)andanti-fibrinantibodieswitharedfluorophore(Alexa-647)andinjectedpriortoelectrolyticinjurytoidentifythedevelopmentofplateletsandfibrininthedevelopingthrombus.Flowisfromlefttoright;theveinisapproximately500micronsindiameter(baratlowerright,350microns). Reference:CooleyBC.Invivofluorescenceimagingoflarge-vesselthrombosisinmice.ArteriosclerThrombVascBiol31,1351-1356,2011.AllanimalstudiesweredoneunderprotocolsapprovedbytheMedicalCollegeofWisconsinInstitutionalAnimalCareandUseCommittee.HidePinDiagramsPINDIAGRAMSCameraBackPanelConnectorLocations ClicktoEnlarge8051M-USB,8051C-USB,S805MU1,S805MU2,8051M-USB-TE,and8051C-USB-TEBackPanelLayout TSI-IOBOBandTSI-IOBOB2Break-OutBoardConnectorLocations ClicktoEnlargeTSI-IOBOB ClicktoEnlargeTSI-IOBOB2 TSI-IOBOBandTSI-IOBOB2Connector 8050-CAB1Connectors CameraAuxiliary(AUX)Port Female6-PinMiniDinFemaleConnector Male6-PinMiniDinMaleConnector(TSI-IOBOBendofCable) Male12-PinHiroseConnector(CameraendofCable) Female12-PinHiroseConnector(AuxiliaryPortonCamera) AuxiliaryConnector Thecamerasandthebreak-outboardsbothfeaturefemaleconnectors;the8megapixelcamerashavea12pinHiroseconnector,whilethebreakoutboards havea6-pinMini-DINconnector.The8050-CAB1cablefeaturesmaleconnectorsonbothends:a12-pinconnectorforconnectingtothecameraanda6-pinMini-DINconnectorforthebreak-outboards.Pins1,2,3,5,and6areeachconnectedtothecenterpinofanSMAconnectoronthebreak-outboards,whilepin4(ground)isconnectedtoeachSMAconnectorhousing.ToaccessoneoftheI/Ofunctionsnotavailablewiththe8050-CAB1,theusermustfabricateacableusingshieldedcablinginorderforthecameratoadheretoCEandFCCcompliance;additionaldetailsareprovidedinthecameramanual. CameraAUXPin# TSI-IOBOBandTSI-IOBOB2Pin# Signal Description 1 - Reserved Reservedforfutureuse 2 - Reserved Reservedforfutureuse 3 - Reserved Reservedforfutureuse 4 6 STROBE_OUT(Output) ATTLoutputthatishighduringtheactualsensorexposuretimewhenincontinuous,overlappedexposuremode.Itistypicallyusedtosynchronizeanexternalflashlamporotherdevicewiththecamera. 5 3 TRIGGER_IN(Input) ATTLinputusedtotriggerexposuresonthetransitionfromthehightolowstate. 6 1 LVAL(Output) Refersto"LineValid."Itisanactive-highTTLsignalandisassertedduringthevalidperiodoneachline.Itreturnslowduringtheinter-lineperiodbetweeneachlineandduringtheinter-frameperiodbetweeneachframe. 7 2 TRIGGER_OUT(Output) A6µspositivepulseassertedwhenusingthevariousexternaltriggerinputoptions;TRIGGER_INorLVDS_TRIGGER_IN.ThesignalisbroughtoutofthecameraasTRIGGER_OUTattheHigh-to-Lowtransitiontoallowtriggeringofotherdevices. 8 - LVDS_TRIGGER_IN_N(Input,DifferentialPairwithPin9) ALVDS(low-voltagedifferentialsignal)inputusedtotriggerexposuresonthetransitionfromthehighstatetolowstate.Thesuffix"N"identifiesthisasthenegativeinputoftheLVDSsignal. 9 - LVDS_TRIGGER_IN_P(Input,DifferentialPairwithPin9) ALVDS(low-voltagedifferentialsignal)inputusedtotriggerexposuresonthetransitionfromthehighstatetolowstate.Thesuffix"P"identifiesthisasthepositiveinputoftheLVDSsignal. 10 4 GND Theelectricalgroundforthecamerasignals 11 - Reserved Reservedforfutureuse 12 5 FVAL_OUT(Output) Refersto"FrameValid."ItisaTTLoutputthatishighduringactivereadoutlinesandreturnslowbetweenframes. HideSoftwareSOFTWAREThorCam™ ThorCamisapowerfulimageacquisitionsoftwarepackagethatisdesignedforusewithourcamerason32-and64-bitWindows®7or10systems.Thisintuitive,easy-to-usegraphicalinterfaceprovidescameracontrolaswellastheabilitytoacquireandplaybackimages.Singleimagecaptureandimagesequencesaresupported.Pleaserefertothescreenshotsbelowforanoverviewofthesoftware'sbasicfunctionality. Applicationprogramminginterfaces(APIs)andasoftwaredevelopmentkit(SDK)areincludedforthedevelopmentofcustomapplicationsbyOEMsanddevelopers.TheSDKprovideseasyintegrationwithawidevarietyofprogramminglanguages,suchasC,C++,C#,Python,andVisualBasic.NET.Supportforthird-partysoftwarepackages,suchasLabVIEW,MATLAB,andµManager*isavailable.WealsoofferexampleArduinocodeforintegrationwithourTSI-IOBOB2InterconnectBreak-OutBoard. *µManagercontrolof1.3MPKiraluxcamerasisnotcurrentlysupported. RecommendedSystemRequirementsa OperatingSystem Windows®7or10(64Bit) Processor(CPU)b ≥3.0 GHzIntelCore(i5orHigher) Memory(RAM) ≥8GB HardDrivec ≥500GB(SATA)SolidStateDrive(SSD) GraphicsCardd DedicatedAdapterwith≥256MBRAM Motherboard USB3.0(-USB)Cameras:IntegratedIntelUSB3.0ControllerorOneUnusedPCIex1Slot(forItem#USB3-PCIE)GigE(-GE)Cameras:OneUnusedPCIex1Slot Connectivity USBorInternetConnectivityforDriverInstallation SeethePerformanceConsiderationssectionbelowforrecommendationstominimizedroppedframesfordemandingapplications. IntelCorei3processorsandmobileversionsofIntelprocessorsmaynotsatisfytherequirements. Werecommendasolidstatedrive(SSD)forreliablestreamingtodiskduringimagesequencestorage. On-board/integratedgraphicssolutionspresentonIntelCorei5andi7processorsarealsoacceptable. Software Version3.6.0 ClickthebuttonbelowtovisittheThorCamsoftwarepage. ExampleArduinoCodeforTSI-IOBOB2Board ClickthebuttonbelowtovisitthedownloadpageforthesampleArduinoprogramsfortheTSI-IOBOB2ShieldforArduino.Threesampleprogramsareoffered: TriggertheCameraataRateof1 Hz TriggertheCameraattheFastestPossibleRate UsetheDirectAVRPortMappingsfromtheArduinotoMonitorCameraStateandTriggerAcquisition ClicktheHighlightedRegionstoExploreThorCamFeatures CameraControlandImageAcquisition CameraControlandImageAcquisitionfunctionsarecarriedoutthroughtheiconsalongthetopofthewindow,highlightedinorangeintheimageabove.CameraparametersmaybesetinthepopupwindowthatappearsuponclickingontheToolsicon.TheSnapshotbuttonallowsasingleimagetobeacquiredusingthecurrentcamerasettings. TheStartandStopcapturebuttonsbeginimagecaptureaccordingtothecamerasettings,includingtriggeredimaging. TimedSeriesandReviewofImageSeries TheTimedSeriescontrol,showninFigure1,allowstime-lapseimagestoberecorded.Simplysetthetotalnumberofimagesandthetimedelayinbetweencaptures.Theoutputwillbesavedinamulti-pageTIFFfileinordertopreservethehigh-precision,unalteredimagedata.ControlswithinThorCamallowtheusertoplaythesequenceofimagesorstepthroughthemframebyframe. MeasurementandAnnotation Asshownintheyellowhighlightedregionsintheimageabove,ThorCamhasanumberofbuilt-inannotationandmeasurementfunctionstohelpanalyzeimagesaftertheyhavebeenacquired.Lines,rectangles,circles,andfreehandshapescanbedrawnontheimage.Textcanbeenteredtoannotatemarkedlocations. Ameasurementmodeallowstheusertodeterminethedistancebetweenpointsofinterest. Thefeaturesinthered,green,andbluehighlightedregionsoftheimageabovecanbeusedtodisplayinformationaboutbothliveandcapturedimages. ThorCamalsofeaturesatallycounterthatallowstheusertomarkpointsofinterestintheimageandtallythenumberofpointsmarked(seeFigure2). Acrosshairtargetthatislockedtothecenteroftheimagecanbeenabledtoprovideapointofreference. Third-PartyApplicationsandSupport ThorCamisbundledwithsupportforthird-partysoftwarepackagessuchasLabVIEW,MATLAB,and.NET.Both32-and64-bitversionsofLabVIEWandMATLABaresupported. Afull-featuredandwell-documentedAPI,includedwithourcameras,makesitconvenienttodevelopfullycustomizedapplicationsinanefficientmanner,whilealsoprovidingtheabilitytomigratethroughourproductlinewithouthavingtorewriteanapplication. ClicktoEnlargeFigure1: Atimedseriesof10imagestakenat1secondintervalsissavedasamultipageTIFF. ClicktoEnlargeFigure2:AscreenshotoftheThorCamsoftwareshowingsomeoftheanalysisandannotationfeatures.TheTallyfunctionwasusedtomarkfourlocationsintheimage.Abluecrosshairtargetisenabledandlockedtothecenteroftheimagetoprovideapointofreference.   