The accumulative law and its probability model - Journals
文章推薦指數: 80 %
The observable phenomena presented by the Pareto distribution are commonly referred to as the Pareto principle, or '80-20 rule'. The rule says ...
Logintoyouraccount
Email
Password
Forgotpassword?
Keepmeloggedin
NewUser
InstitutionalLogin
ChangePassword
OldPassword
NewPassword
TooShort
Weak
Medium
Strong
VeryStrong
TooLong
Congrats!
Yourpasswordhasbeenchanged
Createanewaccount
Email
Returninguser
Can'tsignin?Forgotyourpassword?
Enteryouremailaddressbelowandwewillsendyoutheresetinstructions
Email
Cancel
Iftheaddressmatchesanexistingaccountyouwillreceiveanemailwithinstructionstoresetyourpassword.
Close
RequestUsername
Can'tsignin?Forgotyourusername?
Enteryouremailaddressbelowandwewillsendyouyourusername
Email
Close
Iftheaddressmatchesanexistingaccountyouwillreceiveanemailwithinstructionstoretrieveyourusername
YouhaveaccessMoreSectionsViewPDF
ToolsAddtofavoritesDownloadCitationsTrackCitations
ShareShareonFacebookTwitterLinkedInRedditEmail
Citethisarticle
FengMinyu,
DengLiang-Jian,
ChenFeng,
PercMatjažand
KurthsJürgen
2020Theaccumulativelawanditsprobabilitymodel:anextensionoftheParetodistributionandthelog-normaldistributionProc.R.Soc.A.4762020001920200019http://doi.org/10.1098/rspa.2020.0019SectionYouhaveaccessResearcharticlesTheaccumulativelawanditsprobabilitymodel:anextensionoftheParetodistributionandthelog-normaldistributionMinyuFengMinyuFenghttp://orcid.org/0000-0001-6772-3017CollegeofArtificialIntelligence,SouthwestUniversity,Chongqing400715,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,Liang-JianDengLiang-JianDengSchoolofMathematicalSciences,UniversityofElectronicScienceandTechnologyofChina,Chengdu611731,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,FengChenFengChenCollegeofArtificialIntelligence,SouthwestUniversity,Chongqing400715,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MatjažPercMatjažPerchttp://orcid.org/0000-0002-3087-541XFacultyofNaturalSciencesandMathematics,UniversityofMaribor,Koroškacesta160,2000Maribor,SloveniaDepartmentofMedicalResearch,ChinaMedicalUniversityHospital,ChinaMedicalUniversity,Taichung404,Taiwan[email protected]GoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorandJürgenKurthsJürgenKurthsPotsdamInstituteforClimateImpactResearch,14473Potsdam,GermanyDepartmentofPhysics,HumboldtUniversity,12489Berlin,GermanyGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorMinyuFengMinyuFenghttp://orcid.org/0000-0001-6772-3017CollegeofArtificialIntelligence,SouthwestUniversity,Chongqing400715,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,Liang-JianDengLiang-JianDengSchoolofMathematicalSciences,UniversityofElectronicScienceandTechnologyofChina,Chengdu611731,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,FengChenFengChenCollegeofArtificialIntelligence,SouthwestUniversity,Chongqing400715,People’sRepublicofChinaGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthor,MatjažPercMatjažPerchttp://orcid.org/0000-0002-3087-541XFacultyofNaturalSciencesandMathematics,UniversityofMaribor,Koroškacesta160,2000Maribor,SloveniaDepartmentofMedicalResearch,ChinaMedicalUniversityHospital,ChinaMedicalUniversity,Taichung404,Taiwan[email