Revisiting cancer hallmarks: insights from the interplay ...

文章推薦指數: 80 %
投票人數:10人

Elevated ROS levels, due to imbalance of ROS generation or elimination, is termed oxidative stress and is one of the hallmarks of cancer. Skiptomaincontent Advertisement SearchSpringerLink Search Revisitingcancerhallmarks:insightsfromtheinterplaybetweenoxidativestressandnon-codingRNAs DownloadPDF DownloadPDF AbstractCancerisoneofthemostcommondiseaseworldwide,withcomplexchangesandcertaintraitswhichhavebeendescribedas“TheHallmarksofCancer.”Despiteincreasingstudiesonin-depthinvestigationofthesehallmarks,themolecularmechanismsassociatedwithtumorigenesishavestillnotyetbeenfullydefined.Recently,accumulatingevidencesupportstheobservationthatmicroRNAsandlongnoncodingRNAs(lncRNAs),twomainclassesofnoncodingRNAs(ncRNAs),regulatemostcancerhallmarksthroughtheirbindingwithDNA,RNAorproteins,orencodingsmallpeptides.Reactiveoxygenspecies(ROS),thebyproductsgeneratedduringmetabolicprocesses,areknowntoregulateeverystepoftumorigenesisbyactingassecondmessengersincancercells.ThedisturbanceinROShomeostasisleadstoaspecificpathologicalstatetermed“oxidativestress”,whichplaysessentialrolesinregulationofcancerprogression.Inaddition,theinterplaybetweenoxidativestressandncRNAsisfoundtoregulatetheexpressionofmultiplegenesandtheactivationofseveralsignalingpathwaysinvolvedincancerhallmarks,revealingapotentialmechanisticrelationshipinvolvingncRNAs,oxidativestressandcancer.Inthisreview,weprovideevidencethatshowstheessentialroleofncRNAsandtheinterplaybetweenoxidativestressandncRNAsinregulatingcancerhallmarks,whichmayexpandourunderstandingofncRNAsinthecancerdevelopmentfromthenewperspective. IntroductionCancerinitiationandprogressionarecausedbyalterationsinkeyprocesses,whichallowcancercellstoacquirespecificcharacteristicssummarizedbyHanahanandWeinbergas“TheHallmarksofCancer”[1].Theyhaveproposedeighthallmarks(sustainingproliferativesignaling,evadinggrowthsuppressors,activatinginvasionandmetastasis,enablingreplicativeimmortality,inducingangiogenesis,resistingcelldeath,reprogrammingenergymetabolism,andavoidingimmunedestruction)andtwoenablingcharacteristics(genomeinstabilityandmutationandtumor-promotinginflammation)inwhichsuccessivealterationsaccumulateinmultipleprotein-codingandnoncodinggenes.Indeed,protein-codinggenesplaycentralrolesinregulationcancerprogression,andmanystudieshavebeenconductedtoexplorethepotentialmechanisms[2,3,4,5].However,large-scalegenomesequencinghasrevealedthatmorethan90%ofthehumangenomeisactivelytranscribed,butlessthan2%ofthetotalgenomeencodesproteins.Thus,non-codingRNAs(ncRNAs)aremajorcomponentofthehumantranscriptomeandaffectnormalexpressionofthegenes,includingoncogenesandtumorsuppressivegenes,whichmakethemanewclassoftargetsfordrugdiscoveryincancer.Reactiveoxygenspecies(ROS)aregenerallydefinedasoxygen-containingfreeradicalswithhighlyreactivepropertiessuchashydroxylfreeradicals(HO•)andsuperoxide(O2•−)andnon-radicalssuchashydrogenperoxide(H2O2)[6].ConventionaldoctrinesuggestedthatROSwereonlymetabolicwaste,whichwereharmfultonucleicacids,lipids,andproteins[7].Infact,ROSplaydualrolesinbiologicaleventsaccordingtotheircellularlevel.LowormoderateconcentrationofROSactasimportantsecondmessengerstoregulatemultifarioussignalingpathwaysinvolvedincellproliferation,apoptosis,migration,DNAdamage,differentiationandchemoresistance[8].Incontrast,highconcentrationofROScausedamagetocellularmacromoleculessuchasDNA,lipid,andproteins,whichleadstoinductionofapoptosis[9].Indeed,ROSlevelsarebalancedviaseveraldetoxificationprocessesregulatedbyantioxidantenzymes,whichistermed“RedoxHomeostasis”[10].Thedisruptionofredoxhomeostasisisknownas“oxidativestress”,whichdriveskeycellularphysiologicalregulatoryresponsesandleadstodiversepathologicalconditions[11].Cancercellsareusuallyinachronicstateofoxidativestress,asevidencedbyelevatedROSlevelsandaccompanieddown-regulationofcellularantioxidantsystems[12].Thisformofphysiologicaloxidativestress(eustress)endowcancercellswithasustainedproliferativeandaggressivephenotypetopromotemalignanttransformation,whereasexcessiveoxidativeburden(distress)causedamagetocellularmacromoleculesandaretoxictocancercells[11].Itisthereforeimportanttoinvestigatethedetailedmechanismsunderlyingoxidativestress-inducedcancerprogressionforbettercancermanagement.Inthisreview,weintroducerecentadvancesintheunderstandingofncRNAsinvolvedincancerhallmarks,particularlyfocusingontheirinterplaywithROS,whichwillcontributetoabetterunderstandingofcancerprogressionandmaybenefitthedevelopmentofnovelstrategiesforcancertreatment.GeneralcharacterizationandfunctionsofncRNAENCODEindicatesthat,althoughmuchofthehumangenomeistranscribedintoRNAs,themajorityofthesedonotcodeforproteins[13].ThesencRNAsaregroupedintotwomajorclassesbasedonthetranscriptsize:smallncRNAsandlongncRNAs(lncRNAs)(Table 1)[14].ThesizeofsmallncRNAisusuallylessthan200nucleotides(nt).ThesearedividedintomicroRNA(miRNA),PIWI-interactingRNA(piRNA),smallnucleolarRNA(snoRNA),smallnuclearRNA(snRNA),smallinterferingRNA(siRNA),andthenewclassoftRNA-derivedfragments(tRF)[15,16].miRNAisaclassofsmallnon-codingRNAwhoselengthisabout19–24 nt.TheyregulategeneexpressionprocessesbybindingtomiRNAresponseelements(MREs)inRNAsequencesandinhibitingsubsequenttranslationbyinducingdegradationoftargetRNAtranscripts[17].piRNAsaresmallRNAs24–32 ntinlengthwhicharederivedfromrepeatedsequenceswithinthegenome.TheyareidentifiedasendogenoussiRNAsandregulategermcelldevelopment,stemcellself-renewalandthesilencingoftransposons[18].ThesnoRNAscompriseaclassofnucleolus-enrichedncRNAswithconservedstemmotifsthatactasguidestoinducechemicalmodificationandmaturationofothernon-codingRNA,suchasrRNA[19].snoRNAsarealsofurtherprocessedintomiRNAsthattargetcellularmRNAs.ThetRNA-derivedfragmentsareanumberofsequencingreadswhichmaptoRNAfragmentsderivedfromthecleavageoftRNAtranscripts,andhavepotentialimplicationingenesuppressionaswellasmanyothercellfunctionswhicharesummarizedinthesereviews[20,21]. Table1GeneralcharacterizationandfunctionofmainncRNAsFullsizetableIncontrast,longncRNAisusuallymorethan200 ntlengthandisclassifiedintodifferentcategoriesaccordingtotheirlocalizationingenome,modesofaction,andfunction[22].Onthebasisoftheirlocalizationingenome,lncRNAsaredividedinto:introniclncRNAsgeneratedfromtheregioninintronsofprotein-codinggenes;intergeniclncRNAs(lincRNA)generatedfromtheregionbetweentwoprotein-codinggenes;enhancerlncRNAs(elncRNA)generatedfromtheregionsinenhancer;bidirectionallncRNAsgeneratedfromtheregioninthevicinityofacodingtranscriptoftheoppositestrand;sense-overlappinglncRNAsoverlappedwithseveralintronsandexonsofdiveseprotein-codinggenesinDNAsensestrand;antisensetranscriptsgeneratedfromtheDNAantisensestrand[23].Accordingtotheirdiversefunctions,lncRNAsareclassifiedassignaling,decoy,guide,andscaffoldlncRNAs[24].SignalinglncRNAsareinvolvedinspecificsignalingpathwaysandtheirexpressionpresentsanactivesignalingevent,witheitherdirectorindirectroles.DecoylncRNAsregulategeneexpressionbyservingasadecoytopreventaccessoftranscriptionfactorstochromatinortocompetitivelybindtomiRNA.Forexample,lncRNAGAS5(growtharrestspecific5)wasfoundtodirectlyinteractwiththeWWdomainofYAPtofacilitatetranslocationofendogenousYAPfromthenucleustothecytoplasm,thuspromotingphosphorylationandsubsequentlyubiquitin-mediateddegradationofYAPtoinhibitcolorectalcancer(CRC)progressioninvitroandinvivo[25].GuidelncRNAsbindtotheregulatoryorenzymaticallyactiveproteincomplexesandrecruitthemtotargetgenes.Forinstance,thep53-regulatedlongnoncodingRNAlincRNA-p21hasbeenreportedtoactinconcertwithhnRNP-Kasacoactivatorforp53-dependentp21transcription,thuspromotingPolycombtargetgeneexpressionandenforcingtheG1/Scheckpoint[26].ScaffoldlncRNAsfunctionasscaffoldstoformvariousproteincomplexes,whichaffectgeneexpressionandchromosomaldynamics.Forexample,metastasisassociatedwithlungadenocarcinomatranscript-1(MALAT1),afunctionallongnon-codingRNAhighlyexpressedincolorectalcancercells,promotescellproliferationandmigrationbybindingtoSFPQ,thusreleasingPTBP2fromtheSFPQ/PTBP2complex[27].InadditiontotheselinearncRNAs,anewtypeofcircularncRNA(circRNA)hasrecentlybeenidentified.ThestructureofcircRNAsdiffersfromotherlinearlncRNAsinwhichtheir3′and5′endsarenotfreebutcovalentlyjoined.CircRNAsaremainlyarisedfromtheexonsofprotein-codinggenes,aswellastheintronic,intergenic,UTR-regions,ncRNAlociandlocationsantisensetoknowntranscripts[28,29].Becauseoftheirdistinctstructure,circRNAsareresistanttonucleasesandhavearelativelylonghalf-life,makingthemrelativelyeasytodetectintissues,serum,andurineaspotentialbiomarkersforhumancancer[24].Indeed,circRNAsareimplicatedinavarietyofcancers(includinggastriccancer,hepatocellularcancer,bladdercancer,andesophagealcancer,andothers)byactingascompetitiveendogenousRNAs(ceRNAs),whichregulategeneexpressionviathecompetitivebindingofmiRNA.AnexampleofthisisciRS-7,whichactsasaspongeformiR-7topromotecolorectalcancerprogressionbyreleasingtherepressionofoncogenessuchasYY1bytumorsuppressormiR-7[30].Insummary,ncRNAs,particularlymiRNAsandlncRNAs,areemergingasanovelclassofregulatorsassociatedwithmodulationofcellularbiologicalprocessesandarecloselyrelatedtotumorigenesis,whichallowsthemtoserveaspotentialdiagnosisandprognosisbiomarkersforcancertherapy.OxidativestressincancerprogressionROSarebroadlydefinedasoxygen-containingspecieswithreactiveproperties,includinghydroxylfreeradicals(HO•),non-radicalmolecules(hydrogenperoxide,H2O2,etc.)andsuperoxide(O2•−).Thesemoleculesaretheprincipalbyproductsofvariousmetabolicreactionsoccurringinthemitochondria,peroxisomesandtheendoplasmicreticulum(ER)[31].ROShavebeenwidelyacceptedassecondmessengerswhichareinvolvedinmanydifferentbiologicalevents.LowtomoderatelevelsofROSactassignalingtransductionmoleculesandpromotecellproliferationanddifferentiation,aswellasstresstolerance.However,superfluousROSleadtocelldeaththroughirreversibledamagetoDNA,proteinsorlipids.Therefore,tightlyregulatedROSgenerationanddetoxificationarecrucialforsustainingcellularphysiologicalprocesses.ElevatedROSlevels,duetoimbalanceofROSgenerationorelimination,istermedoxidativestressandisoneofthehallmarksofcancer.Oxidativestresshasbeenproposedtoorchestratetumorigenesisandtumorprogressionthroughdirectorindirectmechanisms.ThefirstlinkbetweenROSandtumorigenesiswasidentifiedin1981,wheninsulinwasfoundtopromotetheaccumulationofH2O2thuspotentiatingtumorcellproliferation[32].TheconventionalthoughtisthatexcessiveROSpromotethemutationofDNAsandleadtoirreversibleoxidationofproteinsandlipids,whichprobablyactivateoncogenicsignalingpathwaysandfacilitatetumorigenesis.However,recentevidencesuggeststhatlowormoderatelevelsofROSinducereversibleoxidativemodificationofproteinswhichaffectstheirfunction,regulatingtumorapoptosis,proliferation,invasion,inflammationanddrugresistance.Mechanistically,proteinspossessredox-sensitivecysteineresiduesthatcanbeoxidizedbyROS.Severaloxidativemodificationpatternshavebeenreported,includingdisulfidebonds,sulfenylation,sulfinylation,sulfonylationandS-glutathionylation.Becauseoftheseredoxmodifications,ROSalterthebiologicalfunctionsofredox-sensitiveproteinsinvolvedinmosthallmarksofcancer(e.g.pyruvatekinaseM2(PKM2)inregulatingmetabolismreprogramming,receptortyrosinekinases(RTK)insustainingproliferativesignaling,p53inevadinggrowthsuppression),therebyregulatingcancercellprogression[33,34,35].TheintrinsiclinksbetweenROSandncRNAswithcancerhallmarksROSandncRNAsinsustainingproliferativesignalingAninitialkeyhallmarksofcancerisconstitutivecellproliferationandavoidanceofgrowtharrest.Innormalcells,thecellcycleprogressandsubsequentproliferationaretightlycontrolledtoavoidaberrantcellgrowthandmalignanttransformation.However,cancercellsmaintainsustainedproliferationviaamplificationormutationofcertaingenes,especiallythoseencodingforkinasesandkinasereceptors,whichhaveattractedalotofattentionaspotentialtherapeutictargets.Cyclin-dependentkinases(CDKs):thedirectregulatorsofcellproliferationregulatedbyROSandncRNAsTheproliferationofcancercellsispreciselycontrolledbyentryofspecificphasesofthecellcyclewhichareregulatedbycyclins,CDKs,andCDKinhibitors(CDKIs).TheCDKs,particularlyCDK1,CDK2,andCDK4/6,areactivatedviabindingtotheirselectedcyclins:cyclinB,cyclinEandcyclinD,respectively,toformfunctionalcomplexeswhichgiveaccesstotheentryofthecellcycle[36].CDKIs,suchasp16,p21,andp27,actasnegativeregulatorsofactivatedCDKsbyspecificallybindingtotheirtargetcyclin-CDKcomplexestoblockthecellcycleprogression[37].Aftertheseregulatorscompletetheirfunctionsincontrollingcellcycle,theyarecommonlyubiquitylatedbyspecificE3ligasesanddegradedviatheubiquitin-proteasomepathway[38].Inadditiontopost-translationalregulation,thesecellcycleregulatorsarealsomodulatedbytranslationalregulationinwhichncRNAsplayafundamentalrole.PreviousstudieshavedemonstratedthatCDK4andCDK6aredirectlyregulatedbyavarietyofncRNAs,someofwhicharecloselyrelatedtocellularROS.Forinstance,itiswell-knownthationizingradiation(IR)inducesROSgenerationincancercellsandmultiplencRNAsmaybedysregulatedunderthisstresscondition[39].ThemiRNAlet-7family,awell-establishedtumorsuppressivencRNA,hasbeenfoundtobedownregulatedunderionizingradiation-inducedoxidativestress,leadingtotheexpressionofCDK6andsubsequentlypromotingcellcycleprogressionofmelanomacells[40].Likewise,5-aminolevulinicacid-mediatedsonodynamictherapy(ALA-SDT)treatedmelanomacellsshowedincreasedintracellularROSlevelsandmiR-34aexpression,whichactedsynergisticallytoinhibittheexpressionofpro-proliferativefactorsCyclinD1andCDK6tosuppresscellcycleprogression[41].Twoothertumorsuppressors,miR-15aandmiR-16weredownregulatedinseveralcancertypes[42,43].OverexpressionofmiR-15aandmiR-16mediatedproductionofmitochondrialROSandinhibitionofcellcycleregulatorsincludingcyclinD1,cyclinE1,cyclinD3andCDK6,therebyinducingcellcyclearrestattheG1phase[44,45].Inaddition,silencingofmiR-21inA549humanlungcancercellsincreasedoxidativedamageandthecellcyclewasblockedattheG0/G1phasebydownregulationofCDK1,thusreversingmultidrugresistanceoflungcancercells[46].Inprostatecancercells,ionizingradiationupregulatedtheexpressionofmiR-17-3p,whichledtocellularROSaccumulationandcellcyclearrestbytargetingmanganesesuperoxidedismutase(MnSOD)andcyclinD1,respectively[47].Incoloncancercells,curcuminoidtreatmentinducedROSproductionwhichdisruptedthemiR-27a/Sp/cyclinB/cdc2axisandinhibitedsubsequentG2-Mtransition,leadingtoenhancedgrowthinhibitionof5-FU[48,49].ExceptformiRNAs,lncRNAsalsoparticipateinregulationofCDKsincancercells.RecentstudyhasfoundthatthelongnoncodingRNA,growtharrest-specifictranscript 5(GAS5)wasdownregulatedinmelanomacells.ThereducedexpressionoflncRNAGAS5contributedtoredoxbalanceandcellcycleprogressionthroughincreasingexpressionofCyclinD1,CDK4,andNOX4,suggestingdownregulatedGAS5andincreasedROSlevelsaspromisingdiagnosisorprognosisbiomarkerformalignantmelanoma[50].InHepatitisCvirus-relatedhepatocellularcarcinoma(HCC),microarrayanalysishasfoundthatlncRNALINC01419andAF070632aremostlyinvolvedwithcellcycleprogressionandoxidation-reduction,althoughtheunderlyingmechanismremainsunclear[51].MALAT1,anevolutionarilyconservedlncRNAthatregulatesmRNAsplicing[52],isupregulatedinseveraltypesofhumancancersandisinvolvedincancercellproliferation.TargetingMALAT1byanovelLNAgapmeRantisenseoligonucleotide(ASO)resultedinincreasedROSlevelsanddecreasedexpressionofB-Myb,whichwasresponsiblefortheexpressionofmitoticproteinssuchascyclinB1,CDK1[53,54].TheseabovefindingsindicatethatcellularROSandncRNAsaretightlyregulatedbyeachotherandbothdirectlymodulateexpressionofCDKseitherpositivelyornegativelyinacontextdependentmanner,thussupportingthecancerhallmark“sustainingproliferation”(Fig. 