PerformanceConsiderations Pleasenotethatsystemperformancelimitationscanleadto"droppedframes"whenimagesequencesaresavedtothedisk.Theabilityofthehostsystemtokeepupwiththecamera'soutputdatastreamisdependentonmultipleaspectsofthehostsystem.NotethattheuseofaUSBhubmayimpactperformance. AdedicatedconnectiontothePCispreferred.USB2.0connectionsarenotsupported. First,itisimportanttodistinguishbetweentheframerateofthecameraandtheabilityofthehostcomputertokeepupwiththetaskofdisplayingimagesorstreamingtothediskwithoutdroppingframes.Theframerateofthecameraisafunctionofexposureandreadout(e.g.clock,ROI)parameters.Basedontheacquisitionparameterschosenbytheuser,thecameratimingemulatesadigitalcounterthatwillgenerateacertainnumberofframespersecond.Whendisplayingimages,thisdataishandledbythegraphicssystemofthecomputer;whensavingimagesandmovies,thisdataisstreamedtodisk.Iftheharddriveisnotfastenough,thiswillresultindroppedframes. Onesolutiontothisproblemistoensurethatasolidstatedrive(SSD)isused.ThisusuallyresolvestheissueiftheotherspecificationsofthePCaresufficient.NotethatthewritespeedoftheSSDmustbesufficienttohandlethedatathroughput. Largerformatimagesathigherframeratessometimesrequireadditionalspeed.InthesecasesuserscanconsiderimplementingaRAID0configurationusingmultipleSSDsorsettingupaRAMdrive.WhilethelatteroptionlimitsthestoragespacetotheRAMonthePC,thisisthefastestoptionavailable.ImDiskisoneexampleofafreeRAMdisksoftwarepackage.ItisimportanttonotethatRAMdrivesusevolatilememory.HenceitiscriticaltoensurethatthedataismovedfromtheRAMdrivetoaphysicalharddrivebeforerestartingorshuttingdownthecomputertoavoiddataloss. HideShippingListSHIPPINGLISTS805MU1andS805MU2 ContentsExample ClicktoEnlargeItem#Shown: S805MU1 InAdditiontotheCamera,EachS805MUItemIncludestheFollowing: USB3.0 Cable(MicroBtoA) PowerSupply,withRegion-SpecificPowerCord CDwithThorCamSoftware Quick-StartGuideand ManualDownloadInformationCard StandardandCooledCamera ContentsExample ClicktoEnlargeItem#Shown:8051M-USB InAdditiontotheCamera,EachUSB3.0 ItemIncludestheFollowing: USB3.0 Cable(MicroBtoA) PowerSupply,withRegion-SpecificPowerCord WrenchtoLoosenOpticalAssembly LensMountDustCap(AlsoFunctionsasIRFilterRemovalTool) CDwithThorCamSoftware Quick-StartGuideand ManualDownloadInformationCard HideCameraNoiseCAMERANOISE CameraNoiseandTemperature OverviewWhenpurchasingacamera,animportantconsiderationiswhetherornottheapplicationwillrequireacooledsensor.Generally,mostapplicationshavehighsignallevelsanddonotrequirecooling.However,forcertainsituations,generallyunderlowlightlevelswherelongexposuresarenecessary,coolingwillprovideabenefit.Inthetutorialbelow,wederivethefollowing"ruleofthumb":forexposureslessthan1second,astandardcameraisgenerallysufficient;forexposuresgreaterthan1second,coolingcouldbebeneficial;forexposuresgreaterthan5seconds,coolingisgenerallyrecommended;andforexposuresabove10seconds,coolingisusuallyrequired.Ifyouhavequestionsaboutwhichdomainyourapplicationwillfall,youmightconsiderestimatingthesignallevelsandnoisesourcesbyfollowingthestepsdetailedinthetutorialbelow,wherewepresentsamplecalculationsusingthespecificationsforour1.4megapixelmonochromecameras.Alternativelyyoucancontactus,andoneofourscientificcameraspecialistswillhelpyoudecidewhichcameraisrightforyou. SourcesofNoise Noiseinacameraimageistheaggregatespatialandtemporalvariationinthemeasuredsignal,assumingconstant,uniformillumination.Thereareseveralcomponentsofnoise: DarkShotNoise(σD):Darkcurrentisacurrentthatflowsevenwhennophotonsareincidentonthecamera.Itisathermalphenomenonresultingfromelectronsspontaneouslygeneratedwithinthesiliconchip(valenceelectronsarethermallyexcitedintotheconductionband).Thevariationintheamountofdarkelectronscollectedduringtheexposureisthedarkshotnoise.ItisindependentofthesignallevelbutisdependentonthetemperatureofthesensorasshowninTable1. ReadNoise(σR):Thisisthenoisegeneratedinproducingtheelectronicsignal.Thisresultsfromthesensordesignbutcanalsobeimpactedbythedesignofthecameraelectronics.Itisindependentofsignallevelandtemperatureofthesensor,andislargerforfasterCCDpixelclockrates. PhotonShotNoise(σS):Thisisthestatisticalnoiseassociatedwiththearrivalofphotonsatthepixel.SincephotonmeasurementobeysPoissonstatistics,thephotonshotnoiseisdependentonthesignallevelmeasured.Itisindependentofsensortemperature. FixedPatternNoise(σF):Thisiscausedbyspatialnon-uniformitiesofthepixelsandisindependentofsignallevelandtemperatureofthesensor.Notethatfixedpatternnoisewillbeignoredinthediscussionbelow;thisisavalidassumptionfortheCCDcamerassoldherebutmayneedtobeincludedforothernon-scientific-gradesensors. TotalEffectiveNoise Thetotaleffectivenoiseperpixelisthequadraturesumofeachofthenoisesourceslistedabove: (1) Here,σDisthedarkshotnoise,σRisthereadnoise(forsamplecalculations,wewilluseour1.4megapixelmonochromecameras,whichusetheICX285ALsensor.Typicallythereadnoiseislessthan10e-forscientific-gradecamerasusingtheICX285ALCCD;wewillassumeavalueof10e-inthistutorial),andσSisthephotonshotnoise.IfσS>>σDandσS>>σR,thenσeffisapproximatelygivenbythefollowing: (2) Again,fixedpatternnoiseisignored,whichisagoodapproximationforscientific-gradeCCDsbutmayneedtobeconsideredfornon-scientific-gradesensors. TemperatureDarkCurrent(ID) -20°C 0.1e-/(s•pixel) 0°C 1e-/(s•pixel) 25°C 5e-/(s•pixel) Table1:NominaldarkcurrentvaluesatseveraltemperaturesfortheSonyICX285ALCCDsensorusedinour1.4megapixelCCDcameras. ClicktoEnlargeFigure1:Plotofdarkshotnoiseandreadnoiseasafunctionofexposureforthreesensortemperaturesforour1.4megapixelcameras.Thisplotuseslogarithmicscalesforbothaxes.Thedottedverticallineat5sindicatesthevaluescalculatedastheexampleinthetext. DarkShotNoiseandSensorTemperature Asmentionedabove,thedarkcurrentisathermaleffectandcanthereforebereducedbycoolingthesensor.Table1liststypicaldarkcurrentvaluesfortheSonyICX285ALCCDsensorusedinour1.4megapixelmonochromecameras.Asthedarkcurrentresultsfromspontaneouslygeneratedelectrons,thedarkcurrentismeasuredbysimply"counting"theseelectrons.SincecountingelectronsobeysPoissonstatistics,thenoiseassociatedwiththedarkcurrentIDisproportionaltothesquarerootofthenumberofdarkelectronsthataccumulateduringtheexposure.Foragivenexposure,thedarkshotnoise,σD,isthereforethesquarerootoftheIDvaluefromTable1(foragivensensortemperature)multipliedbytheexposuretimetinseconds: (3) Sincethedarkcurrentdecreaseswithdecreasingtemperature,theassociatednoisecanbedecreasedbycoolingthecamera.Forexample,assuminganexposureof5seconds,thedarkshotnoiselevelsforthethreesensortemperatureslistedinthetableare (4) Figure1,whichisaplotofthedarkshotnoiseasafunctionofexposureforthethreetemperatureslistedinTable1,illustrateshowthedarkshotnoiseincreaseswithincreasingexposure.Figure1alsoincludesaplotoftheupperlimitofthereadnoise. Ifthephotonshotnoiseissignificantlylargerthanthedarkshotnoise,thencoolingprovidesanegligiblebenefitintermsofthenoise,andourstandardpackagecameraswillworkwell. PhotonShotNoise