protected]GoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorandJürgenKurthsJürgenKurthsPotsdamInstituteforClimateImpactResearch,14473Potsdam,GermanyDepartmentofPhysics,HumboldtUniversity,12489Berlin,GermanyGoogleScholarFindthisauthoronPubMedSearchformorepapersbythisauthorPublished:06May2020https://doi.org/10.1098/rspa.2020.0019AbstractThedivergencebetweentheParetodistributionandthelog-normaldistributionhasbeenobservedpersistentlyoverthepastcoupleofdecadesincomplexnetworkresearch,economics,andsocialsciences.Toaddressthis,wehereproposeanapproachtermedastheaccumulativelawanditsrelatedprobabilitymodel.WeshowthattheresultingaccumulativedistributionhaspropertiesthatareakintoboththeParetodistributionandthelog-normaldistribution,whichleadstoabroadrangeofapplicationsinmodellingandfittingrealdata.Wepresentallthedetailsoftheaccumulativelaw,describethepropertiesofthedistribution,aswellastheallocationandtheaccumulationofvariables.Wealsoshowhowtheproposedaccumulativelawcanbeappliedtogeneratecomplexnetworks,todescribetheaccumulationofpersonalwealth,andtoexplainthescalingofinternettrafficacrossdifferentdomains.1.IntroductionDuringthedevelopmentoftheprobabilitytheory,ParetodistributionnamedaftertheItalianeconomistandsociologistVilfredoPareto,whichisalsoknownasthepower-lawdistributionforaspecificcase,hasbecomeanindispensablecomponentinresearchfields.Itisacontinuousprobabilitydistributionofarandomvariablewhosecurveislong-tailed,andspecifically,thezetadistributionisitsdiscretecase.TheobservablephenomenapresentedbytheParetodistributionarecommonlyreferredtoastheParetoprinciple,or‘80-20rule’.Therulesaysthat,e.g.fornetworks,80%ofthedegreeofacomplexnetworkisheldby20%ofitsvertices[1].Thisdistributionhasalreadybeenfoundempiricallytofitawiderangeofsituationsincludingthefrequencyofoccurrenceofuniquewordsinanovel[2],thesizedistributionofgenefamilies[3],theasymptoticdecayofthetotalconductanceofsubcriticaltrees[4],thesizesofhumansettlements[5],theproteinsequencealignments[6],eventhedistributionofartistsbytheaveragepriceoftheirartworks[7],etc.Anotherfrequentlyusedcontinuousprobabilitydistributionisthelog-normaldistributionconsistingofarandomvariablewhoselogarithmisnormallydistributed.Alog-normaldistributiondescribesnumerousgrowingprocessesbasedontheaccumulationofsmallpercentagechangesthatisalogscale.Sincealog-normallydistributedvariableonlytakesrealpositivevaluesandisnon-symmetric,itbettersimulatesanon-negativeandnon-uniformdistributionthanthenormaldistribution,especiallyinvariousphenomenaofeconomicsandsocialsciences[8].Someoftheusuallog-normallydistributedcasesincludefiresizes[9],thesizeofcities[10],thefatiguelifetimeofamaintainablesystems[11],thetripdurationfortakingataxi[12]andindeedmanymore.BoththeParetodistributionandthelog-normaldistributionplayasignificantroleintheprobabilitytheoryandstatisticalapplications.However,someimportantunaddressedissuespersist,leadingtoaconsiderabledivergenceinmanycases.Takingthenetworkscienceasanexample,Barabásihighlightedthedegreedistribution,theprobabilitydistributionofdegreesoverthewholenetwork,asafundamentalconcept[13].Heusedthemean-fieldandcontinuoustheorytocalculatethedegreedistributionofscale-freenetworks,andtheoutcomeistheveryfamouspower-lawdistributionindependentoftime,aparticularcaseoftheParetodistribution[14].However,duetothemethodBarabásiusedtoobtainthepower-lawdistribution,heignoredthediscreteandcontinuousproblemsandidealizedthevariationsofthenetworks,andsomequeriescamealong.Thecentralquestionistheconceptandderivationofapower-lawdistribution.Soonafterthescale-freenetworkswereproposed,Bollobásetal.suggestedthatthemodellingprocessofscale-freenetworksbyBarabásiisnotprecise,andtheypresentedamoremathematical-basedmethodtoconstructnetworks[15].Later,Lietal.claimedthattherewasnoconsistent,precisedefinitionofscale-freenetworksandonlyafewrigorousproofsofmanyoftheirclaimedproperties[16].Then,Krioukovetal.usedageometricapproachtoobtainthedistributionconsideringhyperbolicspaces[17],andothersappliedittoreal-worldcases[18,19].Mayetal.indicatedthatthesubnetworksofscale-freenetworksarenotscale-free,i.e.notfollowingapower-lawdistribution[20].Insteadofthepower-lawdistribution,Fangetal.proposedadoubleParetolog-normaldistributionforcomplexnetworks[21].Besidesthedegreedistribution,therearealsooutstandingchallengesineconomics.Forexample,RobertGibratproposedaprincipletodescribethattheproportionalrateofgrowthofafirmisindependentofitsabsolutesize[22].Generally,processescharacterizedbytheGibrat’sLawconvergetoalimitingdistribution,oftenproposedtobethelog-normal,orapower-law,dependingonmorespecificassumptionsaboutthestochasticgrowthprocess.Nevertheless,thetailofthelog-normalsometimesdropsfastanditsprobabilitydensityfunctionisnotmonotonic,butratherhasaY-interceptofzeroprobabilityatthebeginning.TheParetodistribution’stailcannotsimulatethedeclineinthetailwhenthesizeislarge,andwhichdoesnotextenddownwardstozero,shouldbetruncatedatsomepositiveminimumvalueinstead.Thus,manyresearchersproposedotherdistributionstheyclaimedasabetterresultfortheGibrat’sprocess,suchastheWeibulldistribution[23].ConsideringtheinsufficiencyofrigorousproofontheGibrat’sLaw,Stanleyetal.evendisagreedwiththetheoryandresultofGibrat’sLawandproposedthattheoutcomeonlyworksempiricallyinthestudyoffirms[24].Rozenfeldetal.alsopointedoutthatthecitysizeispartiallyagainsttheGibrat’sLaw[25].Aswecansee,boththeParetoandlog-normaldistributionsalsohavesomeproblemsinfittingpracticaldistributions.Inthisarticle,weaimtoaddresstheissueontheinaccuracyoffittingcertaindistributionsinrealsituations.Forthatpurpose,wefirstinvestigatethosepracticalsituationsthattheParetodistributionandthelog-normaldistributioncannotperfectlyfit,e.g.thedegreedistribution,firm’ssize,personalwealthdistribution,etc.Allofthemhaveacommoncharacteristic:theyhaveacontinuousgrowingprocess.Takingthescale-freenetworksasanexample,theconnectionofavertexkeepsgrowingsincethenewverticesgenerateandbringconnectionsallocatingtothenetwork,thenthedegreewillbeanaccumulationofconnections.Anothercommonfeaturedisplaysastheunequalallocationoftheincrementsorincome.Forpeopleinacompany,thetotalincomeappealstoinequalityinallocation,thusdifferentpeopleobtaindifferentwealth,usuallythericharegettingricher,andthepooraregettingpoorer.Takingbothprocessesintoconsideration,oursolutionisnotsimplytousetheParetodistributionorlog-normaldistributiontoempiricallyfitthepracticaldistribution,instead,weproposeamathematicalmodelbasedonthegrowingprocessandallocationprocess.Thealgorithmofthismodelconcludesastheaccumulativelawsincethemodelshowsanaccumulativepropertytodescribetheunequallyaccumulativephenomenon.Throughthislaw,wederiveanovelprobabilitydistributionanditsvariantformtowidelyfitunequallyallocateddistribution.Thestatisticalpropertiesarestudiedtobetterunderstandthebehaviouroftheaccumulativelaw.Thegoodnessoffitoftheaccumulativedistributionisanapplicationaswellasanevidencetoshowthatourdistributionshouldhaveabetterresultindescribingrealsystems,e.g.thedegreedistribution,personalwealthdistribution,websitevisitdistribution,etc.Theorganizationofthispaperisasfollows:Aconcretetheoryoftheaccumulativelawanditsprobabilitymodelisdiscussedin§2.Accumulativefunctionandsomestatisticalpropertiesarecalculatedin§3.Therealsystemsbasedontheaccumulativelawaredescribedin§4.Besides,wedisplaysomesimulationstudiesin§5.Finally,someconclusionsaredrawnin§6.2.AccumulativelawanditsprobabilitymodelAsdescribedabove,thecontroversyoverthelog-normalandpower-lawdistributionhasneverendedineconomicsandvariousotherfields.However,theybothdonotstrictlydescribetheallocatedandaccumulativeprocess.Inthissection,weproposealinearlygrowingmodelbythetimewhoseallocationisdecidedbythe‘Mattheweffect’whichisprovenusefulinempiricaldata[26]andcalculateitsaccumulativedistribution.Itisworthnotingthattheaccumulativedistributioninthispaperisdifferentfromthecumulativedistributionfunction,whichisanaccumulationofincrementsinsteadofprobabilities.(a)AccumulativelawInessence,ourprobabilitymodelundertheaccumulativelawdescribesagrowingsystembytimethatcontainslargeindividualsandkeepsreceivingnewindividuals.Eachnewindividualarrivesatthesystemataspecificrateandsomeincrementscomealong,andtheseincrementsareallocatedamongtheexistingindividualsbytheruleofthe‘Mattheweffect’,i.e.thosepossessingmoreaccumulativeincrementsaremorelikelytobedistributedthanthefewerones.Theseincrementsgraduallyconstitutetheaccumulationofdistributedindividuals.Astimepasses,thestationaryaccumulativedistributionofthesystemisourobjectfunction.Indetail,theaccumulativelawconsistsoftwofeaturedprocessesofgrowthandallocation:
(1)Growingprocess:thenumberofindividualsinthissystemkeepsgrowingataspecificrateandmakesthesizeofthesystemalsogrow;theincrementscarriedbynewindividualsalsokeepgrowingalongwiththenumberofnewindividualsandturnintotheaccumulationoftheexistingindividuals.(2)Allocatingprocess:theincrementsofeachnewindividualaredividedintoportions,eachportionismorepossiblyallocatedtoanexistingindividualwithahigheraccumulation.Basedonthislaw,wecalculatetheaccumulativeprobabilitydistribution.Tosimplifyandclarifythecalculationprocess,somefundamentalconceptionsarerequiredanddescribedasfollows:Astheobjectfunction,weprimarilyproposethedefinitionoftheaccumulativedistributioninthispaper.Definition2.1.LetZ(t)denotetheaccumulationinthesystemattimetanddefinetheaccumulativedistributionf(z),z > 0,by
f(z)=limt→∞Pz(t)=limt→∞P{Z(t)
延伸文章資訊
- 1Pareto Distribution - an overview | ScienceDirect Topics
3.3.5 Pareto Distributions · An economist named Pareto noticed more than a 100 years ago that the...
- 2Pareto distribution of the second kind - Vose Software
A Pareto2 (1/b, a) distribution describes the time between events where the number of random even...
- 3Pareto Distribution Definition - Statistics How To
The Pareto Principle is derived from the Pareto distribution and is used to illustrate that many ...
- 4Pareto Distribution -- from Wolfram MathWorld
The distribution with probability density function and distribution function P(x) = (ab^a)/(x^(a+...
- 5What Is the Pareto Principle—aka the Pareto Rule or 80/20 ...
The Pareto Principle states that 80% of consequences come from 20% of the causes. · The principle...