1). Fig.1InterplaybetweenROSandncRNAsinregulatingcancercellproliferation.Cyclinsandcyclin-dependentkinases(CDKs),especiallyCDK4/6andCyclinB/D1,aredirectlyregulatedbyavarietyofncRNAs,someofwhicharecloselyrelatedtocellularROS.TheimportantrolesofinteractionsbetweenRTKs(includingEGFRandMAPK),ncRNAsandROSincancercellproliferationarepresentedFullsizeimageRTKsaretheupstreamgrowthsensorsregulatedbyROSandncRNAsTheproliferationofcancercells,regulatedbycyclinsandCDKs,alsorequiresstimulationofupstreamsignalsthataresensedbyRTKsaftergrowthfactortreatment[55].DysregulationofRTKs(eithergeneamplificationorsomaticmutations)thatresultsintheirconstitutiveactivationandoncogenicproperties,hasbeenreportedinvarioustumortypes,contributingtotumorgrowth[56].AccumulatingevidencesupportstheimportantroleofinteractionsbetweenRTKs,ncRNAsandROSincancercellproliferation(Fig.1).Theepidermalgrowthfactorreceptor(EGFR)isoneofthemoststudiedRTKs.Itisactivatedbybindingofitsligand,theepidermalgrowthfactor(EGF),resultinginactivationofsignalingpathwayspromotingproliferation[57].StudieshaveshownthatncRNAs,alongwithEGFRandcellularROS,displaycrucialrolesintheprogressionofcancer.Curcuministhemajoractiveingredientinturmericwhichinhibitsgrowthofseveralcancercelllinesbydownregulatingspecificityprotein(Sp)transcriptionfactorSp1anditstargetgenes[58,59].GandhyandcolleaguesfoundthatcurcuminanditssyntheticanalogRL197inducedROSaccumulationincoloncancercells,whichdecreasedexpressionofSp1,Sp3,Sp4andSp-regulatedgenes,includingEGFR[60].Theyfurtherrevealedthatcurcumin−/RL197-inducedsuppressionofSpwasdependentonROSandthesubsequentinductionoftheSprepressorsZBTB10andZBTB4regulatedbydecreasedmiR-27a,miR-20aandmiR-17-5p[60].Likewise,themiR-27a/ZBTB10/Sp/EGFRaxiswasalsoobservedincoloncancercellsaftertreatmentwithethyl2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate(GT-094,anovelnitricoxidechimerathatinducesROSproduction)[61].Inlungcancercells,increasedmiR-551bexpressionreducedtheexpressionofcatalaseandpotentiatedcellularROSlevelsandMUC1expression.UpregulationofMUC1promotedEGFR-mediatedactivationofAkt/c-FLIP/COX-2tosupportcellsurvival,therebyprotectingcancercellsfromdamagecausedbyanticanceragents[62].Inanotherstudy,highROSgenerationinhumanovariancancercellsinhibitedtheexpressionofmiR-199aandmiR-125bbyincreasingpromotermethylationmediatedbyDNAmethyltransferase1.DecreasedexpressionofmiR-199aandmiR-125bthusactivatedERBB2andERBB3topromotetumorprogression[63].Themitogen-activatedproteinkinases(MAPK)/extracellularsignalrelatedkinasesMEK1/2areanotherimportantRTKsinvolvedincellproliferation.Amongthecomplexfamilymembers,RAS/RAF/MAPKisoneofthemajorpathwaysfortargetedcancertherapyandseveralncRNAsareknowntoregulatethissignalingcascade[64].ThethreecanonicalRASfamilygenes(K-RAS,N-RASandH-RAS)arecommonlymutatedandhyperactivatedinseveralcancertypes,amongwhichtheK-RASisoneofthedriversforpancreaticadenocarcinomas[65].AmiRNAarray-basedstudyhasbeenconductedtoidentifydysregulatedmiRNAsunderK-RASactivation.TheauthorsfoundthatmiR-155wasthemostupregulatedmiRNAandcausedinhibitionofFOXO3aanddecreaseofmajorantioxidants(includingSOD2andcatalase),thusenhancingpancreaticcellproliferationinducedbyROSgeneration[66].Inaddition,miR-155alsofunctionsinregulationofglioblastomacellproliferation.KnockdownofmiR-155sensitizesgliomacellstochemotherapywithtemozolomidebyreleasingtheexpressionofMAPK13(alsoknownasp38MAPKδ)andMAPK14(alsoknownasp38MAPKα),twotumorsuppressorgenesthatlowertheaccumulationofROSandinduceapoptosis[67].Inesophagealsquamouscellcarcinoma(ESCC),miR-574-5pwasupregulatedbothinvitroandinvivowhichcorrelatedwithZNF70expression.FurtherstudysuggestedthatupregulationofmiR-574-5ppromotedmitochondrialROSgenerationandMAPKpathways,whichwascloselyrelatedtoZNF70-regulatedcellproliferation[68].AnotherstudyhasshowntheinteractionbetweenoxidativestressandthemiR-200familyinovariancancerprogression.HighexpressionofmiR-141andmiR-200atargetsp38αtomodulatetheoxidativestressresponse,therebypromotingtumorigenesisandchemoresistance.ThiscrucialroleofmiR-200ainstressresponsemayserveasapredictivemarkerforclinicaloutcomeinovariancancer[69].ROSandncRNAsinevadinggrowthsuppressionInadditiontoconstitutivecellproliferation,cancercellsneedtoundergocertaincellulareventstoavoidgrowthsuppressioncausedbytumorsuppressors.Severaltumorsuppressorgenes,includingretinoblastoma(RB)protein,p53andforkheadboxO(FOXO)transcriptionfactors,areinvolvedinsuppressionofcellproliferationoringuidingthecellstoanirreversiblegrowtharresttermedcellularsenescence.ROSincancercellshavebeenreportedtointeractwithncRNAsforpositiveornegativeregulationofthesegrowthsuppressors,therebymodulatingtheevasionofcancercells(Fig. 2). Fig.2InterplaybetweenROSandncRNAsinevadinggrowthsuppression.Tumorsuppressorgenes,includingretinoblastoma(RB)protein,p53andforkheadboxO(FOXO)transcriptionfactorsareinvolvedinsuppressionofcellproliferation,regulatedbytheinterplaybetweenROSandncRNAsFullsizeimageRBprotein-acellcyclegatekeeperregulatedbyROSandncRNAsRB1geneisatumorsuppressorgenewhoseinactivationisresponsibleforoneoftheimportantchildhoodmalignancies,retinoblastoma(Rb).ItexhibitstumorsuppressorfunctionbyrestrictingtheentryfromG1toSphaseofthecellcycle,actingasagatekeeperthatcontrolscellproliferationandquiescence[70].MultipleevidencehasindicatedthatderegulationofvariousncRNAsisinvolvedinRBproteinfunctions.Forexample,knockdownofRBinNSCLCcellsinducedgamma-H2AXfociformation,resultinginROSgenerationandgrowthinhibition,whichwasattenuatedbyoverexpressionofmiR-17-92[71].Inhumantriple-negativebreastcancer(TNBC)cells,theexpressionofhumanlongnoncodingRNALINK-AenhancedK48-polyubiquitination-mediateddegradationoftheantigenpeptide-loadingcomplex(PLC)andintrinsictumorsuppressorsRB[72].InNSCLCH1355andA549cells,treatmentwithchidamide,ahistonedeacetylaseinhibitor(HDACi),inducedROSaccumulationandG1arrestthroughtheregulationofp21andpRBbymiR-129-3p[73].Thetumorsuppressorp16INK4AisanessentialregulatorofRBactivityandplaysessentialrolesinoncogene-inducedsenescence[74].UnderROScondition,p16INK4AgetsactivatedandfunctionsbybindingtoandinhibitingCDK4/CDK6.miR-30,amiRNAfrequentlyoverexpressedinhumancancers,hasbeenfoundtodisruptsenescenceandpromotecancerbysuppressing2targets,CHD7(atranscriptionalcoactivatoressentialforinductionofp16INK4A)andTNRC6A(amiRNAmachinerycomponentrequiredforrepairingoxidativestress-inducedDNAdamage)[75].DownregulationofproteinkinaseCKIIinducescellularsenescenceinhumancoloncancercells.FourmiRNAs(miR-186,miR-216b,miR-337-3p,andmiR-760)werefoundtodegradeCKIIαmRNAbytargetingits3′untranslatedregions(UTRs),therebyincreasingsenescence-associatedβ-galactosidase(SA-β-gal)staining,p21Cip1/WAF1expressionandROSproduction[76].FOXOs:themajormodulatorsofcellfateregulatedbyROSandncRNAsTranscriptionfactorsofFOXOfamiliesaremajorregulatorsofcellgrowthanddeathandcellularredoxhomeostasis[77].FOXOsdisplaytumor-suppressivefunctionsbymediatingthetranscriptionofaplethoraoftargetgenes,includingp16INK4A,p19INK4D,p21CIP1/WAF1,andp27KIP1CKIs,keepingcellsinaquiescentstateintheabsenceofgrowthfactorstimulation[78].ManyncRNAshavebeenidentifiedasregulatorsofFOXOexpression.Forinstance,miR-27aandmiR-96wereidentifiedasregulatorsofFOXO1expressiontogetherwithmiR-182,andwerehighlyexpressedinMCF-7andMDA-MB-231breastcancercells,causingdown-regulationofFOXO1proteinlevelswhichcontributedtomaintenanceofaproliferativestatewhileimpairingapoptoticresponses[79].Ingliomacells,overexpressionofmiR-96,miR-182andmiR-183ledtoadecreasedFOXO1expressionandincreasedcellproliferation,whichwasaccompaniedbylowerROSproductionalthoughFOXOsproteinsareusuallysupposedtobeinvolvedincellularantioxidantresponse[80].Inaddition,oxidativestressinhibitsSTAT5-mediatedmiR-182expression,therebyreleasingFOXO1tosuppressgrowthofhumanSK-N-MCneuroblastomacells[81].Inhumancoloncancercells,inhibitionofaldosereductasesignificantlyincreasedPTENandFOXO3aexpressionviathegrowthfactor-inducedROS/PI3K/AKTaxis,therebydownregulatingmiR-21expressionandinhibitingcoloncancergrowth[82].Inanotherstudy,usingmicroarrays,theauthorsidentifiedmiR-155asthemostupregulatedmiRNAafterbothacuteandprolongedactivationofK-Rasinadoxycyline-induciblesystem.OverexpressionofmiR-155causedinhibitionofFOXO3aandenhancedcellproliferationinducedbyROSgenerationinhumanpancreaticcancercells[66].Additionally,overexpressionofmiR-155inNSCLCcellsincreasedcellproliferationthroughinhibitionofFOXO1andsubsequentproductionofROS[83].p53:apowerfultumorsuppressorregulatedbyROSandncRNAsDuringthepastdecade,mountingevidencehassuggestedthattheinterplaybetweenp53,ncRNA,andROShelpsincontrollingp53-regulatedgenesthataredirectlyorindirectlylinkedtosuppressionofcancercellgrowth.p53,oftencalled“theguardianofthegenome”isthemostwell-knowntumorsuppressortodate[84].Undernormalconditions,p53ismaintainedatalowerlevelduetorapidproteindegradationmediatedbyMDM2[85].However,whencellsencounterstressconditions,p53isstabilizedandactivatedtoprotectcellsfromstress-induceddamageorthecellularapoptoticprocessisinitiatedifthedamageisirreversible,therebypreventingmalignanttransformation[86].miR-16isap53-regulatedmicroRNAandisfrequentlydeletedordownregulatedinHCCcells[87].TreatmentwithsanguinarineinHCCcellsactivatesmiR-16viaincreasedp53occupancyonthemiR-16promoter.UpregulatedmiR-16inhibitedexpressionofitstargetgenes,includingBcl-2andcyclinD1,thusinducingp53-dependentcellcyclearrestandROS-associatedapoptosis[88].Ingastriccancertissuesandcelllines,miR-30isoverexpressed.ThissuppressesmitochondrialdysfunctionandapoptoticeventsbydecreasingROSgenerationandinhibitingp53activation[89].Betulinicacid(BA),apentacyclictriterpene,hasbeenreportedtoshowanti-canceractivityagainstHCC.Mechanisticstudyrevealedthatp53wasresponsiblefortheanti-canceractivityofBAthroughupregulationofmiR-21anddownregulationofSOD2expression,resultinginmitochondrialROSproductionandapoptosis[90].InHCCcells,fourmiRNAs(miR-34a-5p,miR-1915-3p,miR-638,andmiR-150-3p)wereidentifiedastheoxidativestress-responsivemiRNAs,amongwhichmiR-34a-5p,miR-1915-3pareregulatedbyap53-dependentpathway[91].Prolineoxidase(POX)isanovelmitochondrialtumorsuppressorregulatedbyp53whichinhibitsproliferationandinducesROS-dependentapoptosis.IthasbeenreportedthatmiR-23binrenalcancerfunctionsasanoncomiRbydirectbindingtothePOXmRNA3’UTRregion[92].ApartfrommiRNAs,lncRNAsalsoparticipateinregulationofp53function.InNSCLCcells,treatmentwithmarineactinomycetesderived1-hydroxy-1-norresistomycin(HNM)increasedROSgenerationinmitochondriaandupregulatedthep53mediatedtranscriptionalregulationoftwolncRNAs(LEDandLOC285194),leadingtocellcyclearrestandsubsequentapoptosis[93].Ferroptosisisaformofprogramedcelldeathregulatedbyiron-dependentlipidROSaccumulation.ThecytosoliclncRNAP53RRAisatumorsuppressorinlungcancerwhichpromotescell-cyclearrest,apoptosis,andferroptosisviasequestrationofp53inthenucleus[94].Arsenictrioxideshowsmarkedanticanceractivityinthetreatmentofhematologicmalignancies[95].ArecentstudyhasexploredthefunctionsoflncRNAsintheresistancetoarsenictrioxideinlivercancer.TheresultsdemonstratethatarsenictrioxidetreatmentpromotestheexpressionoflncRNARORandtheactivationofp53,bothofwhichareregulatedbyarsenictrioxideinducedoxidativestress[96].LncRNAnuclearenrichedabundanttranscript 1(NEAT1)wasregulatedbyp53inresponsetoDNAdamage[97].EGCG(epigallocatechin-3-gallate),agreenteapolyphenol,wasfoundtoupregulatelncRNANEAT1throughROSgeneration,whichinducedcoppertransporter1(CTR1)expression.EnhancedexpressionofCTR1increasedcisplatinintake,therebypromotingsensitivitytocisplatininNSCLCcells[98].Exceptforp53itself,manypro-andanti-apoptoticfactors(regulatedbyorwhichregulatep53)areknowntointeractwithncRNAsincancer,ofwhichtheB-celllymphoma2(Bcl-2)familyisthemostprominent.ThetumorsuppressormiR-34isatranscriptionaltargetofp53.Capsaicin-inducedoxidativedamageleadstoactivationofp53inNSCLCcells.Upregulatedp53thusenhancesexpressionofmiR-34a,whichinturninhibitsBcl-2expressionandpromotescelldeath[99].TreatmentwithdocetaxelinprostatecancercellsresultedinupregulationofmiR-193a-5p,whichinturnpromotedHO-1inducedexpressionofBcl-2,partlycounteractingapoptosisregulatedbydocetaxel-inducedoxidativestress[100].Inaddition,overexpressionofmiR-33awasobservedinclinicalgliomaspecimensandcelllines,whichnegativelyregulatedtheexpressionofSIRT6viatargetingthe3’UTRmRNA,therebydecreasingROSproductionandincreasingBcl-2expressiontoinhibitapoptosis[101].miR-21wasfrequentlyoverexpressedinseveraltypesofcancer,includinglungcancer,livercancerandbreastcancer[102,103,104,105].InhumanbreastcancerMCF-7cells,miR-21wasdown-regulateduponmetformintreatmentandthisimpededROSproductionandsimultaneouslyinhibitedBcl-2expression,therebyinducingapoptoticcelldeath[103,106].Moreover,ROSpromotegastriccarcinogenesisviaupregulationofmiR-21,whichinturndownregulatedtheexpressionofprogrammedcelldeath4protein(PDCD4),akeyregulatorresponsiblefortranslationofp53mRNAingastriccancercells[107].ROSandncRNAsinresistingcelldeathOncogenictransformationresultsinhigherROSproductionincancercells.WhencancercellsareexposedtohighlevelsofROSthatexceedtheclearancerate,ROSwillbecomedamaging,andthecellularstressresponsemachineryisactivatedwhichmayleadtoapoptosis.Incontrast,cancercellsovercometheinductionofapoptosisbyeitherinactivatingtumorsuppressorgenes,mostnotablyp53asmentionedabove,orelevationoftheapoptoticthresholdbyelevatingexpressionofanti-apoptoticproteinslikeBcl-2familymembers,therebyresistingtransformation-inducedcelldeath.Moreover,cancercellsusuallyundergomutationoramplificationleadingtohyperactivationofantioxidantgenes,mostnotablyNrf2,toevaluatethethresholdofstresstolerance.Nrf2:animportantantioxidantregulatormodulatedbyROSandncRNAsNrf2,amasterregulatorofcellularantioxidantresponse,iscommonlyexpressedinthecytoplasmwhoseactivityisnegativelyregulatedbykelch-likeECH-associatedprotein1(Keap1)[108].Underoxidativestressconditions,cysteineresiduesofKeap1areoxidizedwhichinactivateKeap1function,therebyresultinginstabilizationandsubsequentnucleartranslocationofNrf2[109].Afternucleartranslocation,Nrf2functionsasatranscriptionfactorviabindingtotheantioxidant-response-element(ARE)orelectrophile-responseelement(EpRE),whichfinallytranscribesalmost200genesresponsiblefordetoxification,antioxidation,andmetabolism[110].NcRNAshasbeenfoundtoregulatetheNrf2pathwayforcancermanagement[111].Ithasbeenreportedthatinhumanbreastcancercells,miR-28degradestheNrf2mRNAbybindingtoits3’UTR,whichisindependentofKeap1[112].Similarly,othermiRNAs,includingmiR-507,− 634,and − 