IfSisthenumberof"signal"electronsgeneratedwhenaphotonfluxofNphotons/secondisincidentoneachpixelofasensorwithaquantumefficiencyQEandanexposuredurationoftseconds,then (5) FromS,thephotonshotnoise,σS,isgivenby: (6) ExampleCalculations(Usingour1.4MegapixelCameras) IfweassumethatthereisasufficientlyhighphotonfluxandquantumefficiencytoallowforasignalSof10,000e-toaccumulateinapixelwithanexposureof5seconds,thentheestimatedshotnoise,σS,wouldbethesquarerootof10,000,or100e-.Thereadnoiseis10e-(independentofexposuretime).Foranexposureof5secondsandsensortemperaturesof25,0,and-25°C,thedarkshotnoiseisgiveninequation(4).Theeffectivenoiseis: (7) Thesignal-to-noiseratio(SNR)isausefulfigureofmeritforimagequalityandisestimatedas: (8) FromEquation7,theSNRvaluesforthethreesensortemperaturesare: (9) Astheexampleshows,thereisanegligiblebenefittousingacooledcameracomparedtoanon-cooledcameraoperatingatroomtemperature,andthephotonshotnoiseisthedominantnoisesourceinthisexample.Inthiscaseourstandardpackagecamerasshouldthereforeworkquitewell. However,ifthelightlevelswerelowersuchthata100secondexposurewasrequiredtoachieve900e-perpixel,thentheshotnoisewouldbe30e-.Theestimateddarkshotnoisewouldbe22.4e-at25°C,whileat-20°Cthedarkshotnoisewouldbe3.2e-.Thetotaleffectivenoisewouldbe (10) FromEquation8,theSNRvaluesare (11) ExposureCameraRecommendation <1s StandardNon-CooledCameraGenerallySufficient 1sto5s CooledCameraCouldBeHelpful 5sto10s CooledCameraRecommended >10s CooledCameraUsuallyRequired Table2:FromtheresultsshowninFigure1,thesearethegeneral"ruleofthumb"recommendationsrelatedtocollingconsiderationsbasedontheexposurerequirementsofanapplication.Pleasekeepinmindthatsomeapplicationsaremoresensitivetonoisethanothers. Inthisexample,thedarkshotnoiseisamoresignificantcontributortothetotalnoiseforthe25°Csensorthanforthe-25°Csensor.Dependingontheapplication'snoisebudget,acooledcameramaybebeneficial. Figure2showsplotsofthedifferentnoisecomponents,includingdarkshotnoiseatthreesensortemperatures,asafunctionofexposuretimeforthreephotonfluxes.Theplotsshowthatdarkshotnoiseisnotasignificantcontributortototalnoiseexceptforlowsignal(andconsequentlylongexposure)situations.Whilethephotonfluxlevelsusedforthecalculationsaregiveninthefigure,itisnotnecessarytoknowtheexactphotonfluxlevelforyourapplication.Figure2suggestsageneralmetricbasedonexposuretimethatcanbeusedtodeterminewhetheracooledcameraisrequirediftheexposuretimecanbeestimated,andtheseresultsaresummarizedinTable2.Ifyoufindthatyourdominantsourceofnoiseisduetothereadnoise,thenwerecommendrunningthecameraatalowerCCDpixelclockrateof20MHz,sincethatwillofferalowerreadnoise. ClicktoEnlarge(a) ClicktoEnlarge(b) ClicktoEnlarge(c) Figure2:Noisefromallsourcesasafunctionofexposureforthreedifferentphotonfluxes:(a)low,(b)medium,and(c)high.In(c)thesignalandphotonshotnoisesaturateaboveapproximately20secondsbecausethepixelbecomessaturatedatthecorrespondingincidentphotonlevels.Aquantumefficiencyof60%wasusedforthecalculations.Notethattheseplotsuselogarithmicscalesforbothaxes. OtherConsiderations Thermoelectriccoolingshouldalsobeconsideredforlongexposuresevenwherethedarkshotnoiseisnotasignificantcontributortototalnoisebecausecoolingalsohelpstoreducetheeffectsofhotpixels.Hotpixelscausea"starfield"patternthatappearsunderlongexposures.Figure3showsanexampleofthisstarfieldpatternforimagestakenusingcameraswithandwithoutTECcoolingwithanexposureof10seconds. (a) (b) Figure3:Imagesofthe"starfield"patternthatresultsfromhotpixelsusingour(a)standardnon-cooledcameraand(b)ourcameracooledto-20°C.Bothimagesweretakenwithanexposureof10secondsandwithagainof32dB(tomakethehotpixelsmorevisible).Pleasenotethatinordertoshowthepatterntheimagesdisplayedherewerecroppedfromthefull-resolution16bitimages.Thefullsize16bitimagesmaybedownloadedhereandviewedwithsoftwaresuchasImageJ,whichisafreedownload.HideInterfaceINTERFACE RecommendedSystemRequirements OperatingSystem Windows®7,8.1,or10(64bit) Processor(CPU)a ≥3.0 GHzIntelCorei5,i7,ori8 Memory(RAM) ≥8GB HardDrive ≥500GB(SATA)SolidStateDrive(SSD)b GraphicsCard DedicatedcAdapterwith≥256MBRAM PowerSupply ≥600 W Motherboard IntegratedIntelUSB3.0ControllerorOneUnusedPCIex1Slot(forItem#USB3-PCIE) Connectivity USBorInternetConnectivityforDriverInstallation MaxCableLength 3m MaxBandwidthd 320MB/s SupportforMultipleCameras ViaMultipleUSB3.0PortsorHub IntelCorei3processorsandmobileversionsofIntelprocessorsmaynotsatisfytherequirements. Werecommendasolidstatedrive(SSD)forreliablestreamingtodiskduringimagesequencestorage. On-board/integratedgraphicssolutionspresentonIntelCorei5andi7processorsarealsoacceptable. PerformancewillvarydependingontheexactPCconfiguration. Whenusingthesescientificcameras,itisimportanttoconfirmthatthecomputersystemmeetsorexceedstherecommendedrequirementslistedtotheright;otherwise,droppedframesmayresult,particularlywhenstreamingcameraimagesdirectlytostoragemedia. Definitions CameraFrameRate:Thenumberofimagespersecondgeneratedbythecamera.Itisafunctionofcameramodelanduser-selectedsettings. EffectiveFrameRate:Thenumberofimagespersecondreceivedbythehostcomputer'scamerasoftware.Thisdependsonthelimitsoftheselectedinterfacehardware(chipset),CPUperformance,andotherdevicesandsoftwarecompetingforthehostcomputerresources. MaximumBandwidth:Themaximumrate(inbits/secondorbytes/second)atwhichdatacanbereliablytransferredovertheinterfacefromthecameratothehostPC.Themaximumbandwidthisaspecifiedperformancebenchmarkoftheinterface,undertheassumptionthatthehostPCiscapableofreceivingandhandlingdataatthatrate.Aninterfacewithahighermaximumbandwidthwilltypicallysupporthighercameraframerates,butthechoiceofinterfacedoesnotbyitselfincreasetheframerateofthecamera. ClicktoEnlargeUSB3.0CameraInterface USB3.0Interface USB3.0isastandardinterfaceavailableonmostnewPCs,whichmeansthattypicallynoadditionalhardwareisrequired,andthereforethesecamerasarenotsoldwithanycomputerhardware.ForuserswithPCsthatdonothaveaUSB3.0port,aPCIecardissoldseparatelybelow.USB3.0supportsaspeedupto320MB/sandcablelengthsupto3 m.SupportformultiplecamerasispossibleusingmultipleUSB3.0portsonthePCoraUSB3.0hub.HideTriggeringTRIGGERINGTriggeredCameraOperation Ourscientificcamerashavethreeexternallytriggeredoperatingmodes:streamingoverlappedexposure,asynchronoustriggeredacquisition,andbulb exposuredrivenbyanexternallygeneratedtriggerpulse.Thetriggermodesoperateindependentlyofthereadout(e.g.,20or40MHz;binning)settingsaswellasgainandoffset.Figures1through3showthetimingdiagramsforthesetriggermodes,assuminganactivelowexternalTTLtrigger. ClicktoEnlargeFigure1: Streamingoverlappedexposuremode.Whentheexternaltriggergoeslow,theexposurebegins,andcontinuesforthesoftware-selectedexposuretime,followedbythereadout.Thissequencethenrepeatsatthesettimeinterval.Subsequentexternaltriggersareignoreduntilthecameraoperationishalted. ClicktoEnlargeFigure2:Asynchronoustriggeredacquisitionmode.Whentheexternaltriggersignalgoeslow,anexposurebeginsforthepresettime,andthentheexposureisreadoutofthecamera.Duringthereadouttime,theexternaltriggerisignored. Onceasingle