129-5p,arealsoknowntonegativelyregulateNrf2-mediatedpathways[113].Cisplatinresistanceisacommonphenomenoninlungcancertherapy.miR-144-3ppreventscisplatinresistanceinlungcancercellsbyinhibitionofNrf2[114].Inaddition,miR-200awasdownregulatedinbreastcancerandre-expressionofmiR-200areleasedNrf2fromKeap1viatriggeringKeap1mRNAdegradation,leadingtonucleartranslocationofNrf2andsubsequenttranscriptionoftargetgenes[115].miR-125bhasbeenfoundtoupregulateperoxiredoxin-like2A(PRXL2A),anantioxidantproteincommonlyupregulatedinoralsquamouscellcarcinoma(OSCC),whichinhibitsthecellularoxidativedamagebypositiveregulationoftheNrf2signalingpathway[116].Treatmentwitharsenite,awell-documentedhumanlungcarcinogen,onhumanbronchialepithelial(16-HBE)cellsresultedinmiR-155-mediatedNrf2inactivation,thusenhancingoxidativedamageandcellmalignanttransformation[117].InMCF-7cells,treatmentwithmetformininducedmiR-34aexpressiontodownregulatetheSirt1/Nrf2pathway,resultinginincreasedsusceptibilityofcancercellstooxidativestressandTRAIL-inducedapoptosis[118].ThemodulatoryeffectoftheNrf2signalingpathwaysonthencRNAshasalsobeenreportedinmanystudies.HDACisarecommonlyusedinthetreatmentofcancer,butdevelopmentofresistanceoftenoccurs[119].InthecaseofHDACistreatment,Nrf2signalingpathwaywasfoundtoactivatemiR-129-3ptotriggerthemTORpathway,therebystimulatingautophagyfordegradationofagedordamagedcomponentsandmacromoleculestosuppresstheoxidativestress,leadingtochemoresistanceofthecancercells[120].IthasbeenshownthattheNrf2signalingpathwayinhibitstheexpressionofmiR-17-5ptodown-regulateFPN1,aniron-exporterprotein,whichresultsintheaggregationofironandROS.DownregulationofFPN1contributestothesurvivalandgrowthofmultiplemyeloma[121].ThesestudiesdemonstratethattheNrf2signalingpathwayandmiRNAsareregulatedbyeachother,andunderstandingtherelationshipbetweenNrf2andmiRNAswillbenefitthedelineationoftheunderlyingmolecularpathwaysandthetreatmentofvariouscancer.InadditiontomiRNAs,lncRNAsarealsoinvolvedinNrf2-regulatedtumorigenesis.LncRNAH19wasfoundtoregulatecisplatinresistancebypromotingNrf2-mediatedgenetranscriptioninhigh-gradeserousovariancancer[122].Inaddition,Nrf2hasbeenshowntoregulatethetranscriptionofsmoke-andcancer-associatedlncRNA-1(SCAL1),whichdecreasesoxidativedamageinlungcancercells[123].InHCCcelllines,itwasfoundthatNRAL,alongnon-codingRNA,contributedtocisplatinresistance.FurtherstudiesrevealedthatNRALfunctionedasaceRNAtonegativelyregulatemiR-340-5pexpressionwhichtriggeredNrf2-dependentantioxidantenzymes,suggestingtheimportantroleoftheNRAL/miR-340-5p/Nrf2axisinthecisplatinresistanceofHCCcells[124,125].AnotherstudyhasfoundthatNrf2inducestheupregulationoflncRNAtaurine-upregulatedgene2(TUG2),whichpromotesprogressionandadriamycinresistanceinurothelialcarcinomaofthebladder[126].Conversely,arecentstudyhassuggestedthatlncRNATUG1bindsdirectlytoNrf2andupregulatesitsproteinexpression,thuscontributingtocisplatinresistanceofESCCcells[127].Moreover,lncRNAKeap1regulation-associatedlncRNA(KRAL)functionedasaceRNAtonegativelyregulatemiR-141whichrestoredKeap1expressionandinhibitedNrf2expression,thusreversing5-FUresistanceinHCCcells[128].InNSCLCcells,miR-335isthedownstreamtargetoflncRNA-XISTandoverexpressedlncRNA-XISTincreasesSOD2(animportanttranscriptionaltargetofNrf2)expressionlevelsbyspongingmiR-335,therebydecreasingROSlevelsandresistingcelldeath[129].TheabovefindingsthereforesuggestthattheinteractionbetweenncRNAs,Nrf2andROSdisplaysacrucialroleforbothpositiveandnegativeregulationoftumorigenesis(Fig. 3). Fig.3InterplaybetweenROSandncRNAsinregulatingNrf-2pathway.TheinteractionbetweenncRNAsandROSdisplaysacrucialroleforbothpositiveornegativeregulationoftheNrf-2pathwaywhichcontributingtothecancerhallmark“resistingcelldeath”FullsizeimageCellstemness:keyfeatureofresistantcancercellswhichregulatedbyROSandncRNAsEmergingevidencehasshownthatasmallpopulationofcellswithstemcell-likeproperties,termedcancerstemcells(CSCs),havethecapacitytoundergoself-renewalwhichcontributestoresistancetoconventionaltherapies[130].IthasbeendemonstratedthatncRNAsregulateCSC-mediatedtherapyresistancebymodulatingtheredoxstateofcancercells[131].Thestem-likecellsinCRCarehighlydependentoncellularGSHtomaintainROSlevels.JuandcolleaguesfoundthatmiR-1297levelswereinverselycorrelatedwiththeexpressionofxCT,acystine/glutamatetransporterrequiredforGSHsynthesis.TheinteractionofxCTwithCD44v,aCSCmarker,effectivelyinducedenrichmentofCRCstem-likecells,whichwasassociatedwithcanceraggressivenessandpoortherapeuticresponses[132].Inanotherstudy,theauthorsfoundthatmiR-153wasdownregulatedanditstargetgeneNrf-2upregulatedingliomastemcells(GSCs)whencomparedtonon-GSCsgliomacells.IncreasedexpressionofNrf2promotedGPX1expressionandsubsequentlyreducedROSproduction,leadingtoradioresistanceofGSCs[133].AfurtherstudyfoundthatoverexpressionofmiR-153inducedROS-mediatedactivationofthep38MAPKpathway,whichsignificantlyreducedstemnessandthusenhancedradiosensitivity[133].Inaddition,miR-128apromotedROSproductionviaspecificinhibitionoftheBmi-1oncogene,whichincreasedtheradiosensitivityofmedulloblastomastemcells[134].Moreover,SunandcolleaguesfoundthatmiR-223expressionwasdownregulatedinTNBCstemcells(TNBCSCs)andoverexpressionofmiR-223resensitizedTNBCSCstoTRAIL-inducedapoptosisthroughthemitochondria/ROSpathway[135].AnotherstudyfoundthattheexpressionofmiR-125awasdecreasedinlaryngealcarcinomatissuesandlaryngealcancerstemcells(Hep-2-CSCs).OverexpressionofmiR-125areversedcisplatinresistanceinHep-2-CSCsbytargetingHematopoieticcell-specificprotein1-associatedproteinX-1(HAX-1,ananti-apoptoticproteinassociatedwithmitochondriaROSproduction)[136].H19,awell-characterizedlncRNAknownforitsroleinembryonicdevelopment,wasshowntobeupregulatedinHCCalongwithERK/MAPKsignaling,whichwasresponsibleforthechemoresistanceofCD133+stemcells.InhibitionofH19downregulatedERKsignalingandpromotedROSproduction,resultinginreversedchemoresistanceofCD133+cells[137].Together,theseresultssuggestthatdysregulationofcellularredoxbalancemayserveasamajorfactorforchemo/radio-resistanceofCSCs.NcRNAs-mediatedredoxstatealterationmayactasanovelstrategytodecreaseCSCspopulation,thusovercomingtherapyresistance.Autophagy:akeypro-survivalprocessregulatedbyROSandncRNAsAutophagy,aconservedintracellularself-digestionprocessresponsiblefortherecyclingofdamagedproteinsororganelles,hasbeenreportedtomediateresistancetochemo/radiotherapy-inducedcelldeath[138].TheinteractionbetweenncRNAsandcellularROSregulatestheautophagyprocessthatdisplaysimportantfunctionsinmodulatingtherapyresistance.Forexample,miR-17-5pisdownregulatedinpaclitaxel-resistantlungcancercells.OverexpressionofmiR-17-5pimprovedsensitivityofthesecellstopaclitaxelviatargetingBeclin1andthesubsequentautophagyprocess,whichwasaccompaniedbyROS-mediatedapoptosis[139].Ingliomacells,inhibitionofmiR-21wasfoundtoenhancetamoxifen-inducedautophagiccelldeathwhichwasaccompaniedbyoxidativestressinductionandJNKactivation,therebyreversingtamoxifenresistanceinhumangliomacells[140].EnvironmentalairborneparticulatematterPM2.5inducedROSproductionthatwasresponsibleforincreasedexpressionoflncRNAloc146880andfurtheractivationofautophagy.Furtherstudyfoundapositivecorrelationbetweenloc146880expressionandLC3Blevelsintumortissuesoflungcancerpatients,indicatinganoncogenicroleofPM2.5-inducedautophagy[141].Inaddition,lncRNASCAMP1activatesZEB1/JUNandautophagytopromotepediatricrenalcellcarcinomaunderoxidativestressviatargetingmiR-429[142].ArecentstudyhasfoundthatmiR-27areversedchemoresistanceofbreastcancercellstodoxorubicinbydisruptingROShomeostasisandimpairmentofautophagy[143].Treatmentofsodiumbutyrate(NaB,aHDACi)inbladdercancercellsinducedAMPK/mTORpathway-mediatedautophagyandROSoverproductionviathemiR-139-5p/Bmi-1axis[144].miR-30ahasalsobeenreportedtoenhancethechemosensitivityofglioblastomacellstotemozolomideviatargetingBeclin-1andautophagy[145].ROSandncRNAsinderegulatingcellularenergeticsMetabolicreprogrammingisoneofthekeyhallmarksofmalignanttumors[146].Unlikenormalcells,cancercellsundergoglycolysistoproducelacticacideveninthepresenceofoxygen.ThiswasfirstdiscoveredbyWarburginthe1920sandtermed“theWarburgeffect”[147].Sincethen,manystudieshavebeenconductedtothoroughlyinvestigatethepossiblerelationshipsbetweenmetabolismandcancerprogression.Metabolismisacentralprocessforcellularredoxhomeostasisandrelatedsignaling,asmitochondriaoxidativephosphorylation(OXPHOS)isoneofthemajorsourcesofROS[148].Moreover,cellularreductants(suchasNADPHandGSH)aresynthesizedbymetabolicintermediatesgeneratedinmultiplemetabolicprocesses[149].BesidesROS,ncRNAsarealsoinvolvedinregulationofmetabolicreprogramming,suggestingapossiblerolefortheinterplaybetweenncRNAsandROSinmodulationofmultiplemetabolicprocess(Fig. 4). Fig.4InterplaybetweenROSandncRNAsinregulatingcellmetabolism.Cancercellmetabolism(includingglucose,aminoacidandlipidmetabolism)aretightlyregulatedbytheinteractionbetweenROSandncRNAs,whichgenerateenergyormetabolicintermediatestosupportcancercellgrowthFullsizeimageRegulationofglucosemetabolismbyROSandncRNAsNcRNAselaboratelyregulatecancer-associatedglycolyticpathwaysbymodulatingexpressionofspecificmetabolicenzymesortranscriptionfactorsresponsibleformasterregulationofcellmetabolism.Inpancreaticductaladenocarcinoma(PDAC)cells,itwasobservedthatglutaminedeprivationresultedinaccumulationofROSinMIA-PaCa-2cells,whichpromotedmiR-135expression.ROS-mediatedupregulationofmiR-135targetedphosphofructokinase1(PFK1)andsuppressedaerobicglycolysis,therebypromotingtheutilizationofglucosetosupportthetricarboxylicacid(TCA)cycle[150].AnotherstudyfoundthatoverexpressionofmiR-422aingastriccancercellsrepresseditstargetpyruvatedehydrogenasekinase2(PDK2)torestoreactivityofthepyruvatedehydrogenase(PDH),whichshiftedtheenergymetabolismfromaerobicglycolysistooxidativephosphorylation[151].ThemiR-422a/PDK2axisalsoinfluenceddenovolipogenesisincancercells,whichsubsequentlyaffectedROSgenerationandRBphosphorylation,resultingincellcyclearrestattheG1phase[151].AccumulationofROSduetoglucosedeprivationleadstodecreasedHDACsactivity,andparticularlyreducedlevelsofHDAC2,whichresultsintheincreasedacetylationofmiR-466 h-5ppromoterregionandupregulationofthismiRNA[152].Inhypoxicbreastcancercells,oxidativestress-inducedoverexpressionofmiR-181cblockedHIF-1αaccumulationanddiminishedhypoxia-induciblelevelsofglycolysisenzymes,includingglycolysis-associatedglucosetransporter-1(GLUT1),hexokinase2(HK2),PDK1,andlactatedehydrogenaseA(LDHA)[153].ColorectalcancercellsshowreducedexpressionofmiR-1andmiR-133b.EctopicexpressionofthesemiRNAsresultsinROSgenerationtosilencepolypyrimidinetract-bindingprotein1(PTBP1),whichconvertsactivePKM2toinactivePKM1,thusinducinggrowthsuppressionandautophagiccelldeath[154].Likewise,miR-1andmiR-206aretranscriptionaltargetsofNrf2inlungcancercells.SustainedactivationofNrf2signalingattenuatedmiR-1andmiR-206expressionwhichdirectedcarbonfluxtowardthepentosephosphatepathway(PPP)andtheTCAcycle,contributingtocellularredoxhomeostasisbyenhancingNADPHproduction[155].ThisfindingrepresentsanovellinkbetweenmiRNA,ROSandglucosemetabolismincancercells.miR-199a-3pexhibitedinhibitoryeffectsonlacticacidproduction,glucoseintakeandROSlevelsintesticularcancerNtera-2cells.FurtherstudyfoundthattranscriptionfactorSp1wasthedirecttargetofmiR-199a-3p,whichdecreasedLDHAproteinexpression[156].EctopicexpressionofmiR-143inrenalcellcarcinomaresultedintheperturbationofglucosemetabolismbynegativelymodulatingtheexpressionofGLUT1andthePTBP1/PKMsaxis,whichshiftedglycolysistooxidativephosphorylationandinducedautophagythroughincreasingROSlevels[157].UsingmicroRNAprofiling,TangandcoworkersfoundthatmiR-320ainhibitedoxidativestress-inducedPFK(arate-limitingglycolyticenzyme)expressioninlungcancercells[158].Treatmentwithastragalin,abioactivecomponentofmedicinalplantssuchasRosaagrestis,resultedinincreasedmiR-125bwhichrepressedHK2expressionanddirectedglycolysistooxidativephosphorylation,leadingtoROSaccumulationandgrowthsuppressionofHCCcells[159].Inhumanlungadenocarcinomas,miR-182negativelyregulatesPDK4andpromotesdenovolipogenesisofcancercells,whichisaccompaniedbyincreasedROSlevelandJNKactivation[160].TNBCandmetastaticmelanomacelllinesshowoverexpressionoflet-7awhichrepressescellproliferation,increasesROS,anddownregulatesproteinsinvolvedinglucosemetabolismincludingglucose6-phosphatedehydrogenase(G6PD)[161].LncRNAIDH1-AS1,atranscriptionaltargetofc-Myc,promotedhomodimerizationofIDH1andenhanceditsenzymaticactivity,whichresultedinincreasedα-KGanddecreasedROSproduction,leadingtoattenuationofglycolysis[162].Inaddition,prostatecancergeneexpressionmarker1(PCGEM1),anandrogen-inducedprostate-specificlncRNA,hasbeenshowntopromoteglucoseuptakeforaerobicglycolysis,whichisaccompaniedbytheshuntofpentosephosphatetofacilitatebiosynthesisofnucleotidesandlipids,andgenerateNADPHforredoxhomeostasis[163].RegulationofaminoacidmetabolismbyROSandncRNAsAsanotherimportantcellularenergysource,aminoacidsalsoplayacrucialroleforthesurvivalandproliferationofcancercells.Onecrucialaminoacidisglutaminewhichisconvertedintoglutamatebytheratelimitingenzymeglutaminase(GLS1/GLS2).IthasbeenreportedthatoverexpressionoflncRNAurothelialcarcinoma-associated1(UCA1)promotedtheexpressionofGLS2inhumanbladdercancercells.FurtherstudyrevealedthatUCA1functionedasamiR-16spongetoreduceROSproductionandinduceGLS2expression,leadingtoincreasedglutaminolysisinbladdercancercells[164].Inarecentstudy,theauthorsfoundthatmiR-9-5pwassignificantlydownregulatedinpancreaticcancertissuesandcelllines.OverexpressionofmiR-9-5pinhibitstheexpressionlevelofGOT1mRNAbydirectbindingtoits3’UTR,thusaffectingtheglutaminemetabolismandredoxhomeostasisinpancreaticcancercells,suggestingthatmiR-9-5pmayserveasaprognosticortherapeutictargetforpancreaticcancer[165].InMYC-drivenlivertumors,theexpressionofGCLC,arate-limitingenzymeofGSHsynthesis,isattenuatedbyMYC-inducedmiR-18aexpression,whichcontributestoGSHdepletionandcorrespondswithincreasedsensitivitytooxidativestressintumors[166].Ferroptosisisaregulatedformofcelldeathdependentonlipid-basedROSaccumulation.IthasbeenreportedthatmiR-137negativelyregulatesferroptosisbydirectlytargetingglutaminetransporterSLC1A5inmelanomacells,andknockdownofmiR-137increasestheantitumoractivityoferastinbyenhancinglipidROS-inducedferroptosisbothinvitroandinvivo[167].Ingastriccancercells,treatmentofphyscion8-O-β-glucopyranoside,acommonanthraquinonefoundinvariousplants,decreasedexpressionofmiR-103a-3pwhichreleasedtheexpressionofGLS2andpromotedROSlevelandsubsequentferroptosis[168].ROSandncRNAsininducingangiogenesisWhenatumorgrowstoacertainsize,theprimaryproximalbloodvesselsareinsufficienttosupportenoughnutrientsandoxygen[169].Tumorcellsthensecretpro-angiogenicfactorstostimulatenewbloodvesselformation,whichistermedangiogenesis,animportanthallmarkofcancer[170].Thenewlyformedbloodvesselsprovidesoxygenandnutritionfortumorgrowthandremovemetabolicwastefromthetumormicroenvironment[171].Fibroblastgrowthfactor2(FGF2),vascularendothelialgrowthfactor(VEGF)andEGFarethethreemostpotentpro-angiogenicfactorsinthevascularizationoftumors[172].Inaddition,thehypoxiainduciblefactor(HIF)complexisamajorregulatorofpro-angiogenicgenesunderlowoxygenconditions[172].GrowingevidencehasdemonstratedthecrucialroleoftheinteractionbetweenROSandncRNAsininducingtumorangiogenesis(Fig. 5). Fig.5InterplaybetweenROSandncRNAsinregulatinginflammationandangiogenesis.ROSandncRNAsregulatecancerinflammationandangiogenesismainlybytargetingNF-κB,HIF-1αandVEGFRsignalingFullsizeimageVEGF:apivotalgrowthfactorinvolvedinangiogenesisregulatedbyROSandncRNAsVEGFactsasaneffectortostimulatecellproliferationandangiogenesisbybindingtoitstransmembranereceptor,VEGFR.InNSCLCcells,ROS-inducedoverexpressionofhemeoxygenase-1(HMOX1)contributedtop53-mediatedinhibitionofmiR-378expression,whichreducedVEGFexpressionanddiminishedangiogenicpotential[173].AshortageofnutritionandoxygeninglioblastomacellmayleadtoROSaccumulation.Underthisstresscondition,cancercellsdisplayedincreasedlevelsofmiR-17whichtargetedPTENtoupregulateVEGFtosupportcancerprogression[174].Inaddition,treatmentoftubeimoside-1,atraditionalChineseherb,inducedROSaccumulationandincreasedexpressionofmiR-126-5p,whichactedsynergisticallytotargetanddownregulateVEGF-AandVEGF-R2,leadingtogrowthinhibitionofNSCLCcells[175].Similarly,treatmentwithcurcuminoidsincoloncancercellsinhibitedcancerprogressionbydisruptingtheROS/miR-27a/SpaxiswhichmediatedtheinhibitionofVEGFsignaling[48].ERstress-inducedsuperoxidesareconvertedintoperoxidesbyTNF-α-mediatedSODactivation.miR-21hasbeenreportedtoinhibitTNF-α,whichpreventstheconversionofsuperoxidetoperoxide,leadingtoreducedbindingofVEGF/FGF2totheirreceptors[176].Inaddition,thereareseveralanti-angiogenicmiRNAs,includingmiR-497,miR-503,andmiR-126,whichinhibittheROS-mediatedfeedbackloopofVEGFA/FGF2[177,178,179].Anotherreportindicatedthatgenotoxicstress-inducedmiR-494expressionsuppressedDNArepairandangiogenesisthroughregulationoftheMRE11a/RAD50/NBN(MRN)complexwhichpositivelycorrelatedwithVEGFsignaling[180].LncRNAH19inhibitsoxidativestressincancercells.GliomacellsshowupregulationofH19,whichactasaceRNAforinhibitionofmiR-138,leadingtoactivationofVEGFsignalingandsubsequentgliomaangiogenesis[181].InhibitionoflncRNAMALAT1hasbeenreportedtoincreasecellularROSlevels.HCCcellsupregulatedMALAT1topromoteVEGF-AexpressionandangiogenesisviaspongingmiR-140[182].RegulationofHIF1-αbyROSandncRNAsHypoxiaisakeyfactorrequiredforangiogenesis.ItinducestranscriptionfactorHIF1toactivatetheexpressionofpro-angiogenicfactors,especiallytheVEGFfamily,therebyregulatingtumorangiogenesis[183].TheHIF-1complexisaheterodimericproteinconsistingoftwosubunits,HIF-1αandHIF-1β.Undernormoxiaconditions,thestabilityofHIF-1αisaccuratelycontrolledbyprolylhydroxylaseenzymes(PHDs)-mediatedhydroxylationandsubsequentproteasomedegradation[171].IthasbeenreportedthatHIF-1αisstabilizedbyROS,asCys326ofPHD2isoxidizedbyROSleadingtoinactivateddimerizationwhichresultsinHIF-1αaccumulationandsubsequentnucleartranslocation[184].Inaddition,growingdatahavesuggestedthatHIFsignalingisabletoregulatecellularROSlevels,whichmayinfluencethetranscriptionofseveralncRNAs.Forexample,treatmentwithEGCGinlungcancercellsinducesROSaccumulationwhichstabilizesHIF-1α.StabilizedHIF-1αthusbindstohypoxiaresponseelement(HRE)inproximitytomiR-210promoter,leadingtooverexpressionofmiR-210andreducedcellproliferation[185].Similarly,miR-224wasupregulatedbyhypoxiaandHIF-1αingastriccancer.IncreasedexpressionofmiR-224targetedRasassociationdomainfamilymember8(RASSF8)topromotegastriccancercellgrowth,migrationandinvasion,suggestingmiR-224asapotentialtherapeutictargetforhypoxicgastriccancerpatients[186].HIF-1αwasalsofoundtorepressmiR-34aexpressioninp53-defectiveCRCcells,whichactivatedSTAT3pathwayandpromotedEMTandmetastasis[187].Inaddition,thetranscriptionoflncRNAHOTAIRisalsoregulatedbyHIF1αwhichbindstotheHREpresentintheHOTAIRpromoterunderhypoxia[188].SimilarfindingsarealsoreportedinpancreaticcancerinwhichthetranscriptionoflncRNABX111isinducedbyHIF-1αinresponsetohypoxia[189].Incontrast,ncRNAsarealsofoundtobeinvolvedintheregulationofHIF-1αandrelatedsignaling[190].ThioredoxinisknowntoreduceROSlevelsincancercells,therebycontrollingredoxhomeostasis.miR-373hasbeenfoundtobindtothe3’UTRofthioredoxininteractingprotein(TXNIP)anddownregulateitsexpression,whichactivatesHIF-1αtopromotecancerprogression[191].miR-497regulatescisplatinchemosensitivityincancercellsinaROS-dependentmanner.WuandcolleaguesfoundthatectopicexpressionofmiR-497inbreastcancercellsreducedHIF-1αandVEGFproteinlevels,therebysuppressingangiogenesis[192,193].TheinteractionbetweenmiR-21andROShasbeenreportedinseveralcancertypes.StudieshavefoundthatoverexpressionofmiR-21inDu145humanprostatecancercellsincreasedtheexpressionofHIF-1αandVEGF,andinducedtumorangiogenesis[194].Ingastriccancercells,lncRNAzincfingerE-box-bindinghomeobox 2antisenseRNA1(ZEB2-AS1)wasoverexpressedandinhibitedmiR-143-5pexpressionbyactingasamiRNAsponge,whichincreasedROSlevelsandHIF-1αexpressiontopromotecancerprogression[195].Thehypoxia-induciblefactor-2αpromoterupstreamtranscript(HIF2PUT)isanovellncRNAwhichfunctionsinangiogenesisbyregulatingthetranscriptionalactivityofitshostgeneHIF-2α[131,196].OverexpressionofHIF2PUTpromotesHIF-2αexpressiontoactivatetranscriptionofmanypro-angiogenicfactorsunderhypoxiaconditions[197].LncHIFCAR(longnoncodingHIF-1αco-activatingRNA)wasalsofoundtoactasaHIF-1αco-activatorwhichpromotedHIF-1αactivationandoralcancerprogression[198].ROSandncRNAsintumor-promotinginflammationPersistentchronicinflammation,eitherintumorcellsorthetumormicroenvironment,hasbeenrecognizedasakeyregulatorfortumorigenesisandbeensummarizedasoneofthecancerhallmarks[1].Underchronicinflammationcondition,ROS(orRNS)aregeneratednotonlyfrominflammatorycellsbutalsoepithelialcells,whichmaycausebiomacromoleculedamageandepigeneticalterations,therebyinducingcelltransformationandmalignancy[199].Theinflammatoryprocessesregulatecancerprogressionbasedonthelevelofinflammation-relatedfactors,cytokines,andchemokinesproducedfromtumorcellsorcellsinthetumormicroenvironment[9].Inaddition,severaltranscriptionalfactors,includingNF-κB,activatorprotein-1(AP-1)andmembersoftheSTATfamilies,areinvolvedinregulatinginflammatoryresponsebycontrollingtheexpressionofinflammation-relatedfactors[200].DysregulatedexpressionofncRNAsandtheirinterplaywithROShavebeenlinkedtoinflammationandtumorigenesis(Fig.5).NF-κB:themasterregulatorofinflammationwhichregulatedbyROSandncRNAsThetranscriptionfactorNF-κBisprobablythemostwell-knownsignalingfactorinresponsetoinflammationandisconservedinallmulticellularanimals[201].NF-κB-regulatedinflammationresponsemayplayadouble-edgedroleincancerprogression.Ontheonehand,activationofNF-κBtargetsandeliminatestransformedcellsbyinducingcytotoxicimmunecellsunderacuteinflammatoryprocesses[202].Ontheotherhand,constitutiveactivationofNF-κBiscommonlyobservedinmanytypesofcancerwhichexertsavarietyofpro-tumorigenicfunctions[201].AccumulatingevidencesuggeststhattheinterplaybetweenROS,ncRNA,andNF-κBcontributestotumorigenesis.SeveralmiRNAshavebeenshowntobetranscriptionaltargetsofNF-κB.Forinstance,ithasbeenshownthatsaturatedpalmiticacidtriggersgenerationofROSandactivationofNF-κBinpancreaticcancercells.Furthermore,activationofNF-κBdownregulatesmiR-29c,anegativeregulatorofextracellularmatrixproteinsMMP-9,therebypromotingpancreaticcancerprogression[203].Similarly,K-RassignalinginpancreaticcanceractivatesNF-κB,whichresultsinenhancedmiR-155expression,repressedFOXO3expressionandincreasedROSaccumulation[66].Inaddition,increasedexpressionofmiR-21isadownstreameventofROS-mediatedNF-κBactivationandexhibitsacrucialroleinarsenic-inducedneoplastictransformationinhumanlungembryofibroblastcells[204].Similarly,treatmentofhumanmultiplemyelomacelllineU266withberberineresultedinSet9-mediatedlysinemethylationoftheRelAsubunit,whichinhibitedNF-κBnucleartranslocationandmiR-21transcription,therebyinducingROSgenerationandgrowthsuppression[205].Furthermore,NF-κBalsopromotestheexpressionofproteinsthatregulatemiRNAs.ThemostimportantexampleistheNF-κB-dependentinductionoflin28,whoseexpressioninhibitsthematurationoflet-7miRNAs.AsIL-6isoneofthetargetsoflet-7miRNAs,thereducedexpressionoflet-7leadstohigherlevelsofIL-6andfurtheractivationofNF-κB,thereforegeneratingapositivefeedbackloop[206].InadditiontoregulatingmiRNAsdirectlyorindirectly,NF-κBactivityitselfisregulatedbyseveralmiRNAs.Forexample,p53-mediatedmiR-506overexpressioninducesROSaccumulationvianegativeregulationofNF-κB(p65),therebyexhibitingatumorsuppressiveroleinlungcancercells[207].UpregulationofmiR-223promotedmitochondriaROSproductionandsuppressedthephosphorylationofRelA,whichinhibitedNF-κB-regulatedtranscriptionofpro-inflammatorygenes,includingIL-1β,IL-6,TNF-α,andIL-12p40[135,208].miR-9overexpressionpromotesROSproductioninmultiplemyeloma,whichtargetsTRIM56andactivatestheNF-κBpathwaytopromotethedevelopmentandprogressionofmultiplemyeloma[209].Inaddition,ROS-mediatedupregulationofmiR-124-3pspeciallybindstothe3’UTRregionofneuropilin-1andsuppressitsexpression,whichnegativelyregulatesPI3K/Akt/NF-κBpathways,leadingtogrowthsuppressioninGBMcells[210,211].miR-17-92hasbeenfoundtodecreaseROSlevelsincancercells.OverexpressionofthemiR-17-92targetstumornecrosisfactorreceptorassociatedfactor3(TRAF3)andreleaseitsinhibitionontheNF-κBsignalingpathway,thuspromotinggastriccancerprogression[71,212].RegulationofAP-1/STAT:essentialtranscriptionfactorsforinflammatoryresponseTheactivationofthetranscriptionfactorAP-1andmembersoftheSTATfamiliesareessentialformaintainingcellularhomeostasisunderinflammatoryconditions[213].DysregulationofJAK/STATsignalinghasbeenimplicatedintheregulationofinflammatoryresponseinmalignantcellsandncRNAshavebeendemonstratedtotargetimportantplayersinthispathway.Forexample,overexpressionofmiR-124wasfoundtoinhibittheexpressionofSIRT1andthuspromotedthegenerationofROS,whichinducedmiR-124bindingtothe3’UTRregionofSTAT3andinhibitedtheexpressionofSTAT3proteins,resultinginreducedcellproliferationinHCCcells[214,215].Inaddition,overexpressionofmiR-33awasobservedinclinicalgliomaspecimensandcelllines,whichnegativelyregulatedtheexpressionofSIRT6bytargetingitsmRNA3’UTR.FurtherstudyfoundthatoverexpressionofSIRT6reducedcellsurvivalandinitiatedapoptosisbyenhancingROSlevelandinhibitingtheJAK3/STAT3pathway[101].ThelncRNAUCA1reducedROSproductionincancercells.IthasbeenreportedthatUCA1actsasmiRNAspongetoinhibitmiR-126expression,thusactivatingJAK/STATsignalingpathwaysandpromotingcellproliferationinhumanleukemiacells[216].Moreover,treatmentwithaspirinpromotesROSproductionandactivateslncRNAOLA1P2expression.OLA1P2upregulationmarkedlyinhibitsthenucleartransportofphosphorylatedSTAT3bybindingtoandpreventinghomodimerizationofphosphorylatedSTAT3,thusinhibitingSTAT3signalingandsuppressingcancerprogression[217].ROSandncRNAsininvasionandmetastasisMetastasisisacomplexandmultifacetedeventwhichinvolvestheprocessofinvasion,intravasationintoblood,extravasationtodistantorgansandgrowth[218].Aprerequisitechangebeforemetastasisistheactivationofepithelial-mesenchymaltransition(EMT)incancercells,aphenotypictransitionofepithelialcellstoacquiremoreaggressivemesenchymalcharacteristics[218].Inaddition,colonizationofmetastaticcellsisanotherimportantprocess,whichallowstheformationofmetastaticnichesindistantorgans[219].ThemultistepprocessofmetastasisisregulatedbyseveraltranscriptionalfactorssuchasSnail,Slug,ETS-1,Twist,ZEB1andZEB2[220,221,222,223].Moreover,severaltargetsofthesetranscriptionalfactorsarecloselyrelatedtothemetastaticprocess,suchasmetalloproteases(MMP-2/9)andchemokinesorcytokinesliketransforminggrowthfactorbeta(TGF-β)[224,225].Alongwithprotein-codinggenes,somencRNAsmayparticipateincancermetastasisandtheinterplaybetweenROSandncRNAsincancermetastasishasbeendocumented(Fig. 6). Fig.6InterplaybetweenROSandncRNAsinregulatinginvasionandmetastasis.TheinteractionbetweenncRNAsandROSindicatesacrucialroleforbothpositiveornegativeregulationofWntandTGF-βpathwaystomodulateinvasionandmetastasisofcancercellsFullsizeimageRegulationofTGF-βsignalingbyROSandncRNAsTGF-β,animportantpleiotropiccytokine,regulatescellproliferation,celladhesion,cellmigration,andthedifferentiationofaplethoraofdifferentcelltypes[226].Generally,canonicalTGF-βsignalingpromotestheexpressionofmesenchymalmarkers(suchasN-cadherinandvimentin)andreducestheepithelialmarkers(likeE-cadherin)viatranscriptionfactorSMADfamilyproteins[227].TGF-βsignalingdisplaysadouble-edgedroleinregulationtumorigenesis.Itactsasatumorsuppressoratearlystagesofcancerbyinducingcytostasisandapoptosis.However,atlaterstages,itfunctionsasanoncoproteinbysupportingcancergrowthandinducingmetastasis,therebypromotingthedevelopmentandprogressionofcancer[226].TGFsignalinghasbeenreportedtocloselyinteractwithROSandncRNAinregulatingcancermetastasis.Forexample,upregulationofmiR-200familyispositivelycorrelatedwithincreasedROSlevelsuponchemotherapyorradiotherpyincancercells[228].TGF-βhasbeenfoundtodownregulatemiR-200familymembers,includingmiR-200a/−200b/−200c/− 141/− 429,whichpromoteZEB1andZEB2expressionandsubsequentcancerprogression[229].TGFsignalingandROSupregulatemiR-182expression,whichsustainsNF-κBactivationbydirectlysuppressingcylindromatosis(CYLD,anNF-κBnegativeregulator)[230].OverexpressionofmiR-182alsoreduceSMAD7expressionandpromotebreastcancerinvasionandTGF-β-inducedbonemetastasis[231].TGFsignalingandROSalsoinducetheexpressionandpromoteractivityofmiR-155,whichreducesRHOAexpressionanddisruptstightjunctions,leadingtoinvasionandmetastasisofbreastcancer[232].TheexpressionofmiR-206isregulatedbyNrf2underoxidativestressconditions[155].miR-206hasbeenfoundtoinhibitautocrineproductionofTGF-βanddownstreamneuropilin-1(NRP1)andSMAD2expression,leadingtodecreasedmigration,invasion,andEMTinbreastcancercells[233].InprimarymyelofibrosisCD34+cells,TGF-βsignalingenhancesmiR-382-5pexpressionandreducesitstargetgeneSOD2activity,leadingtoROSoverproduction[234].Guoetal.demonstratedthatthekallistatinprotein(aplasmaprotein)inhibitedTGF-βsignalingandROSproductionviaitsheparin-bindingsite,whichfurtherblockedmiR-21andAKTsignaling,thussuppressingEMT[235].Inanotherstudy,metformin-inducedSODoverexpressionquenchedROSlevelsandblockedtheTGFpathway,whichinhibitedmiR-21andMMP-2/9expression,leadingtosuppressionofcellproliferationand/ormigration[106].InirradiatedNSCLCcells,accumulationofROSresultsintheactivationofTGFsignalingandsubsequentoverexpressionofmiR-21,whichleadstoDNAdamage[236].ROS-induceddecreaseinc-MycexpressiondownregulatesmiR-20a[237].TGF-βandoneofitsreceptors(TGFBR2)werefoundtobedownregulatedbymiR-20aviadirectbindingofmiR-20atoits3’UTR,thusabrogatingtheTGF-βsignalinginbreastcancercells[238].OverexpressionofmiR-210resultsinanincreaseofROSgenerationincancercells[239].UpregulatedmiR-210targetsproteininteractionwithPRKCA1(PICK1),acriticalnegativeregulatoroftheTGF-βpathway,andinhibitsitsexpression.ThisactivatesTGF-βsignalingandpromotesbonemetastasisofprostatecancer[240].miR-17-5phasbeenfoundtoincreaseROSlevelsbyinhibitingthreemajorantioxidantenzymes,MnSOD,GPX2,andTrxR2[47].AluciferasereporterassayidentifiedTGFBR2asitstargetandoverexpressionofmiR-17-5psignificantlyenhancedcervicalcancercellproliferationandmetastasis[241].Moreover,miR15a/16hasbeenfoundtoinducemitochondrialROSproductionandreducetheexpressionofendogenousSmad3,therebyinhibitinginvasionofprostatecancercellsbysuppressingtheTGF-βsignalingpathway[44,242].InadditiontomiRNAs,ROSandlncRNAsarealsoinvolvedinregulationofTGF-βsignalingduringcancerprogression.OverexpressionofmiR-139-5psignificantlyincreasedoxidativestressviatargetingROSdefensepathways[243].