readoutiscomplete,thecamerawillbeginthenextexposureonlywhentheexternaltriggersignalgoeslow. ClicktoEnlargeFigure3:Bulbexposuremode.Theexposurebeginswhentheexternaltriggersignalgoeslowandendswhentheexternaltriggersignalgoeshigh.Triggersignalsduringcamerareadoutareignored. Figure4: TheThorCamCameraSettingswindow.Theredandbluehighlightedregionsindicatethetriggersettingsasdescribedinthetext. Externaltriggeringenablesthesecamerastobeeasilyintegratedintosystemsthatrequirethecameratobesynchronizedtoexternalevents.TheStrobeOutputgoes hightoindicateexposure;thestrobesignalmaybeusedindesigningasystem tosynchronizeexternaldevicestothecameraexposure.Externaltriggeringrequiresaconnectiontotheauxiliaryportofthecamera.Weofferthe8050-CAB1auxiliarycableasanoptionalaccessory.Twooptionsareprovidedto"breakout" individualsignals.TheTSI-IOBOBprovidesSMAconnectorsforeachindividualsignal.Alternately,theTSI-IOBOB2 alsoprovidestheSMAconnectorswiththeaddedfunctionalityofashieldforArduinoboardsthatallowscontrolofotherperipheralequipment.Moredetailsonthesethreeoptionalaccessoriesareprovidedbelow. TriggersettingsareadjustedusingtheThorCamsoftware.Figure4showstheCameraSettingswindow,withthetriggersettingshighlightedwithredandbluesquares.Settingscanbeadjustedasfollows: "HWTrigger"(RedHighlight)Setto"None": Thecamerawillsimplyacquirethenumberofframesinthe"FramesperTrigger"boxwhenthecapturebuttonispressedinThorCam. "HWTrigger"Setto"Standard": ThereareTwoPossibleScenarios: "FramesperTrigger"(BlueHighlight)SettoZeroor>1: Thecamerawilloperateinstreamingoverlapedexposuremode(Figure1). "FramesperTrigger"Setto1: Thenthecamerawilloperateinasynchronoustriggeredacquisitionmode(Figure2). "HWTrigger"Setto"Bulb(PDX)Mode":Thecamerawilloperateinbulbexposuremode,alsoknownasPulseDrivenExposure(PDX)mode(Figure3). Inaddition,thepolarityofthetriggercanbesetto"OnHigh"(exposurebeginsontherisingedge)or"OnLow"(exposurebeginsonthefallingedge)inthe"HWTriggerPolarity"box(highlightedinredinFigure4). ExampleCameraTriggeringConfigurationusingScientificCameraAccessories Figure5:AschematicshowingasystemusingtheTSI-IOBOB2tofacilitatesystemintegrationandcontrol.  Asanexampleofhowcameratriggeringcanbeintegratedintosystemcontrol isshowninFigure5.Intheschematic,thecameraisconnectedtotheTSI-IOBOB2break-outboard/shieldforArduinousinga8050-CAB1cable.Thepinsontheshieldcanbeusedtodeliversignalstosimultaneouslycontrolotherperipheraldevices,suchaslightsources,shutters,ormotioncontroldevices.OncethecontrolprogramiswrittentotheArduinoboard,theUSBconnectiontothehostPCcanberemoved,allowingforastand-alonesystemcontrolplatform;alternately,theUSBconnectioncanbeleftinplacetoallowfortwo-waycommunicationbetweentheArduinoandthePC.ConfiguringtheexternaltriggermodeisdoneusingThorCamasdescribedabove.HideInsightsINSIGHTS InsightsintoMountingLensestoThorlabs'ScientificCameras Scrolldowntoreadaboutcompatibilitybetweenlensesandcamerasofdifferentmounttypes,withafocusonThorlabs'scientificcameras. CanC-mountandCS-mountcamerasandlensesbeusedwitheachother? DoThorlabs'scientificcamerasneedanadapter? WhycantheFFDbesmallerthanthedistanceseparatingthecamera'sflangeandsensor? Clickhereformoreinsightsintolabpracticesandequipment.   CanC-mountandCS-mountcamerasandlensesbeusedwitheachother? ClicktoEnlargeFigure1:C-mountlensesandcamerashavethesameflangefocaldistance(FFD),17.526 mm.Thisensureslightthroughthelensfocusesonthecamera'ssensor.Bothcomponentshave1.000"-32threads,sometimesreferredtoas"C-mountthreads". ClicktoEnlargeFigure2:CS-mountlensesandcamerashavethesameflangefocaldistance(FFD),12.526 mm.Thisensureslightthroughthelensfocusesonthecamera'ssensor.Their1.000"-32threadsareidenticaltothreadsonC-mountcomponents,sometimesreferredtoas"C-mountthreads." TheC-mountandCS-mountcamerasystemstandardsbothinclude1.000"-32threads,butthetwomounttypeshavedifferentflangefocaldistances(FFD,alsoknownasflangefocaldepth,flangefocallength,register,flangebackdistance,andflange-to-filmdistance).TheFFDis17.526 mmfortheC-mountand12.526 mmfortheCS-mount(Figures1and2,respectively). Sincetheirflangefocaldistancesaredifferent,theC-mountandCS-mountcomponentsarenotdirectlyinterchangeable.However,withanadapter,itispossibletouseaC-mountlenswithaCS-mountcamera. MixingandMatchingC-mountandCS-mountcomponentshaveidenticalthreads,butlensesandcamerasofdifferentmounttypesshouldnotbedirectlyattachedtooneanother.Ifthisisdone,thelens'focalplanewillnotcoincidewiththecamera'ssensorplaneduetothedifferenceinFFD,andtheimagewillbeblurry. Withanadapter,aC-mountlenscanbeusedwithaCS-mountcamera(Figures3and4).Theadapterincreasestheseparationbetweenthelensandthecamera'ssensorby5.0 mm,toensurethelens'focalplanealignswiththecamera'ssensorplane. Incontrast,theshorterFFDofCS-mountlensesmakesthemincompatibleforusewithC-mountcameras(Figure5).Thelensandcamerahousingspreventthelensfrommountingcloseenoughtothecamerasensortoprovideanin-focusimage,andnoadaptercanbringthelenscloser. Itiscriticaltocheckthelensandcameraparameterstodeterminewhetherthecomponentsarecompatible,anadapterisrequired,orthecomponentscannotbemadecompatible. 1.000"-32ThreadsImperialthreadsareproperlydescribedbytheirdiameterandthenumberofthreadsperinch(TPI).Inthecaseofboththesemounts,thethreaddiameteris1.000"andtheTPIis32.DuetotheprevalenceofC-mountdevices,the1.000"-32threadissometimesreferredtoasa"C-mountthread."Usingthistermcancauseconfusion,sinceCS-mountdeviceshavethesamethreads. MeasuringFlangeFocalDistanceMeasurementsofflangefocaldistancearegivenforbothlensesandcameras.Inthecaseoflenses,theFFDismeasuredfromthelens'flangesurface(Figures1and2)toitsfocalplane.Theflangesurfacefollowsthelens'planarbackfaceandintersectsthebaseoftheexternal1.000"-32threads.Incameras,theFFDismeasuredfromthecamera'sfrontfacetothesensorplane.Whenthelensismountedonthecamerawithoutanadapter,theflangesurfacesonthecamerafrontfaceandlensbackfacearebroughtintocontact. ClicktoEnlargeFigure5:ACS-mountlensisnotdirectlycompatiblewithaC-mountcamera,sincethelightfocusesbeforethecamera'ssensor.Adaptersarenotuseful,sincethesolutionwouldrequireshrinkingtheflangefocaldistanceofthecamera(bluearrow). ClicktoEnlargeFigure4:AnadapterwiththeproperthicknessmovestheC-mountlensawayfromtheCS-mountcamera'ssensorbyanoptimalamount,whichisindicatedbythelengthofthepurplearrow.Thisallowsthelenstofocuslightonthecamera'ssensor,despitethedifferenceinFFD. ClicktoEnlargeFigure3:AC-mountlensandaCS-mountcameraarenotdirectlycompatible,sincetheirflangefocaldistances,indicatedbytheblueandyellowarrows,respectively,aredifferent.Thisarrangementwillresultinblurryimages,sincethelightwillnotfocusonthecamera'ssensor.   DateofLastEdit:July21,2020   DoThorlabs'scientificcamerasneedanadapter? ClicktoEnlargeFigure6:AnadaptercanbeusedtooptimallypositionaC-mountlensonacamerawhoseflangefocaldistanceislessthan17.526 mm.ThissketchisbasedonaZeluxcameraanditsSM1A10Zadapter. ClicktoEnlargeFigure7:AnadaptercanbeusedtooptimallypositionaCS-mountlensonacamerawhoseflangefocaldistanceislessthan12.526 mm.ThissketchisbasedonaZeluxcameraanditsSM1A10adapter. AllKiralux™andQuantalux®scientificcamerasarefactorysettoacceptC-mountlenses.WhentheattachedC-mountadaptersareremovedfromthepassivelycooledcameras,theSM1(1.035"-40)internalthreadsintheirflangescanbeused.TheZeluxscientificcamerasalsohaveSM1internalthreadsintheirmountingflanges,aswellastheoptiontouseaC-mountorCS-mountadapter. TheSM1threadsintegratedintothecamerahousingsareintendedtofacilitatetheuseoflensassembliescreatedfromThorlabscomponents.Adapterscanalsobeusedtoconvertfromthecamera'sC-mountconfigurations.Whendesigninganapplication-specificlensassemblyorconsideringtheuseofanadapternotspecificallydesignedforthecamera,itisimportanttoensurethattheflangefocaldistances(FFD)ofthecameraandlensmatch,aswellasthatthecamera'ssensorsizeaccommodatesthedesiredfieldofview(FOV). MadeforEachOther:CamerasandTheirAdaptersFixedadaptersareavailabletoconfiguretheZeluxcamerastomeetC-mountandCS-mountstandards(Figures6and7).Theseadapters,aswellastheadjustableC-mountadaptersattachedtothepassivelycooledKiraluxandQuantaluxcameras,weredesignedspecificallyforusewiththeirrespectivecameras. WhileanyadapterconvertingfromSM1to1.000"-32threadsmakesitpossibletoattachaC-mountorCS-mountlenstooneofthesecameras,noteverythreadadapteralignsthelens'focalplanewithaspecificcamera'ssensorplane.Insomecases,noadaptercanaligntheseplanes.Forexample,ofthesescientificcameras,onlytheZeluxcanbeconfiguredforCS-mountlenses. Thepositionofthelens'focalplaneisdeterminedbyacombinationofthelens'FFD,whichismeasuredinair,andanyrefractiveelementsbetweenthelensandthecamera'ssensor.Whenlightfocusedbythelenspassesthrougharefractiveelement,insteadofjusttravellingthroughair,thephysicalfocalplaneisshiftedtolongerdistancesbyanamountthatcanbecalculated.Theadaptermustaddenoughseparationtocompensateforboththecamera'sFFD,whenitistooshort,andthefocalshiftcausedbyanywindowsorfiltersinsertedbetweenthelensandsensor. FlexiblityandQuickFixes:AdjustableC-MountAdapterPassivelycooledKiraluxandQuantaluxcamerasconsistofacamerawithSM1internalthreads,awindoworfiltercoveringthesensorandsecuredbyaretainingring,andanadjustableC-mountadapter. AbenefitoftheadjustableC-mountadapteristhatitcantunethespacingbetweenthelensandcameraovera1.8 mmrange,whenthewindow/filterandretainingringareinplace.Changingthespacingcancompensatefordifferenteffectsthatotherwisemisalignthecamera'ssensorplaneandthelens'focalplane.Theseeffectsincludematerialexpansionandcontractionduetotemperaturechanges,positioningerrorsfromtolerancestacking,andfocalshiftscausedbyasubstitutewindoworfilterwithadifferentthicknessorrefractiveindex. Adjustingthecamera'sadaptermaybenecessarytoobtainsharpimagesofobjectsatinfinity.Whenanobjectisatinfinity,theincomingraysareparallel,andlocationofthefocusdefinestheFFDofthelens.SincetheactualFFDsoflensesandcamerasmaynotmatchtheirintendedFFDs,thefocalplaneforobjectsatinfinitymaybeshiftedfromthesensorplane,resultinginablurryimage. Ifitisimpossibletogetasharpimageofobjectsatinfinity,despitetuningthelensfocus,tryadjustingthecamera'sadapter.Thiscancompensateforshiftsduetotoleranceandenvironmentaleffectsandbringtheimageintofocus. DateofLastEdit:Aug.2,2020   WhycantheFFDbesmallerthanthedistanceseparatingthecamera'sflangeandsensor? ClicktoEnlargeFigure9:Refractioncausestheray'sanglewiththeopticalaxistobeshallowerinthemediumthaninair(θmvs.θo),duetothedifferencesinrefractiveindices(nmvs.no).Aftertravellingadistancedinthemedium,therayisonlyhmclosertotheaxis.Duetothis,therayintersectstheaxisΔfbeyondthefpoint.; ClicktoEnlargeFigure8:Araytravellingthroughairintersectstheopticalaxisatpointf.Therayishoclosertotheaxisafterittravelsacrossdistanced.Therefractiveindexoftheairisno. ExampleofCalculatingFocalShift KnownInformation C-MountFFD f 17.526 mm TotalGlassThickness d ~1.6 mm RefractiveIndexofAir no 1 RefractiveIndexofGlass nm 1.5 Lensf-Number f/N f/1.4 ParametertoCalculate ExactEquations ParaxialApproximation θo 20° ho 0.57 mm --- θm 13° --- hm 0.37 mm --- Δf 0.57 mm 0.53 mm f+Δf 18.1 mm 18.1 mm EquationsforCalculatingtheFocalShift(Δf) AngleofRayinAir,fromLensf-Number(f/N) ChangeinDistancetoAxis,TravellingthroughAir(Figure8) AngleofRaytoAxis,intheMedium(Figure9) ChangeinDistancetoAxis,TravellingthroughOptic(Figure9) FocalShiftCausedbyRefractionthroughMedium(Figure9) ExactCalculation ParaxialApproximation ClicktoEnlargeFigure11:Toleranceand/ortemperatureeffectsmayresultinthelensandcamerahavingdifferentFFDs.IftheFFDofthelensisshorter,imagesofobjectsatinfinitywillbeexcludedfromthefocalrange.Sincethesystemcannotfocusonthem,theywillbeblurry. ClicktoEnlargeFigure10:Whentheirflangefocaldistances(FFD)arethesame,thecamera'ssensorplaneandthelens'focalplaneareperfectlyaligned.Imagesofobjectsatinfinitycoincidewithonelimitofthesystem'sfocalrange. Flangefocaldistance(FFD)valuesforcamerasandlensesassumeonlyairfillsthespacebetweenthelensandthecamera'ssensorplane.Ifwindowsand/orfiltersareinsertedbetweenthelensandcamerasensor,itmaybenecessarytoincreasethedistanceseparatingthecamera'sflangeandsensorplanestoavaluebeyondthespecifiedFFD.AspanequaltotheFFDmaybetooshort,becauserefractionthroughwindowsandfiltersbendsthelight'spathandshiftsthefocalplanefartheraway. Ifmakingchangestotheopticsbetweenthelensandcamerasensor,theresultingfocalplaneshiftshouldbecalculatedtodeterminewhethertheseparationbetweenlensandcamerashouldbeadjustedtomaintaingoodalignment.Notethatgoodalignmentisnecessaryfor,butcannotguarantee,anin-focusimage,sincenewopticsmayintroduceaberrationsandothereffectsresultinginunacceptableimagequality. ACaseoftheBends:FocalShiftDuetoRefractionWhiletravellingthroughasolidmedium,aray'spathisstraight(Figure8).Itsangle(θo)withtheopticalaxisisconstantasitconvergestothefocalpoint(f).ValuesofFFDaredeterminedassumingthismediumisair. Whenanopticwithplane-parallelsidesandahigherrefractiveindex(nm)isplacedintheray'spath,refractioncausestheraytobendandtakeashallowerangle(θm)throughtheoptic.ThisanglecanbedeterminedfromSnell'slaw,asdescribedinthetableandillustratedinFigure9. Whiletravellingthroughtheoptic,therayapproachestheopticalaxisataslowerratethanaraytravellingthesamedistanceinair.Afterexitingtheoptic,theray'sanglewiththeaxisisagainθo,thesameasaraythatdidnotpassthroughtheoptic.However,therayexitstheopticfartherawayfromtheaxisthanifithadneverpassedthroughit.Sincetherayrefractedbytheopticisfartheraway,itcrossestheaxisatapointshiftedΔfbeyondtheotherray'scrossing.Increasingtheoptic'sthicknesswidenstheseparationbetweenthetworays,whichincreasesΔf. ToInfinityandBeyondItisimportanttomanyapplicationsthatthecamerasystembecapableofcapturinghigh-qualityimagesofobjectsatinfinity.Raysfromtheseobjectsareparallelandfocusedtoapointclosertothelensthanraysfromcloserobjects(Figure9).TheFFDsofcamerasandlensesaredefinedsothefocalpointofraysfrominfinitelydistantobjectswillalignwiththecamera'ssensorplane.Whenalenshasanadjustablefocalrange,objectsatinfinityareinfocusatoneendoftherangeandcloserobjectsareinfocusattheother. Differenteffects,includingtemperaturechangesandtolerancestacking,canresultinthelensand/orcameranotexactlymeetingtheFFDspecification.Whenthelens'actualFFDisshorterthanthecamera's,thecamerasystemcannolongerobtainsharpimagesofobjectsatinfinity(Figure11).Thisoffsetcanalsoresultifanopticisremovedfrombetweenthelensandcamerasensor. Anapproachsomelensesusetocompensateforthisistoallowtheusertovarythelensfocustopoints"beyond"infinity.Thisdoesnotrefertoaphysicaldistance,itjustallowsthelenstopushitsfocalplanefartheraway.Thorlabs'Kiralux™andQuantalux®camerasincludeadjustableC-mountadapterstoallowthespacingtobetunedasneeded. Ifthelens'FFDislargerthanthecamera's,imagesofobjectsatinfinityfallwithinthesystem'sfocalrange,butsomecloserobjectsthatshouldbewithinthisrangewillbeexcluded.Thissituationcanbecausedbyinsertingopticsbetweenthelensandcamerasensor.Ifobjectsatinfinitycanstillbeimaged,thiscanoftenbeacceptable. NotJustTheory:CameraDesignExampleTheC-mount,hermeticallysealed,andTE-cooledQuantaluxcamerahasafixed18.1 