LncRNANEAT1functionsasaceRNAbyspongingmiR-139-5p,whichupregulatesTGF-β1topromoteHCCprogression[244].InhibitionoflncRNAMALAT1hasbeenreportedtoincreasecellularROSlevels.UpregulatedTGF-βinheadandnecksquamouscellcarcinoma(HNSCC)maypromoteSTAT3activation,whichbindstotheMALAT1promoterandactivatesitsexpression,therebyinducingEMTandacceleratingHNSCCmetastasis[245].TheexpressionofmiR-1isregulatedbyNrf2[155].LncRNAUCA1functionsasaceRNAfortitratingmiR-1andmiR-203atoincreaseSlugexpression,whichpromotesTGF-β-inducedEMTandinvasioninmetastaticbreastcancer[246].miR-421decreasesROSlevelsbytargetingKEAP1expression[247].IthasbeenfoundthatlncRNAMEG3functionsasaspongeofmiR-421toregulateE-cadherinexpression,therebypromotingTGF-β-inducedEMTinbreastcancer[248].miR-372hasbeenfoundtodecreaseROSlevelsbytargetingp62incancercells[249].LncRNAlnc-SNHG1significantlypromotestheexpressionofTGFBR2andRAB11AviaspongingmiR-302/372/373/520,thusactivatingEMTininvasivepituitarycancer[250].AnotherstudyfoundthatlncRNAXISTfunctionsasanceRNAtoinhibitmiR-137expressionanddecreaseROSlevelssimultaneously,whichpromoteZEB2expressionandsubsequentTGF-β-inducedEMTinNSCLCcells[251,252].RegulationofWnt/β-cateninsignaling:awell-knownregulatorfortumormetastasisWnt/β-cateninsignaling,anevolutionarilyhighlyconservedpathway,controlsamultitudeofdevelopmentalprocesses,includingembryonicdevelopmentandmaintenanceofadulttissuehomeostasis[253].Wntsignalingisstage-specificorcancertype-specificandfunctionsbyregulatingtheexpressionofspecifictargetgenes,suchasc-myc,E-cadherin,andcyclinD1[254,255].NcRNAshavebeenfoundtocontributetoboththeactivationandinactivationofWntsignalingforregulatingtumorigenesis.IthasbeenshownthatERstresscanupregulatemiR-346expression,whichreducesROSlevelsthroughmitophagy[256].ERstressalsoenhancesglycogensynthasekinase-3beta(GSK3β)expression,andGSK3βinhibitionreversestheeffectsofmiR-346onROSproduction,suggestingtheroleofWntsignalinginregulatingcancerprogressionthroughthemiR-346/ROS/GSK3βaxis[256].miR-146adownregulatestheexpressionofSOD2andenhancesROSgenerationincancercells[257].IthasbeenreportedthatSnailcaninducetheexpressionofmiR-146athroughβ-catenin/TCF4,whichinturnstabilizesβ-cateninandformsapositivefeedbackcircuit,leadingtosustainedactivationofWntsignalinginCRCstemcells[258].GenerationofROSactivatesmiR-199/214transcription.ThelncRNADANCRbindstothe3′TURofCTNNB1mRNAandblockstheinhibitoryeffectofmiR-214andmiR-199,whichinturnincreasesCTNNB1proteinlevelsandpromotessubsequentactivationofWntsignalinginHCCcells[259].Inaddition,miR-34atargetsNOX2toenhanceROSproduction[260].ThelncRNA-MUF(mesenchymalstemcell-upregulatedfactor)canactasaceRNAformiR-34aandpromoteEMTbyupregulatingSnail1expressionandactivatingWnt/β-cateninsignaling[261].Inadditiontotheabovesignalingevents,thereexistseveralothermetastasis-associatedfactorsthatinteractwithncRNAsincontrollingcancerprogression.miR-21,awell-knownoncogenicmicroRNAcontributingtocarcinogenesisinprostateandothercancers,wasupregulatedbyROS-mediatedAktactivation,whichcontributedtothehighlyinvasiveandmetastaticphenotypeofprostatecancercellsbydownregulationofmaspinandPDCD4[262].Secretedproteinacidicandrichincysteine(SPARC)isamatrixproteinwhichmediatesdiversecellularfunctionsandhasanimportantroleinregulationofcell-matrixinteractionsandmigration.AnoncogenicmicroRNAmiR-155hasbeenreportedtodecreasetheexpressionoftumorprotein53inducednuclearprotein1(TP53INP1),ap53targetgeneresponsibleforthep53-drivenoxidativestressresponse,therebyupregulatingSPARCexpressionandpromotingsubsequentcellmigrationinpancreaticadenocarcinoma[263].lncRNAH19andHULCwereupregulatedbyoxidativestressandregulatedcholangiocarcinomacellmigrationandinvasionbytargetingIL-6andCXCR4viaceRNApatterns,whichspongelet-7a/let-7bandmiR-372/miR-373,respectively[264].ROSandothertypesofncRNAsinregulatingcancerhallmarksAlthoughmiRNAsandlncRNAsarethemaintypesofncRNAsinteractingwithoxidativestresstoregulatecancerhallmarks,otherncRNAsarealsofoundtointeractwithoxidativestressforregulationofcancerprogression,suchascircRNAs.AstheuniquestructureofcircRNAsthatcontaincovalentlyjoined3′and5′ends,itisrationaltohypothesizethatcircRNAsregulatecancerprogressionbyactingasmiRNAsponges[265].Indeed,circRNAsareimplicatedinavarietyofcancers(includinggastriccancer,hepatocellularcancer,bladdercancer,andesophagealcancer,andothers)[266,267].Forexample,knockdownofcircularATPbindingcassettesubfamilyBmember10(circABCB10)promotedlipidROSproductionandsubsequentferroptosisbyregulatingthemiR-326/CCL5axisinrectalcancer,indicatingcircABCB10asapromisingtherapeutictargetforrectalcancer[268].Similarly,circ-TTBK2wasupregulatedingliomatissuesandcells.Furtherstudyfoundthatcirc-TTBK2wasaspongeofmiR-761tomodulateITGB8,andknockdownofcirc-TTBK2inducedlipidROSproduction,whichpromotedferroptosisandretardedcellproliferation,invasioningliomacells,suggestingapotentialbiomarkerforclinicalgliomatreatment[269].ThefolatecycleplaysakeyroleintheproductionofNADPHforneutralizationofROS.Circ_0062019anditshostgeneSLC19A1weresignificantlyupregulatedinprostatecancer.UpregulatedSLC19A1thusencodeamembraneproteintotransportfolate,whichdecreasesROSlevelsandpromotesprostatecancerproliferation[270].Therefore,theseabovefindingsdemonstratethattheinterplaybetweencircRNAsandoxidativestressplaysdominantroleinregulatingcancerhallmarks.AndmoretypesofncRNAswillbeidentifiedtointeractwithoxidativestressforregulatingcancerhallmarksinthefuture.ConclusionsTodate,mountingevidencehasdemonstratedthecriticalroleofROSintumorprogression,whichdisplayadouble-edgedfunctionbyactingeitherasasecondmessengerforsignaltransductionordamagingmacromolecules/organellesforcelldeath.Duringtheseprocesses,ROScanmodulatebiologicalfunctionbyregulatingseveralprotein-codinggenes(eitheronco-ortumorsuppressive)involvedinmosthallmarksofcancer,therebyregulatingcancerprogression.Inthisreview,wehighlightthatROSalsofunctionincellularbiologicaleventsbyinteractionwithnon-codingtranscripts,especiallymiRNAsandlncRNAs.Indeed,theinterplaybetweenROSandmiRNAs/lncRNAsistightlyassociatedwithdiversebiologicalprocesses,includingcancercellproliferation,cellsenescenceandcellinvasion,suggestingtheircrucialroleintheregulationofmostcancerhallmarks.Insummary,theinterplaybetweenncRNAsandROSholdsgreatpotentialforthedevelopmentofnoveldetectionbiomarkersortherapeuticstrategiesforfuturecancertreatment.ProspectiveTheinteractionbetweenncRNAsandROStakesplaceeitherduringncRNAbiogenesis,attheepigeneticlevelorduringthesignaltransduction.Inaddition,moststudiesindicatetheinterplaybetweenROSandncRNAsaremiRNAs-based.StudiesexploringtheassociationwithlncRNA/circRNAsandROSarestillrelativelylimited,althoughlncRNAandcircRNAmayplaymoreimportantrolesduringcancerprogression.AscircRNAsareabundant,conservedandstableinmammaliancells,theseadvantagesmakeitrelativelyeasytodetectandholdthepotentialtobeeffectivecancerbiomarkerinthefuture.Thus,thepossiblefutureresearchfocusesshouldpaymoreattentiontotheregulatoryroleofcircRNAincancer.Moreover,mostncRNAsstudiedtodateinteractwithROStoregulatecellgrowth-relatedcancerhallmarks,suchassustainingproliferativesignaling,evadinggrowthsuppression,andresistingcelldeath.However,onlylimiteddataexistsregardingregulationofevadingimmunedestructionofcancercells.Indeed,immunotherapyisnowoneofthemosteffectivetreatmentstrategiesforseveraltypesofcancer.ROSandncRNAsalonehavebeendemonstratedtoregulateimmuneescapeincancertreatment,butresearchesreferringtotheinterplaybetweenROSandncRNAsinimmuneescapearelimited.Furtherstudiesarethereforeneededfordeeperunderstandingtheirregulatoryrolesincancerimmuneescape.Additionally,studieshavefoundthatseveralncRNAsinteractwithROStoparticipateinregulationofmorethanonecancerhallmark.TakingmiR-21asanexample,itisabletoberegulatedbyorregulateROSgenerationincancercellsandmodulateseveralcancerhallmarks,includingsustainingproliferativesignaling,evadinggrowthsuppression,resistingcelldeath,inducingangiogenesis,tumor-promotinginflammation,andinvasionandmetastasis.ThismaybeanimportantissuewhichshouldbeaddressedwhentargetingtheinterplaybetweenncRNAsandROSforcancertherapyduetothecomplexinteractionpatternsanddiversemolecularmechanismsinvolved.ThepoorpharmacokineticsofncRNAsarealsoconsideredasanobstacleofncRNA-basedtargetedtherapy.Todate,mostofthestudiesrelatedtoncRNAsandROSareconductedininvitrocelllines,whichheralddelaysinthetimelineforimplicationofncRNA-basedtargetedtherapyincancertreatment.Nevertheless,withthetechnicaladvancementsincellularandmolecularbiologycoupledwithbioinformaticapproaches,almostcertainlymoreandmorencRNAswillbefoundtoworktogetherwithROStoregulatethehallmarksofcancer.Moreover,increaseduseofcanceranimalmodelsinfuturestudieswillpavethewayfortranslationofinvitroresultsintoclinicalapplications. Availabilityofdataandmaterials Allthedataobtainedand/oranalyzedduringthecurrentstudywereavailablefromthecorrespondingauthorsonreasonablerequest. AbbreviationslncRNA: longnoncodingRNA ncRNA: noncodingRNA ROS: Reactiveoxygenspecies H2O2 : Hydrogenperoxide miRNA: microRNA piRNA: PIWI-interactingRNA snoRNA: smallnucleolarRNA siRNA: smallinterferingRNA MREs: miRNAresponseelements lincRNA: intergeniclncRNA elncRNA: enhancerlncRNA GAS5: growtharrestspecific5 MALAT1: Lungadenocarcinomatranscript-1 circRNA: circularncRNA ceRNA: competitiveendogenousRNA ER: Endoplasmicreticulum PKM2: PyruvatekinaseM2 RTK: Receptortyrosinekinases CDK: Cyclin-dependentkinase CDKI: CDKinhibitor IR: Ionizingradiation ALA-SDT: 5-aminolevulinicacid-mediatedsonodynamictherapy MnSOD: Manganesesuperoxidedismutase HCC: Hepatocellularcarcinoma ASO: Antisenseoligonucleotide EGFR: Epidermalgrowthfactorreceptor Sp: Specificityprotein MAPK: Mitogen-activatedproteinkinases ESCC: Esophagealsquamouscellcarcinoma RB: Retinoblastoma FOXO: ForkheadboxO TNBC: Triple-negativebreastcancer PLC: Peptide-loadingcomplex HDACi: Histonedeacetylaseinhibitor UTR: Untranslatedregion BA: Betulinicacid POX: Prolineoxidase NEAT1: Nuclearenrichedabundanttranscript 1 EGCG: Epigallocatechin-3-gallate CTR1: Coppertransporter1 Bcl-2: B-celllymphoma2 PDCD4: Programmedcelldeath4 Keap1: Kelch-likeECH-associatedprotein1 ARE: Antioxidant-response-element EpRE: Electrophile-responseelement PRXL2A: Peroxiredoxin-like2A OSCC: Oralsquamouscellcarcinoma SCAL1: Smoke-andcancer-associatedlncRNA-1 TUG2: Taurine-upregulatedgene2 KRAL: Keap1regulation-associatedlncRNA CSC: Cancerstemcell GSC: Gliomastemcell TNBCSC: Triple-negativebreastcancerstemcell HAX-1: Hematopoieticcell-specificprotein1-associatedproteinX-1 OXPHOS: Oxidativephosphorylation PDAC: Pancreaticductaladenocarcinoma PFK1: Phosphofructokinase1 TCA: Tricarboxylicacid PDK2: Pyruvatedehydrogenasekinase2 PDH: Pyruvatedehydrogenase GLUT1: Glucosetransporter-1 HK2: Hexokinase2 PTBP1: Polypyrimidinetract-bindingprotein1 PPP: Pentosephosphatepathway G6PD: Glucose6-phosphatedehydrogenase PCGEM1: Prostatecancergeneexpressionmarker1 UCA1: Urothelialcarcinoma-associated1 FGF2: Fibroblastgrowthfactor2 VEGF: vascularendothelialgrowthfactor HIF: Hypoxiainduciblefactor HMOX1: Hemeoxygenase-1 PHD: Prolylhydroxylaseenzymes HRE: Hypoxiaresponseelement TXNIP: Thioredoxininteractingprotein ZEB2-AS1: ZincfingerE-box-bindinghomeobox 2antisenseRNA1 HIF2PUT: Hypoxia-induciblefactor-2αpromoterupstreamtranscript AP-1: Activatorprotein-1 TRAF3: Tumornecrosisfactorreceptorassociatedfactor3 EMT: Epithelial-mesenchymaltransition NRP1: Neuropilin-1 PICK1: ProteininteractionwithPRKCA1 HNSCC: Headandnecksquamouscellcarcinoma GSK3β: Glycogensynthasekinase-3beta MUF: Mesenchymalstemcell-upregulatedfactor SPARC: Secretedproteinacidicandrichincysteine TP53INP1: Tumorprotein53inducednuclearprotein1 ReferencesHanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration.Cell.2011;144(5):646–74.CAS  PubMed  GoogleScholar  Machado-SilvaA,PerrierS,BourdonJC.p53familymembersincancerdiagnosisandtreatment.SeminCancerBiol.2010;20(1):57–62.CAS  PubMed  GoogleScholar  DaytonTL,JacksT,VanderHeidenMG.PKM2,cancermetabolism,andtheroadahead.EMBORep.2016;17(12):1721–30.CAS  PubMed  PubMedCentral  GoogleScholar  GabayM,LiY,FelsherDW.MYCactivationisahallmarkofcancerinitiationandmaintenance.ColdSpringHarbPerspectMed.2014;4(6):a014241.PubMed  PubMedCentral  GoogleScholar  ShostakK,ChariotA.EGFRandNF-kappaB:partnersincancer.TrendsMolMed.2015;21(6):385–93.CAS  PubMed  GoogleScholar  SchieberM,ChandelNS.ROSfunctioninredoxsignalingandoxidativestress.CurrBiol.2014;24(10):R453–62.CAS  PubMed  PubMedCentral  GoogleScholar  FinkelT.Signaltransductionbyreactiveoxygenspecies.JCellBiol.2011;194(1):7–15.CAS  PubMed  PubMedCentral  GoogleScholar  ZhangJ,WangX,VikashV,YeQ,WuD,LiuY,etal.ROSandROS-mediatedcellularsignaling.OxidativeMedCellLongev.2016;2016:4350965. GoogleScholar  AggarwalV,TuliHS,VarolA,ThakralF,YererMB,SakK,etal.Roleofreactiveoxygenspeciesincancerprogression:molecularmechanismsandrecentadvancements.Biomolecules.2019;9(11):735.CAS  PubMedCentral  GoogleScholar  UrsiniF,MaiorinoM,FormanHJ.Redoxhomeostasis:theGoldenmeanofhealthyliving.RedoxBiol.2016;8:205–15.CAS  PubMed  PubMedCentral  GoogleScholar  SiesH,BerndtC,JonesDP.Oxidativestress.AnnuRevBiochem.2017;86:715–48.CAS  PubMed  GoogleScholar  SiesH.Oxidativestress:aconceptinredoxbiologyandmedicine.RedoxBiol.2015;4:180–3.CAS  PubMed  PubMedCentral  GoogleScholar  ConsortiumEP.AnintegratedencyclopediaofDNAelementsinthehumangenome.Nature.2012;489(7414):57–74. GoogleScholar  AnastasiadouE,JacobLS,SlackFJ.Non-codingRNAnetworksincancer.NatRevCancer.2018;18(1):5–18.CAS  PubMed  GoogleScholar  MatsuiM,CoreyDR.Non-codingRNAsasdrugtargets.NatRevDrugDiscov.2017;16(3):167–79.CAS  PubMed  GoogleScholar  MeiJ,HaoL,WangH,XuR,LiuY,ZhuY,etal.Systematiccharacterizationofnon-codingRNAsintriple-negativebreastcancer.CellProlif.2020;53(5):e12801.PubMed  PubMedCentral  GoogleScholar  PengY,CroceCM.TheroleofMicroRNAsinhumancancer.SignalTransductTargetTher.2016;1:15004.PubMed  PubMedCentral  GoogleScholar  CzechB,MunafoM,CiabrelliF,EastwoodEL,FabryMH,KneussE,etal.piRNA-guidedgenomedefense:frombiogenesistosilencing.AnnuRevGenet.2018;52:131–57.CAS  PubMed  GoogleScholar  WilliamsGT,FarzanehF.AresnoRNAsandsnoRNAhostgenesnewplayersincancer?NatRevCancer.2012;12(2):84–8.CAS  PubMed  GoogleScholar  RomanoG,VenezianoD,AcunzoM,CroceCM.Smallnon-codingRNAandcancer.Carcinogenesis.2017;38(5):485–91.CAS  PubMed  PubMedCentral  GoogleScholar  KumarP,KuscuC,DuttaA.BiogenesisandfunctionoftransferRNA-relatedfragments(tRFs).TrendsBiochemSci.2016;41(8):679–89.CAS  PubMed  PubMedCentral  GoogleScholar  StLaurentG,WahlestedtC,KapranovP.ThelandscapeoflongnoncodingRNAclassification.TrendsGenet.2015;31(5):239–51.CAS  PubMed  PubMedCentral  GoogleScholar  QuinnJJ,ChangHY.Uniquefeaturesoflongnon-codingRNAbiogenesisandfunction.NatRevGenet.2016;17(1):47–62.CAS  PubMed  GoogleScholar  BhanA,SoleimaniM,MandalSS.LongnoncodingRNAandcancer:anewparadigm.CancerRes.2017;77(15):3965–81.CAS  PubMed  GoogleScholar  NiW,YaoS,ZhouY,LiuY,HuangP,ZhouA,etal.LongnoncodingRNAGAS5inhibitsprogressionofcolorectalcancerbyinteractingwithandtriggeringYAPphosphorylationanddegradationandisnegativelyregulatedbythem(6)areaderYTHDF3.MolCancer.2019;18(1):143.PubMed  PubMedCentral  GoogleScholar  DimitrovaN,ZamudioJR,JongRM,SoukupD,ResnickR,SarmaK,etal.LincRNA-p21activatesp21incistopromotePolycombtargetgeneexpressionandtoenforcetheG1/Scheckpoint.MolCell.2014;54(5):777–90.CAS  PubMed  PubMedCentral  GoogleScholar  JiQ,ZhangL,LiuX,ZhouL,WangW,HanZ,etal.Longnon-codingRNAMALAT1promotestumourgrowthandmetastasisincolorectalcancerthroughbindingtoSFPQandreleasingoncogenePTBP2fromSFPQ/PTBP2complex.BrJCancer.2014;111(4):736–48.CAS  PubMed  PubMedCentral  GoogleScholar  JeckWR,SorrentinoJA,WangK,SlevinMK,BurdCE,LiuJ,etal.CircularRNAsareabundant,conserved,andassociatedwithALUrepeats.RNA.2013;19(2):141–57.CAS  PubMed  PubMedCentral  GoogleScholar  MemczakS,JensM,ElefsiniotiA,TortiF,KruegerJ,RybakA,etal.CircularRNAsarealargeclassofanimalRNAswithregulatorypotency.Nature.2013;495(7441):333–8.CAS  PubMed  GoogleScholar  HansenTB,KjemsJ,DamgaardCK.CircularRNAandmiR-7incancer.CancerRes.2013;73(18):5609–12.CAS  PubMed  GoogleScholar  JiangJ,WangK,ChenY,ChenH,NiceEC,HuangC.Redoxregulationintumorcellepithelial-mesenchymaltransition:molecularbasisandtherapeuticstrategy.SignalTransductTargetTher.2017;2:17036.PubMed  PubMedCentral  GoogleScholar  OberleyLW.Freeradicalsanddiabetes.FreeRadicBiolMed.1988;5(2):113–24.CAS  PubMed  GoogleScholar  YusufMA,ChuangT,BhatGJ,SrivenugopalKS.Cys-141glutathionylationofhumanp53:studiesusingspecificpolyclonalantibodiesincancersamplesandcelllines.FreeRadicBiolMed.2010;49(5):908–17.CAS  PubMed  PubMedCentral  GoogleScholar  WuHH,ThomasJA,MomandJ.p53proteinoxidationinculturedcellsinresponsetopyrrolidinedithiocarbamate:anovelmethodforrelatingtheamountofp53oxidationinvivototheregulationofp53-responsivegenes.BiochemJ.2000;351(Pt1):87–93.CAS  PubMed  PubMedCentral  GoogleScholar  AnastasiouD,PoulogiannisG,AsaraJM,BoxerMB,JiangJK,ShenM,etal.InhibitionofpyruvatekinaseM2byreactiveoxygenspeciescontributestocellularantioxidantresponses.Science.2011;334(6060):1278–83.CAS  PubMed  PubMedCentral  GoogleScholar  KitagawaM,KitagawaK,KotakeY,NiidaH,OhhataT.Cellcycleregulationbylongnon-codingRNAs.CellMolLifeSci.2013;70(24):4785–94.CAS  PubMed  PubMedCentral  GoogleScholar  BessonA,DowdySF,RobertsJM.CDKinhibitors:cellcycleregulatorsandbeyond.DevCell.2008;14(2):159–69.CAS  PubMed  GoogleScholar  NakayamaKI,NakayamaK.Ubiquitinligases:cell-cyclecontrolandcancer.NatRevCancer.2006;6(5):369–81.CAS  PubMed  GoogleScholar  CzochorJR,GlazerPM.microRNAsincancercellresponsetoionizingradiation.AntioxidRedoxSignal.2014;21(2):293–312.CAS  PubMed  PubMedCentral  GoogleScholar  SchultzJ,LorenzP,GrossG,IbrahimS,KunzM.MicroRNAlet-7btargetsimportantcellcyclemoleculesinmalignantmelanomacellsandinterfereswithanchorage-independentgrowth.CellRes.2008;18(5):549–57.CAS  PubMed  GoogleScholar  HuZ,FanH,LvG,ZhouQ,YangB,ZhengJ,etal.5-Aminolevulinicacid-mediatedsonodynamictherapyinducesanti-tumoreffectsinmalignantmelanomaviap53-miR-34a-Sirt1axis.JDermatolSci.2015;79(2):155–62.CAS  PubMed  GoogleScholar  AqeilanRI,CalinGA,CroceCM.miR-15aandmiR-16-1incancer:discovery,functionandfutureperspectives.CellDeathDiffer.2010;17(2):215–20.CAS  PubMed  GoogleScholar  HuangE,LiuR,ChuY.miRNA-15a/16:astumorsuppressorsandmore.FutureOncol.2015;11(16):2351–63.CAS  PubMed  GoogleScholar  PatelN,GarikapatiKR,RamaiahMJ,PolavarapuKK,BhadraU,BhadraMP.miR-15a/miR-16inducesmitochondrialdependentapoptosisinbreastcancercellsbysuppressingoncogeneBMI1.LifeSci.2016;164:60–70.CAS  PubMed  GoogleScholar  LiuQ,FuH,SunF,ZhangH,TieY,ZhuJ,etal.miR-16familyinducescellcyclearrestbyregulatingmultiplecellcyclegenes.NucleicAcidsRes.2008;36(16):5391–404.CAS  PubMed  PubMedCentral  GoogleScholar  DongZ,RenL,LinL,LiJ,HuangY,LiJ.EffectofmicroRNA-21onmultidrugresistancereversalinA549/DDPhumanlungcancercells.MolMedRep.2015;11(1):682–90.CAS  PubMed  GoogleScholar  XuZ,ZhangY,DingJ,HuW,TanC,WangM,etal.miR-17-3pdownregulatesmitochondrialantioxidantenzymesandenhancestheRadiosensitivityofprostatecancercells.MolTherNucleicAcids.2018;13:64–77.CAS  PubMed  PubMedCentral  GoogleScholar  NorattoGD,JutooruI,SafeS,Angel-MoralesG,Mertens-TalcottSU.ThedrugresistancesuppressioninducedbycurcuminoidsincoloncancerSW-480cellsismediatedbyreactiveoxygenspecies-induceddisruptionofthemicroRNA-27a-ZBTB10-Spaxis.MolNutrFoodRes.2013;57(9):1638–48.CAS  PubMed  GoogleScholar  Mertens-TalcottSU,ChintharlapalliS,LiX,SafeS.TheoncogenicmicroRNA-27atargetsgenesthatregulatespecificityproteintranscriptionfactorsandtheG2-McheckpointinMDA-MB-231breastcancercells.CancerRes.2007;67(22):11001–11.CAS  PubMed  GoogleScholar  ChenL,YangH,YiZ,JiangL,LiY,HanQ,etal.LncRNAGAS5regulatesredoxbalanceanddysregulatesthecellcycleandapoptosisinmalignantmelanomacells.JCancerResClinOncol.2019;145(3):637–52.CAS  PubMed  GoogleScholar  ZhangH,ZhuC,ZhaoY,LiM,WuL,YangX,etal.Longnon-codingRNAexpressionprofilesofhepatitisCvirus-relateddysplasiaandhepatocellularcarcinoma.Oncotarget.2015;6(41):43770–8.PubMed  PubMedCentral  GoogleScholar  TripathiV,EllisJD,ShenZ,SongDY,PanQ,WattAT,etal.Thenuclear-retainednoncodingRNAMALAT1regulatesalternativesplicingbymodulatingSRsplicingfactorphosphorylation.MolCell.2010;39(6):925–38.CAS  PubMed  PubMedCentral  GoogleScholar  AmodioN,StamatoMA,JuliG,MorelliE,FulcinitiM,ManzoniM,etal.DruggingthelncRNAMALAT1viaLNAgapmeRASOinhibitsgeneexpressionofproteasomesubunitsandtriggersanti-multiplemyelomaactivity.Leukemia.2018;32(9):1948–57.CAS  PubMed  PubMedCentral  GoogleScholar  TripathiV,ShenZ,ChakrabortyA,GiriS,FreierSM,WuX,etal.LongnoncodingRNAMALAT1controlscellcycleprogressionbyregulatingtheexpressionofoncogenictranscriptionfactorB-MYB.PLoSGenet.2013;9(3):e1003368.CAS  PubMed  PubMedCentral  GoogleScholar  LemmonMA,SchlessingerJ.Cellsignalingbyreceptortyrosinekinases.Cell.2010;141(7):1117–34.CAS  PubMed  PubMedCentral  GoogleScholar  DuZ,LovlyCM.Mechanismsofreceptortyrosinekinaseactivationincancer.MolCancer.2018;17(1):58.PubMed  PubMedCentral  GoogleScholar  SigismundS,AvanzatoD,LanzettiL.EmergingfunctionsoftheEGFRincancer.MolOncol.2018;12(1):3–20.PubMed  GoogleScholar  ChadalapakaG,JutooruI,ChintharlapalliS,PapineniS,SmithR3rd,LiX,etal.Curcumindecreasesspecificityproteinexpressioninbladdercancercells.CancerRes.2008;68(13):5345–54.CAS  PubMed  PubMedCentral  GoogleScholar  MarquardtJU,Gomez-QuirozL,ArreguinCamachoLO,PinnaF,LeeYH,KitadeM,etal.CurcumineffectivelyinhibitsoncogenicNF-kappaBsignalingandrestrainsstemnessfeaturesinlivercancer.JHepatol.2015;63(3):661–9.CAS  PubMed  PubMedCentral  GoogleScholar  GandhySU,KimK,LarsenL,RosengrenRJ,SafeS.Curcuminandsyntheticanalogsinducereactiveoxygenspeciesanddecreasesspecificityprotein(Sp)transcriptionfactorsbytargetingmicroRNAs.BMCCancer.2012;12:564.CAS  PubMed  PubMedCentral  GoogleScholar  PathiSS,JutooruI,ChadalapakaG,SreevalsanS,AnandS,ThatcherGR,etal.GT-094,aNO-NSAID,inhibitscoloncancercellgrowthbyactivationofareactiveoxygenspecies-microRNA-27a:ZBTB10-specificityproteinpathway.MolCancerRes.2011;9(2):195–202.CAS  PubMed  GoogleScholar  XuX,WellsA,PadillaMT,KatoK,KimKC,LinY.AsignalingpathwayconsistingofmiR-551b,catalaseandMUC1contributestoacquiredapoptosisresistanceandchemoresistance.Carcinogenesis.2014;35(11):2457–66.CAS  PubMed  PubMedCentral  GoogleScholar  HeJ,XuQ,JingY,AganiF,QianX,CarpenterR,etal.ReactiveoxygenspeciesregulateERBB2andERBB3expressionviamiR-199a/125bandDNAmethylation.EMBORep.2012;13(12):1116–22.CAS  PubMed  PubMedCentral  GoogleScholar  WagnerEF,NebredaAR.SignalintegrationbyJNKandp38MAPKpathwaysincancerdevelopment.NatRevCancer.2009;9(8):537–49.CAS  PubMed  GoogleScholar  RyanMB,CorcoranRB.TherapeuticstrategiestotargetRAS-mutantcancers.NatRevClinOncol.2018;15(11):709–20.CAS  PubMed  GoogleScholar  WangP,ZhuCF,MaMZ,ChenG,SongM,ZengZL,etal.Micro-RNA-155isinducedbyK-RasoncogenicsignalandpromotesROSstressinpancreaticcancer.Oncotarget.2015;6(25):21148–58.PubMed  PubMedCentral  GoogleScholar  LiuQ,ZouR,ZhouR,GongC,WangZ,CaiT,etal.miR-155regulatesgliomacellsinvasionandChemosensitivitybyp38Isformsinvitro.JCellBiochem.2015;116(7):1213–21.CAS  PubMed  GoogleScholar  HanGL,WangJ,GuoK,ChenJK,ShangRX,JiangT.miRNA-574-5pdownregulatesZNF70andinfluencestheprogressionofhumanesophagealsquamouscellcarcinomathroughreactiveoxygenspeciesgenerationandMAPKpathwayactivation.Anti-CancerDrugs.2020;31(3):282–91.CAS  PubMed  GoogleScholar  MateescuB,BatistaL,CardonM,GruossoT,deFeraudyY,MarianiO,etal.miR-141andmiR-200aactonovariantumorigenesisbycontrollingoxidativestressresponse.NatMed.2011;17(12):1627–35.CAS  PubMed  GoogleScholar  DuW,SearleJS.Therbpathwayandcancertherapeutics.CurrDrugTargets.2009;10(7):581–9.CAS  PubMed  PubMedCentral  GoogleScholar  EbiH,SatoT,SugitoN,HosonoY,YatabeY,MatsuyamaY,etal.CounterbalancebetweenRBinactivationandmiR-17-92overexpressioninreactiveoxygenspeciesandDNAdamageinductioninlungcancers.Oncogene.2009;28(38):3371–9.CAS  PubMed  GoogleScholar  HuQ,YeY,ChanLC,LiY,LiangK,LinA,etal.OncogeniclncRNAdownregulatescancercellantigenpresentationandintrinsictumorsuppression.NatImmunol.2019;20(7):835–51.CAS  PubMed  PubMedCentral  GoogleScholar  WuYF,OuCC,ChienPJ,ChangHY,KoJL,WangBY.Chidamide-inducedROSaccumulationandmiR-129-3p-dependentcellcyclearrestinnon-smalllungcancercells.Phytomedicine.2019;56:94–102.CAS  PubMed  GoogleScholar  RayessH,WangMB,SrivatsanES.Cellularsenescenceandtumorsuppressorgenep16.IntJCancer.2012;130(8):1715–25.CAS  PubMed  GoogleScholar  SuW,HongL,XuX,HuangS,HerpaiD,LiL,etal.miR-30disruptssenescenceandpromotescancerbytargetingbothp16(INK4A)andDNAdamagepathways.Oncogene.2018;37(42):5618–32.CAS  PubMed  PubMedCentral  GoogleScholar  KimSY,LeeYH,BaeYS.MiR-186,miR-216b,miR-337-3p,andmiR-760cooperativelyinducecellularsenescencebytargetingalphasubunitofproteinkinaseCKIIinhumancolorectalcancercells.BiochemBiophysResCommun.2012;429(3–4):173–9.CAS  PubMed  GoogleScholar  CoomansdeBracheneA,DemoulinJB.FOXOtranscriptionfactorsincancerdevelopmentandtherapy.CellMolLifeSci.2016;73(6):1159–72.CAS  PubMed  GoogleScholar  LinkW,Fernandez-MarcosPJ.FOXOtranscriptionfactorsattheinterfaceofmetabolismandcancer.IntJCancer.2017;141(12):2379–91.CAS  PubMed  GoogleScholar  GuttillaIK,WhiteBA.CoordinateregulationofFOXO1bymiR-27a,miR-96,andmiR-182inbreastcancercells.JBiolChem.2009;284(35):23204–16.CAS  PubMed  PubMedCentral  GoogleScholar  TangH,BianY,TuC,WangZ,YuZ,LiuQ,etal.ThemiR-183/96/182clusterregulatesoxidativeapoptosisandsensitizescellstochemotherapyingliomas.CurrCancerDrugTargets.2013;13(2):221–31.CAS  PubMed  GoogleScholar  GheysarzadehA,YazdanparastR.STAT5reactivationbycatechinmodulatesH2O2-inducedapoptosisthroughmiR-182/FOXO1pathwayinSK-N-MCcells.CellBiochemBiophys.2015;71(2):649–56.CAS  PubMed  GoogleScholar  SaxenaA,TammaliR,RamanaKV,SrivastavaSK.AldosereductaseinhibitionpreventscoloncancergrowthbyrestoringphosphataseandtensinhomologthroughmodulationofmiR-21andFOXO3a.AntioxidRedoxSignal.2013;18(11):1249–62.CAS  PubMed  PubMedCentral  GoogleScholar  HouL,ChenJ,ZhengY,WuC.CriticalroleofmiR-155/FoxO1/ROSaxisintheregulationofnon-smallcelllungcarcinomas.TumourBiol.2016;37(4):5185–92.CAS  PubMed  GoogleScholar  BlandinoG,DiAgostinoS.Newtherapeuticstrategiestotreathumancancersexpressingmutantp53proteins.JExpClinCancerRes.2018;37(1):30.PubMed  PubMedCentral  GoogleScholar  WangS,ZhaoY,AguilarA,BernardD,YangCY.TargetingtheMDM2-p53protein-proteininteractionfornewcancertherapy:Progressandchallenges.ColdSpringHarbPerspectMed.2017;7(5):a026245.PubMed  PubMedCentral  GoogleScholar  NagS,ZhangX,SrivenugopalKS,WangMH,WangW,ZhangR.TargetingMDM2-p53interactionforcancertherapy:arewethereyet?CurrMedChem.2014;21(5):553–74.CAS  PubMed  PubMedCentral  GoogleScholar  SuXF,LiN,MengFL,ChuYL,LiT,GaoXZ.MiR-16inhibitshepatocellularcarcinomaprogressionbytargetingFEATthroughNF-kappaBsignalingpathway.EurRevMedPharmacolSci.2019;23(23):10274–82.PubMed  GoogleScholar  ZhangB,WangX,DengJ,ZhengH,LiuW,ChenS,etal.p53-dependentupregulationofmiR-16-2bysanguinarineinducescellcyclearrestandapoptosisinhepatocellularcarcinoma.CancerLett.2019;459:50–8.CAS  PubMed  GoogleScholar  WangJ,JiaoY,CuiL,JiangL.miR-30functionsasanoncomiRingastriccancercellsthroughregulationofP53-mediatedmitochondrialapoptoticpathway.BiosciBiotechnolBiochem.2017;81(1):119–26.CAS  PubMed  GoogleScholar  YangJ,QiuB,LiX,ZhangH,LiuW.p53-p66(shc)/miR-21-Sod2signalingiscriticalfortheinhibitoryeffectofbetulinicacidonhepatocellularcarcinoma.ToxicolLett.2015;238(3):1–10.CAS  PubMed  GoogleScholar  WanY,CuiR,GuJ,ZhangX,XiangX,LiuC,etal.Identificationoffouroxidativestress-responsiveMicroRNAs,miR-34a-5p,miR-1915-3p,miR-638,andmiR-150-3p,inhepatocellularcarcinoma.OxidativeMedCellLongev.2017;2017:5189138. GoogleScholar  LiuW,ZabirnykO,WangH,ShiaoYH,NickersonML,KhalilS,etal.miR-23btargetsprolineoxidase,anoveltumorsuppressorproteininrenalcancer.Oncogene.2010;29(35):4914–24.CAS  PubMed  PubMedCentral  GoogleScholar  RamalingamV,VarunkumarK,RavikumarV,RajaramR.p53mediatedtranscriptionalregulationoflongnon-codingRNAby1-hydroxy-1-norresistomycintriggersintrinsicapoptosisinadenocarcinomalungcancer.ChemBiolInteract.2018;287:1–12.CAS  PubMed  GoogleScholar  MaoC,WangX,LiuY,WangM,YanB,JiangY,etal.AG3BP1-interactinglncRNApromotesFerroptosisandapoptosisincancervianuclearsequestrationofp53.CancerRes.2018;78(13):3484–96.CAS  PubMed  GoogleScholar  DouerD,TallmanMS.Arsenictrioxide:newclinicalexperiencewithanoldmedicationinhematologicmalignancies.JClinOncol.2005;23(10):2396–410.CAS  PubMed  GoogleScholar  LiX,SunD,ZhaoT,ZhangZ.Longnon-codingRNARORconfersarsenictrioxideresistancetoHepG2cellsbyinhibitingp53expression.EurJPharmacol.2020;872:172982.CAS  PubMed  GoogleScholar  BlumeCJ,Hotz-WagenblattA,HulleinJ,SellnerL,JethwaA,StolzT,etal.p53-dependentnon-codingRNAnetworksinchroniclymphocyticleukemia.Leukemia.2015;29(10):2015–23.CAS  PubMed  GoogleScholar  ChenA,JiangP,ZebF,WuX,XuC,ChenL,etal.EGCGregulatesCTR1expressionthroughitspro-oxidativepropertyinnon-small-celllungcancercells.JCellPhysiol.2020.https://doi.org/10.1002/jcp.29451.ChakrabortyS,MazumdarM,MukherjeeS,BhattacharjeeP,AdhikaryA,MannaA,etal.Restorationofp53/miR-34aregulatoryaxisdecreasessurvivaladvantageandensuresBax-dependentapoptosisofnon-smallcelllungcarcinomacells.FEBSLett.2014;588(4):549–59.CAS  PubMed  GoogleScholar  YangZ,ChenJS,WenJK,GaoHT,ZhengB,QuCB,etal.SilencingofmiR-193a-5pincreasesthechemosensitivityofprostatecancercellstodocetaxel.JExpClinCancerRes.2017;36(1):178.PubMed  PubMedCentral  GoogleScholar  ChangM,QiaoL,LiB,WangJ,ZhangG,ShiW,etal.SuppressionofSIRT6bymiR-33afacilitatestumorgrowthofgliomathroughapoptosisandoxidativestressresistance.OncolRep.2017;38(2):1251–8.CAS  PubMed  GoogleScholar  YanaiharaN,CaplenN,BowmanE,SeikeM,KumamotoK,YiM,etal.UniquemicroRNAmolecularprofilesinlungcancerdiagnosisandprognosis.CancerCell.2006;9(3):189–98.CAS  PubMed  GoogleScholar  SiML,ZhuS,WuH,LuZ,WuF,MoYY.miR-21-mediatedtumorgrowth.Oncogene.2007;26(19):2799–803.CAS  PubMed  GoogleScholar  FrankelLB,ChristoffersenNR,JacobsenA,LindowM,KroghA,LundAH.Programmedcelldeath4(PDCD4)isanimportantfunctionaltargetofthemicroRNAmiR-21inbreastcancercells.JBiolChem.2008;283(2):1026–33.CAS  PubMed  GoogleScholar  