mmspacingbetweenitsflangesurfaceandsensorplane.However,theFFD(f)forC-mountcamerasystemsis17.526 mm.Thecamera'sneedforgreaterspacingbecomesapparentwhenthefocalshiftduetothewindowsolderedintothehermeticcoverandtheglasscoveringthesensoraretakenintoaccount.TheresultsrecordedinthetablebeneathFigure9showthatbothexactandparaxialequationsreturnarequiredtotalspacingof18.1 mm. DateofLastEdit:July31,2020HideSelectionGuideSELECTIONGUIDE Thorlabsoffersfourfamiliesofscientificcameras:Zelux®,Kiralux®,Quantalux®,andscientificCCD.Zeluxcamerasaredesignedforgeneral-purposeimagingandprovidehighimagingperformancewhilemaintainingasmallfootprint.KiraluxcamerashaveCMOSsensorsinmonochrome,color,NIR-enhanced,orpolarization-sensitiveversionsandareavailableincompact,passivelycooledhousings;theCC505MUcameraincorporatesahermeticallysealed,TE-cooledhousing.Thepolarization-sensitiveKiraluxcameraincorporatesanintegratedmicropolarizerarraythat,whenusedwithourThorCam™softwarepackage,capturesimagesthatillustratedegreeoflinearpolarization,azimuth,andintensityatthepixellevel.OurQuantaluxmonochromesCMOScamerasfeaturehighdynamicrangecombinedwithextremelylowreadnoiseforlow-lightapplications.Theyareavailableineitheracompact,passivelycooledhousingorahermeticallysealed,TE-cooledhousing.WealsoofferscientificCCDcameraswithavarietyoffeatures,includingversionsoptimizedforoperationatUV,visible,orNIRwavelengths;fast-frame-ratecameras;TE-cooledornon-cooledhousings;andversionswiththesensorfaceplateremoved.Thetablesbelowprovideasummaryofourcameraofferings. CompactScientificCameras CameraType Zelux®CMOS Kiralux®CMOS Quantalux®sCMOS 1.6MP 1.3MP 2.3MP 5MP 8.9MP 12.3MP 2.1MP Item# Monochrome:CS165MUaColor:CS165CUa Mono.:CS135MUColor:CS135CUNIR-EnhancedMono.:CS135MUN Mono.:CS235MUColor:CS235CU Mono.,PassiveCooling:CS505MU1CS505MUMono.,ActiveCooling:CC505MUColor:CS505CU1CS505CUPolarization:CS505MUP1 Mono.,PassiveCooling:CS895MUMono.,ActiveCooling:CC895MUColor:CS895CU Mono.,PassiveCooling:CS126MUMono.,ActiveCooling:CC126MUColor:CS126CU Monochrome,PassiveCooling:CS2100M-USBActiveCooling:CC215MU ProductPhotos(ClicktoEnlarge) ElectronicShutter GlobalShutter GlobalShutter RollingShutterb SensorType CMOS CMOS sCMOS NumberofPixels 1440x1080 (HxV) 1280x1024 (HxV) 1920x1200 (HxV) 2448x2048 (HxV) 4096x2160(HxV) 4096x3000(HxV) 1920x1080 (HxV) PixelSize 3.45 µmx3.45 µm 4.8 µmx4.8 µm 5.86 µmx5.86 µm 3.45 µmx3.45 µm 5.04 µmx5.04 µm OpticalFormat 1/2.9"(6.2 mmDiag.) 1/2"(7.76 mmDiag.) 1/1.2"(13.4 mmDiag.) 2/3"(11 mmDiag.) 1"(16 mmDiag.) 1.1"(17.5 mmDiag.) 2/3"(11 mmDiag.) PeakQuantumEfficiency(ClickforPlot) Monochrome:69%at575 nmColor:ClickforPlot Monochrome:59%at550 nmColor:ClickforPlotNIR:60%at600 nm Monochrome:78%at500 nmColor:ClickforPlot Monochrome&Polarization:72%(525to580 nm)Color:ClickforPlot Monochrome:72%(525to580 nm)Color:ClickforPlot Monochrome:72%(525to580 nm)Color:ClickforPlot Monochrome:61%(at600 nm) MaxFrameRate(FullSensor) 34.8fps 165.5fps 39.7fps 35fps(CS505xx1,CC505MU,CS505MUP1),53.2fps(CS505xx) 20.8fps(CC895MU),30.15fps(CS895xx) 15.1fps(CC126MU),21.7fpsfps(CS126xx) 50fps ReadNoise <4.0e-RMS <7.0e-RMS <7.0e-RMS <2.5e-RMS <1e-MedianRMS;<1.5e-RMS DigitalOutput 10Bit(Max) 10Bit(Max) 12Bit(Max) 16Bit(Max) PCInterface USB3.0 AvailableFanlessCooling N/A N/A N/A 15°Cto20°CBelowAmbientTemperature(CCxxxMUCamerasOnly) HousingSize(ClickforDetails) 0.59"x1.72"x1.86"(15.0x43.7x47.2 mm3) PassivelyCooledCMOSCameraTE-CooledCMOSCamera PassivelyCooledsCMOSCameraTE-CooledsCMOSCamera TypicalApplications Mono.&Color:BrightfieldMicroscopy,GeneralPurposeImaging,MachineVision,MaterialSciences,MaterialsInspection,Monitoring,TransmittedLightSpectroscopy,UAV,Drone,&HandheldImagingMono.Only:MultispectralImaging,SemiconductorInspectionColorOnly:Histopathology Mono.,Color,&NIR:BrightfieldMicroscopy,Ca++IonImaging,Electrophysiology/BrainSliceImaging,FlowCytometry,FluorescenceMicroscopy,GeneralPurposeImaging,Immunohistochemistry(IHC),LaserSpeckleImaging,MachineVision,MaterialSciences,MaterialsInspection,VascularImaging,Monitoring,ParticleTracking,TransmittedLightSpectroscopy,VascularImaging,VIS/NIRImagingMono.Only:MultispectralImagingSemiconductorInspectionColorOnly:HistopathologyNIROnly:Ophthalmology/RetinalImaging Mono.&Color:Autofluorescence,BrightfieldMicroscopy,Electrophysiology/BrainSliceImaging,FluorescenceMicroscopy,Immunohistochemistry(IHC),MachineVision,MaterialSciences,MaterialsInspection,Monitoring,QuantitativePhase-ContrastMicroscopy,TransmittedLightMicroscopyMono.Only:MultispectralImagingSemiconductorInspectionColorOnly:Histopathology Mono.&Color:Autofluorescence,BrightfieldMicroscopy,Electrophysiology/BrainSliceImaging,FluorescenceMicroscopy,Immunohistochemistry(IHC),MachineVision,MaterialSciences,MaterialsInspection,Monitoring,QuantitativePhase-ContrastMicroscopy,TransmittedLightMicroscopyMono.Only:MultispectralImaging,SemiconductorInspectionColorOnly:HistopathologyPolarizationOnly:Inspection,SurfaceReflectionReduction,TransparentMaterialDetection Mono.&Color:Autofluorescence,BrightfieldMicroscopy,Electrophysiology/BrainSliceImaging,FluorescenceMicroscopy,Immunohistochemistry(IHC),MachineVision,MaterialScience,MaterialsInspection,Monitoring,QuantitativePhase-ContrastMicroscopy,TransmittedLightMicroscopyMono.Only:MultispectralImaging,Ophthalmology/RetinalImaging,SemiconductorInspectionColorOnly:HistopathologyCS126xxandCC126MUOnly:Whole-SlideMicroscopy Passive&ActiveCooling:Autofluorescence,BrightfieldMicroscopy,FluorescenceMicroscopy,Immunohistochemistry(IHC),MaterialSciences,MaterialsInspection,Monitoring,QuantitativePhase-ContrastMicroscopy,QuantumDots,SemiconductorInspection,TransmittedLightMicroscopy,Whole-SlideMicroscopyActiveCoolingOnly:Electrophysiology/BrainSliceImaging,MultispectralImaging TheseitemnumbersarerepresentativeoftheZeluxfamily.Thesecamerasareavailablewithorwithoutexternalhardwaretriggers. RollingShutterwithEqualExposurePulse(EEP)ModeforSynchronizingtheCameraandLightSourcesforEvenIllumination ScientificCCDCameras CameraType FastFrameRateVGACCD 1.4MPCCD 8MPCCD Item#Prefix Monochrome:340M UV-EnhancedMonochrome:340UV Monochrome:1501MColor:1501C Monochrome:8051MColor:8051C Monochrome,NoSensorFacePlate:S805MU ProductPhoto(ClicktoEnlarge) ElectronicShutter GlobalShutter SensorType CCD NumberofPixels 640x480 (HxV) 1392x1040 (HxV) 3296x2472 (HxV) PixelSize 7.4 µmx7.4 µm 6.45 µmx6.45 µm 5.5 µmx5.5 µm OpticalFormat 1/3"(5.92 mmDiagonal) 2/3"(11 mmDiagonal) 4/3"(22 mmDiagonal) PeakQE(ClickforPlot) 55%at500 nm 10%at485 nm Monochrome:60%at500 nmColor:ClickforPlot Monochrome:51%at460 nmColor:ClickforPlot 51%at460 nm MaxFrameRate(FullSensor) 200.7fps(at40 MHzDual-TapReadout) 23fps(at40 MHzSingle-TapReadout) 17.1fps(at40 MHzQuad-TapReadout)b 17.1fps(at40 MHzQuad-TapReadout) ReadNoise <15e-at20 MHz <7e-at20 MHz(StandardModels)<6e-at20 MHz(-TEModels) <10e-at20 MHz DigitalOutput(Max) 14Bitc 14Bit 14Bitc 14Bit AvailableFanlessCooling PassiveThermalManagement -20 °Cat20 °CAmbientTemperature -10 °Cat20 °CAmbient PassiveThermalManagement AvailablePCInterfaces USB3.0 HousingDimensions(ClickforDetails) Non-CooledScientificCCDCamera CooledScientificCCDCameraNon-CooledScientificCCDCamera NoFacePlateScientificCCDCamera TypicalApplications Mono.