MengF,HensonR,Wehbe-JanekH,GhoshalK,JacobST,PatelT.MicroRNA-21regulatesexpressionofthePTENtumorsuppressorgeneinhumanhepatocellularcancer.Gastroenterology.2007;133(2):647–58.CAS  PubMed  PubMedCentral  GoogleScholar  SharmaP,KumarS.MetformininhibitshumanbreastcancercellgrowthbypromotingapoptosisviaaROS-independentpathwayinvolvingmitochondrialdysfunction:pivotalroleofsuperoxidedismutase(SOD).CellOncol(Dordr).2018;41(6):637–50.CAS  GoogleScholar  TuH,SunH,LinY,DingJ,NanK,LiZ,etal.OxidativestressupregulatesPDCD4expressioninpatientswithgastriccancerviamiR-21.CurrPharmDes.2014;20(11):1917–23.CAS  PubMed  GoogleScholar  BellezzaI,GiambancoI,MinelliA,DonatoR.Nrf2-Keap1signalinginoxidativeandreductivestress.BiochimBiophysActa,MolCellRes.2018;1865(5):721–33.CAS  GoogleScholar  VomundS,SchaferA,ParnhamMJ,BruneB,vonKnethenA.Nrf2,themasterregulatorofanti-oxidativeresponses.IntJMolSci.2017;18:12. GoogleScholar  LuMC,JiJA,JiangZY,YouQD.TheKeap1-Nrf2-AREpathwayasapotentialpreventiveandtherapeutictarget:anupdate.MedResRev.2016;36(5):924–63.CAS  PubMed  GoogleScholar  AshrafizadehM,AhmadiZ,SamarghandianS,MohammadinejadR,YaribeygiH,SathyapalanT,etal.MicroRNA-mediatedregulationofNrf2signalingpathway:implicationsindiseasetherapyandprotectionagainstoxidativestress.LifeSci.2020;244:117329.CAS  PubMed  GoogleScholar  YangM,YaoY,EadesG,ZhangY,ZhouQ.MiR-28regulatesNrf2expressionthroughaKeap1-independentmechanism.BreastCancerResTreat.2011;129(3):983–91.CAS  PubMed  PubMedCentral  GoogleScholar  YamamotoS,InoueJ,KawanoT,KozakiK,OmuraK,InazawaJ.TheimpactofmiRNA-basedmoleculardiagnosticsandtreatmentofNRF2-stabilizedtumors.MolCancerRes.2014;12(1):58–68.CAS  PubMed  GoogleScholar  YinY,LiuH,XuJ,ShiD,ZhaiL,LiuB,etal.miR1443pregulatestheresistanceoflungcancertocisplatinbytargetingNrf2.OncolRep.2018;40(6):3479–88.CAS  PubMed  GoogleScholar  EadesG,YangM,YaoY,ZhangY,ZhouQ.miR-200aregulatesNrf2activationbytargetingKeap1mRNAinbreastcancercells.JBiolChem.2011;286(47):40725–33.CAS  PubMed  PubMedCentral  GoogleScholar  ChenYF,WeiYY,YangCC,LiuCJ,YehLY,ChouCH,etal.miR-125bsuppressesoraloncogenicitybytargetingtheanti-oxidativegenePRXL2A.RedoxBiol.2019;22:101140.CAS  PubMed  PubMedCentral  GoogleScholar  ChenC,JiangX,GuS,ZhangZ.MicroRNA-155regulatesarsenite-inducedmalignanttransformationbytargetingNrf2-mediatedoxidativedamageinhumanbronchialepithelialcells.ToxicolLett.2017;278:38–47.CAS  PubMed  GoogleScholar  DoMT,KimHG,ChoiJH,JeongHG.MetformininducesmicroRNA-34atodownregulatetheSirt1/Pgc-1alpha/Nrf2pathway,leadingtoincreasedsusceptibilityofwild-typep53cancercellstooxidativestressandtherapeuticagents.FreeRadicBiolMed.2014;74:21–34.PubMed  GoogleScholar  ZhangL,HanY,JiangQ,WangC,ChenX,LiX,etal.Trendofhistonedeacetylaseinhibitorsincancertherapy:isoformselectivityormultitargetedstrategy.MedResRev.2015;35(1):63–84.PubMed  GoogleScholar  SunW,YiY,XiaG,ZhaoY,YuY,LiL,etal.Nrf2-miR-129-3p-mTORAxiscontrolsanmiRNAregulatorynetworkinvolvedinHDACi-inducedautophagy.MolTher.2019;27(5):1039–50.CAS  PubMed  PubMedCentral  GoogleScholar  KongY,HuL,LuK,WangY,XieY,GaoL,etal.FerroportindownregulationpromotescellproliferationbymodulatingtheNrf2-miR-17-5paxisinmultiplemyeloma.CellDeathDis.2019;10(9):624.PubMed  PubMedCentral  GoogleScholar  ZhengZG,XuH,SuoSS,XuXL,NiMW,GuLH,etal.TheessentialroleofH19contributingtocisplatinresistancebyregulatingglutathionemetabolisminhigh-gradeserousovariancancer.SciRep.2016;6:26093.CAS  PubMed  PubMedCentral  GoogleScholar  ThaiP,StattS,ChenCH,LiangE,CampbellC,WuR.CharacterizationofanovellongnoncodingRNA,SCAL1,inducedbycigarettesmokeandelevatedinlungcancercelllines.AmJRespirCellMolBiol.2013;49(2):204–11.CAS  PubMed  PubMedCentral  GoogleScholar  ShiL,ChenZG,WuLL,ZhengJJ,YangJR,ChenXF,etal.miR-340reversescisplatinresistanceofhepatocellularcarcinomacelllinesbytargetingNrf2-dependentantioxidantpathway.AsianPacJCancerPrev.2014;15(23):10439–44.PubMed  GoogleScholar  WuLL,CaiWP,LeiX,ShiKQ,LinXY,ShiL.NRALmediatescisplatinresistanceinhepatocellularcarcinomaviamiR-340-5p/Nrf2axis.JCellCommunSignal.2019;13(1):99–112.PubMed  GoogleScholar  SunZ,HuangG,ChengH.TranscriptionfactorNrf2inducestheup-regulationoflncRNATUG1topromoteprogressionandadriamycinresistanceinurothelialcarcinomaofthebladder.CancerManagRes.2019;11:6079–90.CAS  PubMed  PubMedCentral  GoogleScholar  ZhangZ,XiongR,LiC,XuM,GuoM.LncRNATUG1promotescisplatinresistanceinesophagealsquamouscellcarcinomacellsbyregulatingNrf2.ActaBiochimBiophysSinShanghai.2019;51(8):826–33.PubMed  GoogleScholar  WuL,PanC,WeiX,ShiY,ZhengJ,LinX,etal.lncRNAKRALreverses5-fluorouracilresistanceinhepatocellularcarcinomacellsbyactingasaceRNAagainstmiR-141.CellCommunSignal.2018;16(1):47.PubMed  PubMedCentral  GoogleScholar  LiuJ,YaoL,ZhangM,JiangJ,YangM,WangY.DownregulationofLncRNA-XISTinhibiteddevelopmentofnon-smallcelllungcancerbyactivatingmiR-335/SOD2/ROSsignalpathwaymediatedpyroptoticcelldeath.Aging.2019;11(18):7830–46.CAS  PubMed  PubMedCentral  GoogleScholar  AillesLE,WeissmanIL.Cancerstemcellsinsolidtumors.CurrOpinBiotechnol.2007;18(5):460–6.CAS  PubMed  GoogleScholar  Castro-OropezaR,Melendez-ZajglaJ,MaldonadoV,Vazquez-SantillanK.TheemergingroleoflncRNAsintheregulationofcancerstemcells.CellOncol(Dordr).2018;41(6):585–603. GoogleScholar  JuHQ,LuYX,ChenDL,TianT,MoHY,WeiXL,etal.Redoxregulationofstem-likecellsthoughtheCD44v-xCTAxisincolorectalcancer:mechanismsandtherapeuticimplications.Theranostics.2016;6(8):1160–75.CAS  PubMed  PubMedCentral  GoogleScholar  YangW,ShenY,WeiJ,LiuF.MicroRNA-153/Nrf-2/GPx1pathwayregulatesradiosensitivityandstemnessofgliomastemcellsviareactiveoxygenspecies.Oncotarget.2015;6(26):22006–27.PubMed  PubMedCentral  GoogleScholar  VenkataramanS,AlimovaI,FanR,HarrisP,ForemanN,VibhakarR.MicroRNA128aincreasesintracellularROSlevelbytargetingBmi-1andinhibitsmedulloblastomacancercellgrowthbypromotingsenescence.PLoSOne.2010;5(6):e10748.PubMed  PubMedCentral  GoogleScholar  SunX,LiY,ZhengM,ZuoW,ZhengW.MicroRNA-223increasesthesensitivityoftriple-negativebreastcancerstemcellstoTRAIL-inducedapoptosisbytargetingHAX-1.PLoSOne.2016;11(9):e0162754.PubMed  PubMedCentral  GoogleScholar  LiuJ,TangQ,LiS,YangX.InhibitionofHAX-1bymiR-125areversescisplatinresistanceinlaryngealcancerstemcells.Oncotarget.2016;7(52):86446–56.PubMed  PubMedCentral  GoogleScholar  DingK,LiaoY,GongD,ZhaoX,JiW.Effectoflongnon-codingRNAH19onoxidativestressandchemotherapyresistanceofCD133+cancerstemcellsviatheMAPK/ERKsignalingpathwayinhepatocellularcarcinoma.BiochemBiophysResCommun.2018;502(2):194–201.CAS  PubMed  GoogleScholar  LevyJMM,TowersCG,ThorburnA.Targetingautophagyincancer.NatRevCancer.2017;17(9):528–42.CAS  PubMed  GoogleScholar  ChatterjeeA,ChattopadhyayD,ChakrabartiG.miR-17-5pdownregulationcontributestopaclitaxelresistanceoflungcancercellsthroughalteringbeclin1expression.PLoSOne.2014;9(4):e95716.PubMed  PubMedCentral  GoogleScholar  HarmalkarM,UpraityS,KaziS,ShirsatNV.Tamoxifen-inducedcelldeathofmalignantgliomacellsisbroughtaboutbyoxidative-stress-mediatedalterationsintheexpressionofBCL2familymembersandisenhancedonmiR-21inhibition.JMolNeurosci.2015;57(2):197–202.CAS  PubMed  GoogleScholar  DengX,FengN,ZhengM,YeX,LinH,YuX,etal.PM2.5exposure-inducedautophagyismediatedbylncRNAloc146880whichalsopromotesthemigrationandinvasionoflungcancercells.BiochimBiophysActaGenSubj.2017;1861(2):112–25.CAS  PubMed  GoogleScholar  ShaoQ,WangQ,WangJ.LncRNASCAMP1regulatesZEB1/JUNandautophagytopromotepediatricrenalcellcarcinomaunderoxidativestressviamiR-429.BiomedPharmacother.2019;120:109460.CAS  PubMed  GoogleScholar  UedaS,TakanashiM,SudoK,KanekuraK,KurodaM.miR-27aameliorateschemoresistanceofbreastcancercellsbydisruptionofreactiveoxygenspecieshomeostasisandimpairmentofautophagy.LabInvestig.2020;100(6):863–73.CAS  PubMed  GoogleScholar  WangF,WuH,FanM,YuR,ZhangY,LiuJ,etal.SodiumbutyrateinhibitsmigrationandinducesAMPK-mTORpathway-dependentautophagyandROS-mediatedapoptosisviathemiR-139-5p/Bmi-1axisinhumanbladdercancercells.FASEBJ.2020;34(3):4266–82.CAS  PubMed  GoogleScholar  XuJ,HuangH,PengR,DingX,JiangB,YuanX,etal.MicroRNA-30aincreasesthechemosensitivityofU251glioblastomacellstotemozolomidebydirectlytargetingbeclin1andinhibitingautophagy.ExpTherMed.2018;15(6):4798–804.PubMed  PubMedCentral  GoogleScholar  WangK,JiangJ,LeiY,ZhouS,WeiY,HuangC.Targetingmetabolic-redoxcircuitsforcancertherapy.TrendsBiochemSci.2019;44(5):401–14.CAS  PubMed  GoogleScholar  LibertiMV,LocasaleJW.TheWarburgeffect:howdoesitbenefitcancercells?TrendsBiochemSci.2016;41(3):211–8.CAS  PubMed  PubMedCentral  GoogleScholar  SabharwalSS,SchumackerPT.MitochondrialROSincancer:initiators,amplifiersoranAchilles’heel?NatRevCancer.2014;14(11):709–21.CAS  PubMed  PubMedCentral  GoogleScholar  XiaoW,WangRS,HandyDE,LoscalzoJ.NAD(H)andNADP(H)redoxcouplesandcellularenergymetabolism.AntioxidRedoxSignal.2018;28(3):251–72.CAS  PubMed  PubMedCentral  GoogleScholar  YangY,IshakGabraMB,HanseEA,LowmanXH,TranTQ,LiH,etal.MiR-135suppressesglycolysisandpromotespancreaticcancercelladaptationtometabolicstressbytargetingphosphofructokinase-1.NatCommun.2019;10(1):809.CAS  PubMed  PubMedCentral  GoogleScholar  HeZ,LiZ,ZhangX,YinK,WangW,XuZ,etal.MiR-422aregulatescellularmetabolismandmalignancybytargetingpyruvatedehydrogenasekinase2ingastriccancer.CellDeathDis.2018;9(5):505.PubMed  PubMedCentral  GoogleScholar  DruzA,BetenbaughM,ShiloachJ.Glucosedepletionactivatesmmu-miR-466h-5pexpressionthroughoxidativestressandinhibitionofhistonedeacetylation.NucleicAcidsRes.2012;40(15):7291–302.CAS  PubMed  PubMedCentral  GoogleScholar  LeeS,HallisSP,JungKA,RyuD,KwakMK.ImpairmentofHIF-1alpha-mediatedmetabolicadaptionbyNRF2-silencinginbreastcancercells.RedoxBiol.2019;24:101210.CAS  PubMed  PubMedCentral  GoogleScholar  TaniguchiK,SakaiM,SugitoN,KumazakiM,ShinoharaH,YamadaN,etal.PTBP1-associatedmicroRNA-1and-133bsuppresstheWarburgeffectincolorectaltumors.Oncotarget.2016;7(14):18940–52.PubMed  PubMedCentral  GoogleScholar  SinghA,HappelC,MannaSK,Acquaah-MensahG,CarrereroJ,KumarS,etal.TranscriptionfactorNRF2regulatesmiR-1andmiR-206todrivetumorigenesis.JClinInvest.2013;123(7):2921–34.CAS  PubMed  PubMedCentral  GoogleScholar  ZhouS,MinZ,SunK,QuS,ZhouJ,DuanH,etal.miR199a3p/Sp1/LDHAaxiscontrolsaerobicglycolysisintesticulartumorcells.IntJMolMed.2018;42(4):2163–74.CAS  PubMed  GoogleScholar  TakaiT,TsujinoT,YoshikawaY,InamotoT,SugitoN,KuranagaY,etal.SyntheticmiR-143exhibitedananti-cancereffectviathedownregulationofK-RASnetworksofrenalcellcancercellsinvitroandinvivo.MolTher.2019;27(5):1017–27.CAS  PubMed  PubMedCentral  GoogleScholar  TangH,LeeM,SharpeO,SalamoneL,NoonanEJ,HoangCD,etal.Oxidativestress-responsivemicroRNA-320regulatesglycolysisindiversebiologicalsystems.FASEBJ.2012;26(11):4710–21.CAS  PubMed  PubMedCentral  GoogleScholar  LiW,HaoJ,ZhangL,ChengZ,DengX,ShuG.Astragalinreduceshexokinase2throughincreasingmiR-125btoinhibittheproliferationofhepatocellularcarcinomacellsinvitroandinvivo.JAgricFoodChem.2017;65(29):5961–72.CAS  PubMed  GoogleScholar  LiG,LiM,HuJ,LeiR,XiongH,JiH,etal.ThemicroRNA-182-PDK4axisregulateslungtumorigenesisbymodulatingpyruvatedehydrogenaseandlipogenesis.Oncogene.2017;36(7):989–98.CAS  PubMed  GoogleScholar  SerguienkoA,GradI,WennerstromAB,Meza-ZepedaLA,ThiedeB,StratfordEW,etal.Metabolicreprogrammingofmetastaticbreastcancerandmelanomabylet-7amicroRNA.Oncotarget.2015;6(4):2451–65.PubMed  GoogleScholar  XiangS,GuH,JinL,ThorneRF,ZhangXD,WuM.LncRNAIDH1-AS1linksthefunctionsofc-MycandHIF1alphaviaIDH1toregulatetheWarburgeffect.ProcNatlAcadSciUSA.2018;115(7):E1465–E74.CAS  PubMed  PubMedCentral  GoogleScholar  HungCL,WangLY,YuYL,ChenHW,SrivastavaS,PetrovicsG,etal.AlongnoncodingRNAconnectsc-Myctotumormetabolism.ProcNatlAcadSciUSA.2014;111(52):18697–702.CAS  PubMed  PubMedCentral  GoogleScholar  LiHJ,LiX,PangH,PanJJ,XieXJ,ChenW.Longnon-codingRNAUCA1promotesglutaminemetabolismbytargetingmiR-16inhumanbladdercancer.JpnJClinOncol.2015;45(11):1055–63.CAS  PubMed  GoogleScholar  WangJ,WangB,RenH,ChenW.miR-9-5pinhibitspancreaticcancercellproliferation,invasionandglutaminemetabolismbytargetingGOT1.BiochemBiophysResCommun.2019;509(1):241–8.CAS  PubMed  GoogleScholar  AndertonB,CamardaR,BalakrishnanS,BalakrishnanA,KohnzRA,LimL,etal.MYC-driveninhibitionoftheglutamate-cysteineligasepromotesglutathionedepletioninlivercancer.EMBORep.2017;18(4):569–85.CAS  PubMed  PubMedCentral  GoogleScholar  LuoM,WuL,ZhangK,WangH,ZhangT,GutierrezL,etal.miR-137regulatesferroptosisbytargetingglutaminetransporterSLC1A5inmelanoma.CellDeathDiffer.2018;25(8):1457–72.CAS  PubMed  PubMedCentral  GoogleScholar  NiuY,ZhangJ,TongY,LiJ,LiuB.Physcion8-O-beta-glucopyranosideinducedferroptosisviaregulatingmiR-103a-3p/GLS2axisingastriccancer.LifeSci.2019;237:116893.PubMed  GoogleScholar  WangW,ZhangE,LinC.MicroRNAsintumorangiogenesis.LifeSci.2015;136:28–35.CAS  PubMed  GoogleScholar  ShengSR,WuJS,TangYL,LiangXH.LongnoncodingRNAs:emergingregulatorsoftumorangiogenesis.FutureOncol.2017;13(17):1551–62.CAS  PubMed  GoogleScholar  GoradelNH,MohammadiN,Haghi-AminjanH,FarhoodB,NegahdariB,SahebkarA.RegulationoftumorangiogenesisbymicroRNAs:stateoftheart.JCellPhysiol.2019;234(2):1099–110.CAS  PubMed  GoogleScholar  Salinas-VeraYM,MarchatLA,Gallardo-RinconD,Ruiz-GarciaE.Astudillo-DeLaVegaH,Echavarria-ZepedaRetal.AngiomiRs:MicroRNAsdrivingangiogenesisincancer(review).IntJMolMed.2019;43(2):657–70.CAS  PubMed  GoogleScholar  SkrzypekK,TertilM,GoldaS,CieslaM,WeglarczykK,ColletG,etal.Interplaybetweenhemeoxygenase-1andmiR-378affectsnon-smallcelllungcarcinomagrowth,vascularization,andmetastasis.AntioxidRedoxSignal.2013;19(7):644–60.CAS  PubMed  PubMedCentral  GoogleScholar  LiH,YangBB.StressresponseofglioblastomacellsmediatedbymiR-17-5ptargetingPTENandthepassengerstrandmiR-17-3ptargetingMDM2.Oncotarget.2012;3(12):1653–68.PubMed  PubMedCentral  GoogleScholar  ShiH,BiH,SunX,DongH,JiangY,MuH,etal.Tubeimoside-1inhibitstheproliferationandmetastasisbypromotingmiR-126-5pexpressioninnon-smallcelllungcancercells.OncolLett.2018;16(3):3126–34.PubMed  PubMedCentral  GoogleScholar  ZhangX,NgWL,WangP,TianL,WernerE,WangH,etal.MicroRNA-21modulatesthelevelsofreactiveoxygenspeciesbytargetingSOD3andTNFalpha.CancerRes.2012;72(18):4707–13.CAS  PubMed  PubMedCentral  GoogleScholar  WangW,RenF,WuQ,JiangD,LiH,ShiH.MicroRNA-497suppressesangiogenesisbytargetingvascularendothelialgrowthfactorathroughthePI3K/AKTandMAPK/ERKpathwaysinovariancancer.OncolRep.2014;32(5):2127–33.CAS  PubMed  GoogleScholar  ZhangY,WangX,XuB,WangB,WangZ,LiangY,etal.EpigeneticsilencingofmiR-126contributestotumorinvasionandangiogenesisincolorectalcancer.OncolRep.2013;30(4):1976–84.CAS  PubMed  GoogleScholar  ZhouB,MaR,SiW,LiS,XuY,TuX,etal.MicroRNA-503targetsFGF2andVEGFAandinhibitstumorangiogenesisandgrowth.CancerLett.2013;333(2):159–69.CAS  PubMed  GoogleScholar  Espinosa-DiezC,WilsonR,ChatterjeeN,HudsonC,RuhlR,HipfingerC,etal.MicroRNAregulationoftheMRNcompleximpactsDNAdamage,cellularsenescence,andangiogenicsignaling.CellDeathDis.2018;9(6):632.PubMed  PubMedCentral  GoogleScholar  LiuZZ,TianYF,WuH,OuyangSY,KuangWL.LncRNAH19promotesgliomaangiogenesisthroughmiR-138/HIF-1alpha/VEGFaxis.Neoplasma.2020;67(1):111–8.CAS  PubMed  GoogleScholar  