&UVEnhanced:BrightfieldMicroscopy,Ca++IonImaging,ElectronMicroscopy(TEM/SEM),FluorescenceMicroscopy,Immunohistochemistry(IHC),MaterialSciences,ParticleTracking,SEM/EBSD,TransmittedLightMicroscopyMonochromeOnly:FlowCytometryUVEnhancedOnly:UVInspection Monochrome&Color:BrightfieldMicroscopy,ElectronMicroscopy(TEM/SEM),FlowCytometry,FluorescenceMicroscopy,Immunohistochemistry(IHC),MaterialSciences,QuantumDots,TransmittedLightMicroscopyMonochromeOnly:Autofluorescence,LaserSpeckleImaging,Ophthamology/RetinalImaging,QuantitativePhase-ContrastMicroscopy,SEM/EBSD,VascularImaging,VIS/NIRImagingColorOnly:Histopathology Monochrome&Color:BrightfieldMicroscopy,FluorescenceMicroscopy,Immunohistochemistry(IHC),MaterialSciences,MaterialsInspection,Monitoring,TransmittedLightMicroscopy,Whole-SlideMicroscopyMonochromeOnly:SemiconductorInspectionQuantitativePhase-ContrastMicroscopyColorOnly:Histopathology Monochrome:BeamProfiling&Characterization,DigitalHolographicMicroscopy,FluorescenceMicroscopy,Immunohistochemistry(IHC),Interferometry,MaterialSciences,Monitoring,Ptychography,TransmittedLightMicroscopy,VCSELInspection Limitedto13fpsat40 MHzdual-tapreadoutforGigabitEthernetcameras;quad-tapreadoutisunavailableforGigabitEthernetcameras. Limitedto8.5fpsat40 MHzdual-tapreadoutforGigabitEthernetcameras;quad-tapreadoutisunavailableforGigabitEthernetcameras. GigabitEthernetcamerasoperatingindual-tapreadoutmodearelimitedto12-bitdigitaloutput. Hide8MPScientificCCDCameras8MPScientificCCDCameras Applications FluorescenceMicroscopy TransmittedLightMicroscopy Whole-SlideMicroscopy LargeFOVSlideImaging Histopathology Inspection MultispectralImaging Immunohistochemistry(IHC) Item#a,b 8051M-USB 8051C-USB Sensor Monochrome Color NumberofActivePixels  3296x2472(HorizontalxVertical) PixelSize  5.5µmx5.5µm QuantumEfficiency(ClickforGraphs) Monochromec Colord NumberofTaps(SoftwareSelectable) Single,Dual,Quad DigitalOutput 14Bit Cooling No HostPCInterfacee USB3.0 BuiltinOpticsf(ClickforGraph) IRBlockingFilter ThespecifiedperformanceisvalidwhenusingacomputerwiththerecommendedspecificationslistedontheInterfacetab. PleaseseetheSpecstabforacompletelistofspecifications. Click hereformonochromecameraQErawdata. Click hereforcolorcameraQErawdata. Formoreinformation,pleaseseetheInterfacetab. Clickherefor IRblockingfiltertransmissionrawdata. Compact,Non-CooledStandardPackage RecommendedforApplicationswithHighLightLevelsthatRequireExposureTimes<1second USB3.0 Interface Our8megapixelscientificcamerasareofferedwithmonochromeorcolorsensorsinacompact,non-cooledstandardpackage.Thesecamerasareidealforapplicationswithhighlightlevelsthatrequireshortexposuretimes(lessthan1second). Formounting,thefrontendhas standardC-Mount(1.000"-32)threading,andThorlabsprovidesafulllineofthread-to-threadadaptersforcompatibilitywithotherthreadstandards,includingtheSM1(1.035"-40)threadingusedonourØ1"LensTubes.Four4-40tappedholesonthefrontfaceofthesecamerasprovidecompatability withour60 mmCageSystem.Four1/4"-20tappedholes,oneoneachsideofthehousing,arecompatiblewithourØ1"posts.TheseflexiblemountingoptionsmakeThorlabs'camerastheidealchoiceforintegratingintohome-builtimagingsystemsorcommercialmicroscopes. ClicktoEnlargeCameraIntegratedinto60 mmCageSystem ClicktoEnlargeUSB Camerawith MVL25M23C-MountCameraLens PleasenotethatOnSemiconductorhasannouncedthattheCCDsensorsusedinThorlabsScientificCCDcameraswillbediscontinuedinJune2020.Thorlabswillcontinuetomanufacturethesecamerasinto2021.Whilethesesensorsarestillwidelyavailable,wedonotrecommendthesedevicesfornewdesigns.PleaseseeourexpandinglineofcompactsCMOSandCMOScamerasforalternativesorcontactourScientificCamerasTeamforhelpfindingthebestoptionforyourapplication. PartNumberDescriptionPriceAvailability8051M-USB8MPMonochromeCCDCamera,StandardPackage,USB3.0Interface$7,612.00Today8051C-USB8MPColorCCDCamera,StandardPackage,USB3.0Interface$7,612.00TodayHide8 MPScientificCCDCameras,SensorFacePlateRemoved8 MPScientificCCDCameras,SensorFacePlateRemoved Applications BeamProfiling&Characterization Interferometry VCSELInspection QuantitativePhase-ContrastMicroscopy Ptychography DigitalHolographicMicroscopy MonochromeItem#a,b S805MU1 S805MU2 NumberofActivePixels  3296x2472(HorizontalxVertical) PixelSize  5.5µmx5.5µm QuantumEfficiency(ClickforGraph) Monochromec NumberofTaps(SoftwareSelectable) Single,Dual,Quad DigitalOutput 14Bit Cooling No HostPCInterfaced USB3.0 BuiltinOpticse(ClickforGraphs) WW11050-C7ARCoatedWedgedWindow(400-700nm) WW11050-C13ARCoatedWedgedWindow(700-1100nm) ThespecifiedperformanceisvalidwhenusingacomputerwiththerecommendedspecificationslistedontheInterfacetab. PleaseseetheSpecstabforacompletelistofspecifications. Click hereformonochromecameraQErawdata. Formoreinformationontheseinterfaceoptions,pleaseseetheInterfacetab. Clickhereforwedgedwindowreflectance rawdata. Compact,Non-CooledStandardPackagewiththeSensorFacePlateRemoved RecommendedforApplicationsHighlySensitivetoInterferencePatterns AvailablewithaUSB3.0 Interface TheS805MUscientificCCDcamerasareversionsofour8051M-USBcamerawiththesensorfaceplateremovedandtheNIRfilterreplacedwithawedgedwindow.Thesemodelsareidealforinspectionandotherapplicationsthataresensitivetointerferencepatternscausedbyreflectionsfromthesensorfaceplate.EachcamerahasonlyanAR-coatedwedgedwindowinfrontofthesensor.TheS805MU1cameracontainsaWW11050-C7wedgedwindow coatedfor 400-700nm,whiletheS805MU2cameracontainsaWW11050-C13wedgedwindowcoatedfor700-1100nm.Theopticalfrontendshouldneverbedisassembledasthiscouldresultindamagetothesensor.Forcustomapplicationsthatrequireadifferentopticthanthewedgedwindow,pleasecontactTechSupport. Thefrontfaceofthesecamerasfeatures4-40tappedholesforcompatibilitywithour60 mmCageSystem.Four1/4"-20tappedholes,oneoneachsideofthehousing,arecompatiblewithourØ1"posts.ThesemodelsdonotfeatureC-mountthreading,butthefrontenddoeshave1.375"-32threadingforusersinterestedindesigningcustommounts. ClicktoEnlargeRemovingthesensorfaceplateandaddingawedgedwindowminimizesinterferencepatternsduetoetaloneffects. PleasenotethatOnSemiconductorhasannouncedthattheCCDsensorsusedinThorlabsScientificCCDcameraswillbediscontinuedinJune2020.Thorlabswillcontinuetomanufacturethesecamerasinto2021.Whilethesesensorsarestillwidelyavailable,wedonotrecommendthesedevicesfornewdesigns.PleaseseeourexpandinglineofcompactsCMOSandCMOScamerasforalternativesorcontactourScientificCamerasTeamforhelpfindingthebestoptionforyourapplication. PartNumberDescriptionPriceAvailabilityS805MU1CustomerInspired!&nbsp8MPMonochromeCCDCamera,NoSensorFacePlate,400-700nmARCoatedWedgedWindow,USB3.0Interface$7,482.50TodayS805MU28MPMonochromeCCDCamera,NoSensorFacePlate,700-1100nmARCoatedWedgedWindow,USB3.0Interface$7,482.50TodayHide8MPScientificCCDCameras,HermeticallySealedCooledPackaging8MPScientificCCDCameras,HermeticallySealedCooledPackaging Applications FluorescenceMicroscopy TransmittedLightMicroscopy Whole-SlideMicroscopy LargeFOVSlideImaging Histopathology Inspection MultispectralImaging Immunohistochemistry(IHC) Item#a,b 8051M-USB-TE 8051C-USB-TE Sensor Monochrome Color NumberofActivePixels  3296x2472(HorizontalxVertical) PixelSize  5.5µmx5.5µm QuantumEfficiency(ClickforGraphs) Monochromec Colord NumberofTaps(SoftwareSelectable) Single,Dual,Quad DigitalOutput 14Bit Cooling SensorCoolsto-10°Cat20°CAmbientTemperature HostPCInterfacee USB3.0 BuiltinOpticsf(ClickforGraph) IRBlockingFilter ThespecifiedperformanceisvalidwhenusingacomputerwiththerecommendedspecificationslistedontheInterfacetab. PleaseseetheSpecstabforacompletelistofspecifications. Click hereformonochromecameraQErawdata. Click hereforcolorcameraQErawdata. Formoreinformation,pleaseseetheInterfacetab. ClickhereforIRblockingfiltertransmissionrawdata. HermeticallySealedPackagewithaTwo-StageThermoelectricCooler RecommendedforApplicationswithLowLightLevels thatRequireExposureTimes>1second USB3.0 Interface Our8megapixelscientificcamerasareofferedwithmonochromeorcolorsensorsinahermeticallysealedpackagewithatwo-stagethermoelectriccoolerthatcoolstheCCD.Thefan-freedesignlimitsimageblurfromvibrations.Coolingthecamerawillreducethedarkcurrent;however,thetotaldarkcurrentisalsoafunctionofexposuretime.Acooledcameraisonlyrecommendedforapplicationswithlowlightlevelsrequiringanexposuregreaterthan1second.PleaseseetheCameraNoisetabformoredetailsonthevarioussourcesofcameranoiseandhowitimpactsthechoicebetweenastandardandcooledcamera. ThesecamerashavestandardC-Mount(1.000"-32)threading,andThorlabsprovidesafulllineofthread-to-threadadaptersforcompatibilitywithotherthreadstandards,includingtheSM1(1.035"-40)threadingusedonourØ1"LensTubes.Thefrontfacealsofeatures4-40tappedholesforcompatibilitywithour60 mmCageSystem.Four1/4"-20tappedholes,oneoneachsideofthehousing,arecompatiblewithourØ1"posts.TheseflexiblemountingoptionsmakeThorlabs'camerastheidealchoiceforintegratingintohome-builtimagingsystemsorcommercialmicroscopes. ClicktoEnlargeCooled CameraIntegratedinto60 mmCageSystem PleasenotethatOnSemiconductorhasannouncedthattheCCDsensorsusedinThorlabsScientificCCDcameraswillbediscontinuedinJune2020.Thorlabswillcontinuetomanufacturethesecamerasinto2021.Whilethesesensorsarestillwidelyavailable,wedonotrecommendthesedevicesfornewdesigns.PleaseseeourexpandinglineofcompactsCMOSandCMOScamerasforalternativesorcontactourScientificCamerasTeamforhelpfindingthebestoptionforyourapplication. PartNumberDescriptionPriceAvailability8051M-USB-TE8MPMonochromeCCDCamera,HermeticallySealedCooledPackage,USB3.0Interface$10,900.00Today8051C-USB-TE8MPColorCCDCamera,HermeticallySealedCooledPackage,USB3.0Interface$10,900.00LeadTimeHideScientificCameraOptionalAccessoriesScientificCameraOptionalAccessoriesClickforDetailsAschematicshowingaTSI-IOBOB2connectedtoanArduinoinacustomcamerasystem. ClicktoEnlarge ClicktoEnlarge Theseoptionalaccessoriesallowforeasyuseoftheauxiliaryportofour scientificCCD,CMOS,andQuantalux™sCMOScameras.Theseitemsshouldbeconsideredwhenitisnecessarytoexternallytriggerthecamera,tomonitorcameraperformancewithanoscilloscope,orforsimultaneouscontrolofthecamerawithotherinstruments. ForourUSB3.0cameras,wealsoofferaPCIeUSB3.0cardandextracablesforfacilitatingtheconnectiontothecomputer. AuxiliaryI/OCable(8050-CAB1)The8050-CAB1isa10'(3m)longcablethatmateswiththeauxiliaryconnectoronourscientificcameras*andprovidestheabilitytoexternallytriggerthecameraaswellasmonitorstatusoutputsignals.Oneendofthecablefeaturesamale12-pinconnectorforconnectingtothecamera,while theotherendhasamale6-pinMiniDinconnectorforconnectingtoexternaldevices.Thiscableisidealforusewithourinterconnectbreak-outboardsdescribedbelow.Forinformationonthepinlayout,pleaseseethePinDiagramstababove. InterconnectBreak-OutBoard(TSI-IOBOB)TheTSI-IOBOBisdesignedto"breakout"the6-pinMiniDinconnectorfoundonourscientificcameraauxiliarycables intofiveSMAconnectors.TheSMAconnectorscanthenbeconnectedusingSMAcablestootherdevicestoprovideatriggerinputtothecameraortomonitorcameraperformance.ThepinconfigurationsarelistedonthePinDiagramstababove. InterconnectBreak-OutBoard/ShieldforArduino(TSI-IOBOB2)TheTSI-IOBOB2offersthesamebreakoutfunctionalityofthecamerasignalsastheTSI-IOBOB.Additionally,it functions asashieldforArduino,byplacingtheTSI-IOBOB2shieldonanArduinoboardsupportingtheArduinoUnoRev.3formfactor.Whilethecamerainputsandoutputsare5VTTL,theTSI-IOBOB2featuresbi-directionallogiclevelconverterstoenablecompatibilitywithArduinoboardsoperatingoneither5Vor3.3Vlogic.Sampleprogramsforcontrollingthescientificcameraareavailablefordownloadfromoursoftwarepage,andarealsodescribedinthemanual(foundbyclickingontheredDocsiconbelow).FormoreinformationonArduino,orforinformationonpurchasinganArduinoboard,pleasesee www.arduino.cc. TheimagetotherightshowsaschematicofaconfigurationwiththeTSI-IOBOB2withanArduinoboardintegratedintoacameraimagingsystem.Thecameraisconnectedtothebreak-outboardusinga8050-CAB1cablethatmustbepurchasedseparately.Thepinsontheshieldcanbeusedtodeliversignalstosimultaneouslycontrolotherperipheraldevices,suchaslightsources,shutters,ormotioncontroldevices.OncethecontrolprogramiswrittentotheArduinoboard,theUSBconnectiontothehostPCcanberemoved,allowingforastand-alonesystemcontrolplatform;alternately,theUSBconnectioncanbeleftinplacetoallowfortwo-waycommunicationbetweentheArduinoandthePC.Thecompactsizeof2.70"x2.10"(68.6mmx53.3mm)alsoaidsinkeepingsystemsbasedontheTSI-IOBOB2compact.  USB3.0CameraAccessories(USB3-MBA-118andUSB3-PCIE)WealsoofferaUSB3.0AtoMicroBcableforconnectingourcamerastoaPC(pleasenotethatonecableisincludedwitheachUSB3.0camera).Thecablemeasures118"longandfeaturesscrewsoneithersideoftheMicroBconnectorthatmatewithtappedholesonthecameraforsecuringtheUSBcabletothecamerahousing. AUSB3.0PCIecardisalsoprovidedforcomputersthatdonotofferUSB3.0connectorswithanintegratedIntelUSB3.0controller.However,sincemostnewercomputersofferseveralUSB3.0connections,aUSB3.0PCIecardisnotincludedwiththepurchaseofaUSB3.0camera.ThecardhastwotypeAUSB3.0ports. *The8050-CAB1isnotcompatiblewithourformer-generation1500Mseriescameras.PartNumberDescriptionPriceAvailability8050-CAB1I/OCableforScientificCCDandCompactScientificCameras$78.40TodayTSI-IOBOBI/OBreak-OutBoardforScientificCCDandCompactScientificCameras$70.68TodayTSI-IOBOB2CustomerInspired!&nbspI/OBreak-OutBoardforScientificCCDandCompactScientificCameraswithShieldforArduino(ArduinoBoardnotIncluded)$101.54TodayUSB3-MBA-118USB3.0AtoMicroBCable,Length:118"(3m)$39.66TodayUSB3-PCIEUSB3.0PCIExpressExpansionCard$67.94TodayVisitthe8MegapixelCCDScientificCamerasforMicroscopypageforpricingandavailabilityinformation:https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6540



請為這篇文章評分?