HouZH,XuXW,FuXY,ZhouLD,LiuSP,TanDM.Longnon-codingRNAMALAT1promotesangiogenesisandimmunosuppressivepropertiesofHCCcellsbyspongingmiR-140.AmJPhysCellPhys.2020;318(3):C649–C63. GoogleScholar  PezzutoA,CaricoE.RoleofHIF-1incancerprogression:novelinsights.AReviewCurrMolMed.2018;18(6):343–51.CAS  PubMed  GoogleScholar  LeeG,WonHS,LeeYM,ChoiJW,OhTI,JangJH,etal.OxidativedimerizationofPHD2isresponsibleforitsinactivationandcontributestometabolicreprogrammingviaHIF-1alphaactivation.SciRep.2016;6:18928.CAS  PubMed  PubMedCentral  GoogleScholar  WangH,BianS,YangCS.GreenteapolyphenolEGCGsuppresseslungcancercellgrowththroughupregulatingmiR-210expressioncausedbystabilizingHIF-1alpha.Carcinogenesis.2011;32(12):1881–9.CAS  PubMed  PubMedCentral  GoogleScholar  HeC,WangL,ZhangJ,XuH.Hypoxia-induciblemicroRNA-224promotesthecellgrowth,migrationandinvasionbydirectlytargetingRASSF8ingastriccancer.MolCancer.2017;16(1):35.PubMed  PubMedCentral  GoogleScholar  LiH,RokavecM,JiangL,HorstD,HermekingH.Antagonisticeffectsofp53andHIF1AonmicroRNA-34aregulationofPPP1R11andSTAT3andhypoxia-inducedepithelialtomesenchymaltransitionincolorectalcancercells.Gastroenterology.2017;153(2):505–20.CAS  PubMed  GoogleScholar  BhanA,DebP,ShihabeddinN,AnsariKI,BrottoM,MandalSS.HistonemethylaseMLL1coordinateswithHIFandregulatelncRNAHOTAIRexpressionunderhypoxia.Gene.2017;629:16–28.CAS  PubMed  GoogleScholar  DengSJ,ChenHY,YeZ,DengSC,ZhuS,ZengZ,etal.Hypoxia-inducedLncRNA-BX111promotesmetastasisandprogressionofpancreaticcancerthroughregulatingZEB1transcription.Oncogene.2018;37(44):5811–28.CAS  PubMed  GoogleScholar  PengX,GaoH,XuR,WangH,MeiJ,LiuC.TheinterplaybetweenHIF-1alphaandnoncodingRNAsincancer.JExpClinCancerRes.2020;39(1):27.CAS  PubMed  PubMedCentral  GoogleScholar  ChenD,DangBL,HuangJZ,ChenM,WuD,XuML,etal.MiR-373drivestheepithelial-to-mesenchymaltransitionandmetastasisviathemiR-373-TXNIP-HIF1alpha-TWISTsignalingaxisinbreastcancer.Oncotarget.2015;6(32):32701–12.CAS  PubMed  PubMedCentral  GoogleScholar  YangH,WuXL,WuKH,ZhangR,JuLL,JiY,etal.MicroRNA-497regulatescisplatinchemosensitivityofcervicalcancerbytargetingtransketolase.AmJCancerRes.2016;6(11):2690–9.CAS  PubMed  PubMedCentral  GoogleScholar  WuZ,CaiX,HuangC,XuJ,LiuA.miR-497suppressesangiogenesisinbreastcarcinomabytargetingHIF-1alpha.OncolRep.2016;35(3):1696–702.CAS  PubMed  GoogleScholar  LiuLZ,LiC,ChenQ,JingY,CarpenterR,JiangY,etal.MiR-21inducedangiogenesisthroughAKTandERKactivationandHIF-1alphaexpression.PLoSOne.2011;6(4):e19139.CAS  PubMed  PubMedCentral  GoogleScholar  WuF,GaoH,LiuK,GaoB,RenH,LiZ,etal.ThelncRNAZEB2-AS1isupregulatedingastriccancerandaffectscellproliferationandinvasionviamiR-143-5p/HIF-1alphaaxis.OncoTargetsTher.2019;12:657–67.CAS  PubMed  PubMedCentral  GoogleScholar  LiW,HeX,XueR,ZhangY,ZhangX,LuJ,etal.Combinedover-expressionofthehypoxia-induciblefactor2alphageneanditslongnon-codingRNApredictsunfavorableprognosisofpatientswithosteosarcoma.PatholResPract.2016;212(10):861–6.CAS  PubMed  GoogleScholar  YaoJ,LiJ,GengP,LiY,ChenH,ZhuY.KnockdownofaHIF-2alphapromoterupstreamlongnoncodingRNAimpairscolorectalcancerstemcellpropertiesinvitrothroughHIF-2alphadownregulation.OncoTargetsTher.2015;8:3467–74.PubMed  PubMedCentral  GoogleScholar  ShihJW,ChiangWF,WuATH,WuMH,WangLY,YuYL,etal.LongnoncodingRNALncHIFCAR/MIR31HGisaHIF-1alphaco-activatordrivingoralcancerprogression.NatCommun.2017;8:15874.CAS  PubMed  PubMedCentral  GoogleScholar  MurataM.Inflammationandcancer.EnvironHealthPrevMed.2018;23(1):50.PubMed  PubMedCentral  GoogleScholar  JosseC,BoursV.MicroRNAsandinflammationincolorectalcancer.AdvExpMedBiol.2016;937:53–69.CAS  PubMed  GoogleScholar  HoeselB,SchmidJA.ThecomplexityofNF-kappaBsignalingininflammationandcancer.MolCancer.2013;12:86.CAS  PubMed  PubMedCentral  GoogleScholar  DisisML.Immuneregulationofcancer.JClinOncol.2010;28(29):4531–8.CAS  PubMed  PubMedCentral  GoogleScholar  Binker-CosenMJ,RichardsD,OliverB,GaisanoHY,BinkerMG,Cosen-BinkerLI.PalmiticacidincreasesinvasivenessofpancreaticcancercellsAsPC-1throughTLR4/ROS/NF-kappaB/MMP-9signalingpathway.BiochemBiophysResCommun.2017;484(1):152–8.CAS  PubMed  GoogleScholar  LingM,LiY,XuY,PangY,ShenL,JiangR,etal.RegulationofmiRNA-21byreactiveoxygenspecies-activatedERK/NF-kappaBinarsenite-inducedcelltransformation.FreeRadicBiolMed.2012;52(9):1508–18.CAS  PubMed  GoogleScholar  HuHY,LiKP,WangXJ,LiuY,LuZG,DongRH,etal.Set9,NF-kappaB,andmicroRNA-21mediateberberine-inducedapoptosisofhumanmultiplemyelomacells.ActaPharmacolSin.2013;34(1):157–66.PubMed  GoogleScholar  IliopoulosD,HirschHA,StruhlK.AnepigeneticswitchinvolvingNF-kappaB,Lin28,Let-7MicroRNA,andIL6linksinflammationtocelltransformation.Cell.2009;139(4):693–706.CAS  PubMed  PubMedCentral  GoogleScholar  YinM,RenX,ZhangX,LuoY,WangG,HuangK,etal.SelectivekillingoflungcancercellsbymiRNA-506moleculethroughinhibitingNF-kappaBp65toevokereactiveoxygenspeciesgenerationandp53activation.Oncogene.2015;34(6):691–703.CAS  PubMed  GoogleScholar  JeffriesJ,ZhouW,HsuAY,DengQ.miRNA-223atthecrossroadsofinflammationandcancer.CancerLett.2019;451:136–41.CAS  PubMed  PubMedCentral  GoogleScholar  HuangG,LiuX,ZhaoX,ZhaoJ,HaoJ,RenJ,etal.MiR-9promotesmultiplemyelomaprogressionbyregulatingTRIM56/NF-kappaBpathway.CellBiolInt.2019;43(11):1223–33.CAS  PubMed  GoogleScholar  ZhangG,ChenL,KhanAA,LiB,GuB,LinF,etal.miRNA-124-3p/neuropilin-1(NRP-1)axisplaysanimportantroleinmediatingglioblastomagrowthandangiogenesis.IntJCancer.2018;143(3):635–44.CAS  PubMed  GoogleScholar  ZhaohuiW,YingliN,HongliL,HaijingW,XiaohuaZ,ChaoF,etal.AmentoflavoneinducesapoptosisandsuppressesglycolysisingliomacellsbytargetingmiR-124-3p.NeurosciLett.2018;686:1–9.CAS  PubMed  GoogleScholar  LiuF,ChengL,XuJ,GuoF,ChenW.miR-17-92functionsasanoncogeneandmodulatesNF-kappaBsignalingbytargetingTRAF3inMGC-803humangastriccancercells.IntJOncol.2018;53(5):2241–57.CAS  PubMed  GoogleScholar  YuH,LeeH,HerrmannA,BuettnerR,JoveR.RevisitingSTAT3signallingincancer:newandunexpectedbiologicalfunctions.NatRevCancer.2014;14(11):736–46.CAS  PubMed  GoogleScholar  LuY,YueX,CuiY,ZhangJ,WangK.MicroRNA-124suppressesgrowthofhumanhepatocellularcarcinomabytargetingSTAT3.BiochemBiophysResCommun.2013;441(4):873–9.CAS  PubMed  GoogleScholar  XuY,LaiY,WengH,TanL,LiY,ChenG,etal.MiR-124sensitizescisplatin-inducedcytotoxicityagainstCD133(+)hepatocellularcarcinomacellsbytargetingSIRT1/ROS/JNKpathway.Aging.2019;11(9):2551–64.CAS  PubMed  PubMedCentral  GoogleScholar  SunMD,ZhengYQ,WangLP,ZhaoHT,YangS.LongnoncodingRNAUCA1promotescellproliferation,migrationandinvasionofhumanleukemiacellsviaspongingmiR-126.EurRevMedPharmacolSci.2018;22(8):2233–45.PubMed  GoogleScholar  GuoH,LiuJ,BenQ,QuY,LiM,WangY,etal.Theaspirin-inducedlongnon-codingRNAOLA1P2blocksphosphorylatedSTAT3homodimerformation.GenomeBiol.2016;17:24.PubMed  PubMedCentral  GoogleScholar  LambertAW,PattabiramanDR,WeinbergRA.Emergingbiologicalprinciplesofmetastasis.Cell.2017;168(4):670–91.CAS  PubMed  PubMedCentral  GoogleScholar  ObenaufAC,MassagueJ.Survivingatadistance:organ-specificmetastasis.Trendsincancer.2015;1(1):76–91.PubMed  PubMedCentral  GoogleScholar  WangY,ShiJ,ChaiK,YingX,ZhouBP.TheroleofsnailinEMTandtumorigenesis.CurrCancerDrugTargets.2013;13(9):963–72.CAS  PubMed  PubMedCentral  GoogleScholar  Serrano-GomezSJ,MaziveyiM,AlahariSK.Regulationofepithelial-mesenchymaltransitionthroughepigeneticandpost-translationalmodifications.MolCancer.2016;15:18.PubMed  PubMedCentral  GoogleScholar  TsengJC,ChenHF,WuKJ.Atwisttaleofcancermetastasisandtumorangiogenesis.HistolHistopathol.2015;30(11):1283–94.CAS  PubMed  GoogleScholar  JiangWG,SandersAJ,KatohM,UngefrorenH,GieselerF,PrinceM,etal.Tissueinvasionandmetastasis:molecular,biologicalandclinicalperspectives.SeminCancerBiol.2015;35(Suppl):S244–S75.PubMed  GoogleScholar  KessenbrockK,PlaksV,WerbZ.Matrixmetalloproteinases:regulatorsofthetumormicroenvironment.Cell.2010;141(1):52–67.CAS  PubMed  PubMedCentral  GoogleScholar  ColakS,TenDijkeP.TargetingTGF-betasignalingincancer.Trendsincancer.2017;3(1):56–71.CAS  PubMed  GoogleScholar  HaoY,BakerD,TenDijkeP.TGF-beta-mediatedepithelial-mesenchymaltransitionandcancermetastasis.IntJMolSci.2019;20(11):2767.CAS  PubMedCentral  GoogleScholar  XieF,LingL,vanDamH,ZhouF,ZhangL.TGF-betasignalingincancermetastasis.ActaBiochimBiophysSinShanghai.2018;50(1):121–32.CAS  PubMed  GoogleScholar  KozakJ,JonakK,MaciejewskiR.ThefunctionofmiR-200familyinoxidativestressresponseevokedincancerchemotherapyandradiotherapy.BiomedPharmacother.2020;125:110037.CAS  PubMed  GoogleScholar  GregoryPA,BertAG,PatersonEL,BarrySC,TsykinA,FarshidG,etal.ThemiR-200familyandmiR-205regulateepithelialtomesenchymaltransitionbytargetingZEB1andSIP1.NatCellBiol.2008;10(5):593–601.CAS  PubMed  GoogleScholar  SongL,LiuL,WuZ,LiY,YingZ,LinC,etal.TGF-betainducesmiR-182tosustainNF-kappaBactivationingliomasubsets.JClinInvest.2012;122(10):3563–78.CAS  PubMed  PubMedCentral  GoogleScholar  YuJ,LeiR,ZhuangX,LiX,LiG,LevS,etal.MicroRNA-182targetsSMAD7topotentiateTGFbeta-inducedepithelial-mesenchymaltransitionandmetastasisofcancercells.NatCommun.2016;7:13884.CAS  PubMed  PubMedCentral  GoogleScholar  KongW,YangH,HeL,ZhaoJJ,CoppolaD,DaltonWS,etal.MicroRNA-155isregulatedbythetransforminggrowthfactorbeta/SmadpathwayandcontributestoepithelialcellplasticitybytargetingRhoA.MolCellBiol.2008;28(22):6773–84.CAS  PubMed  PubMedCentral  GoogleScholar  YinK,YinW,WangY,ZhouL,LiuY,YangG,etal.MiR-206suppressesepithelialmesenchymaltransitionbytargetingTGF-betasignalinginestrogenreceptorpositivebreastcancercells.Oncotarget.2016;7(17):24537–48.PubMed  PubMedCentral  GoogleScholar  RossiC,ZiniR,RontauroliS,RubertiS,PrudenteZ,BarbieriG,etal.RoleofTGF-beta1/miR-382-5p/SOD2axisintheinductionofoxidativestressinCD34+cellsfromprimarymyelofibrosis.MolOncol.2018;12(12):2102–23.CAS  PubMed  PubMedCentral  GoogleScholar  GuoY,LiP,BledsoeG,YangZR,ChaoL,ChaoJ.KallistatininhibitsTGF-beta-inducedendothelial-mesenchymaltransitionbydifferentialregulationofmicroRNA-21andeNOSexpression.ExpCellRes.2015;337(1):103–10.CAS  PubMed  PubMedCentral  GoogleScholar  JiangY,ChenX,TianW,YinX,WangJ,YangH.TheroleofTGF-beta1-miR-21-ROSpathwayinbystanderresponsesinducedbyirradiatednon-small-celllungcancercells.BrJCancer.2014;111(4):772–80.CAS  PubMed  PubMedCentral  GoogleScholar  KarkiK,HedrickE,KasiappanR,JinUH,SafeS.Piperlongumineinducesreactiveoxygenspecies(ROS)-dependentdownregulationofspecificityproteintranscriptionfactors.CancerPrevRes(Phila).2017;10(8):467–77.CAS  GoogleScholar  DeS,DasS,MukherjeeS,DasS,SenguptaBS.Establishmentoftwist-1andTGFBR2asdirecttargetsofmicroRNA-20ainmesenchymaltoepithelialtransitionofbreastcancercell-lineMDA-MB-231.ExpCellRes.2017;361(1):85–92.CAS  PubMed  GoogleScholar  TagschererKE,FasslA,SinkovicT,RichterJ,SchecherS,Macher-GoeppingerS,etal.MicroRNA-210inducesapoptosisincolorectalcancerviainductionofreactiveoxygen.CancerCellInt.2016;16:42.PubMed  PubMedCentral  GoogleScholar  DaiY,RenD,YangQ,CuiY,GuoW,LaiY,etal.TheTGF-betasignallingnegativeregulatorPICK1repressesprostatecancermetastasistobone.BrJCancer.2017;117(5):685–94.CAS  PubMed  PubMedCentral  GoogleScholar  CaiN,HuL,XieY,GaoJH,ZhaiW,WangL,etal.MiR-17-5ppromotescervicalcancercellproliferationandmetastasisbytargetingtransforminggrowthfactor-betareceptor2.EurRevMedPharmacolSci.2018;22(7):1899–906.CAS  PubMed  GoogleScholar  JinW,ChenF,WangK,SongY,FeiX,WuB.miR-15a/miR-16clusterinhibitsinvasionofprostatecancercellsbysuppressingTGF-betasignalingpathway.BiomedPharmacother.2018;104:637–44.CAS  PubMed  GoogleScholar  PajicM,FroioD,DalyS,DocularaL,MillarE,GrahamPH,etal.miR-139-5pmodulatesradiotherapyresistanceinbreastcancerbyrepressingmultiplegenenetworksofDNArepairandROSdefense.CancerRes.2018;78(2):501–15.CAS  PubMed  GoogleScholar  TuJ,ZhaoZ,XuM,LuX,ChangL,JiJ.NEAT1upregulatesTGF-beta1toinducehepatocellularcarcinomaprogressionbysponginghsa-mir-139-5p.JCellPhysiol.2018;233(11):8578–87.CAS  PubMed  GoogleScholar  WangY,WuC,ZhangC,LiZ,ZhuT,ChenJ,etal.TGF-beta-inducedSTAT3overexpressionpromoteshumanheadandnecksquamouscellcarcinomainvasionandmetastasisthroughmalat1/miR-30ainteractions.CancerLett.2018;436:52–62.CAS  PubMed  GoogleScholar  LiGY,WangW,SunJY,XinB,ZhangX,WangT,etal.Longnon-codingRNAsAC026904.1andUCA1:a“one-twopunch”forTGF-beta-inducedSNAI2activationandepithelial-mesenchymaltransitioninbreastcancer.Theranostics.2018;8(10):2846–61.CAS  PubMed  PubMedCentral  GoogleScholar  DuanFG,WangMF,CaoYB,DanL,LiRZ,FanXX,etal.MicroRNA-421conferspaclitaxelresistancebybindingtotheKEAP13'UTRandpredictspoorsurvivalinnon-smallcelllungcancer.CellDeathDis.2019;10(11):821.PubMed  PubMedCentral  GoogleScholar  ZhangW,ShiS,JiangJ,LiX,LuH,RenF.LncRNAMEG3inhibitscellepithelial-mesenchymaltransitionbyspongingmiR-421targetingE-cadherininbreastcancer.BiomedPharmacother.2017;91:312–9.CAS  PubMed  GoogleScholar  YehLY,LiuCJ,WongYK,ChangC,LinSC,ChangKW.miR-372inhibitsp62inheadandnecksquamouscellcarcinomainvitroandinvivo.Oncotarget.2015;6(8):6062–75.PubMed  PubMedCentral  GoogleScholar  WangH,WangG,GaoY,ZhaoC,LiX,ZhangF,etal.Lnc-SNHG1activatestheTGFBR2/SMAD3andRAB11A/Wnt/beta-cateninpathwaybyspongingMiR-302/372/373/520ininvasivepituitarytumors.CellPhysiolBiochem.2018;48(3):1291–303.CAS  PubMed  GoogleScholar  SunJ,CaiX,YungMM,ZhouW,LiJ,ZhangY,etal.miR-137mediatesthefunctionallinkbetweenc-MycandEZH2thatregulatescisplatinresistanceinovariancancer.Oncogene.2019;38(4):564–80.CAS  PubMed  GoogleScholar  WangX,ZhangG,ChengZ,DaiL,JiaL,JingX,etal.KnockdownofLncRNA-XISTsuppressesproliferationandTGF-beta1-inducedEMTinNSCLCthroughtheNotch-1pathwaybyregulationofmiR-137.GenetTestMolBiomarkers.2018;22(6):333–42.CAS  PubMed  GoogleScholar  YangG,ShenT,YiX,ZhangZ,TangC,WangL,etal.Crosstalkbetweenlongnon-codingRNAsandWnt/beta-cateninsignallingincancer.JCellMolMed.2018;22(4):2062–70.CAS  PubMed  PubMedCentral  GoogleScholar  AnastasJN,MoonRT.WNTsignallingpathwaysastherapeutictargetsincancer.NatRevCancer.2013;13(1):11–26.CAS  PubMed  GoogleScholar  HuXY,HouPF,LiTT,QuanHY,LiML,LinT,etal.TherolesofWnt/beta-cateninsignalingpathwayrelatedlncRNAsincancer.IntJBiolSci.2018;14(14):2003–11.CAS  PubMed  PubMedCentral  GoogleScholar  GuoJ,YangZ,YangX,LiT,LiuM,TangH.miR-346functionsasapro-survivalfactorunderERstressbyactivatingmitophagy.CancerLett.2018;413:69–81.CAS  PubMed  GoogleScholar  CuiY,SheK,TianD,ZhangP,XinX.miR-146ainhibitsproliferationandenhancesChemosensitivityinepithelialovariancancerviareductionofSOD2.OncolRes.2016;23(6):275–82.PubMed  GoogleScholar  HwangWL,JiangJK,YangSH,HuangTS,LanHY,TengHW,etal.MicroRNA-146adirectsthesymmetricdivisionofsnail-dominantcolorectalcancerstemcells.NatCellBiol.2014;16(3):268–80.CAS  PubMed  GoogleScholar  YuanSX,WangJ,YangF,TaoQF,ZhangJ,WangLL,etal.LongnoncodingRNADANCRincreasesstemnessfeaturesofhepatocellularcarcinomabyderepressionofCTNNB1.Hepatology.2016;63(2):499–511.CAS  PubMed  GoogleScholar  LiSZ,HuYY,ZhaoJ,ZhaoYB,SunJD,YangYF,etal.MicroRNA-34ainducesapoptosisinthehumangliomacellline,A172,throughenhancedROSproductionandNOX2expression.BiochemBiophysResCommun.2014;444(1):6–12.CAS  PubMed  GoogleScholar  YanX,ZhangD,WuW,WuS,QianJ,HaoY,etal.MesenchymalstemcellspromoteHepatocarcinogenesisvialncRNA-MUFinteractionwithANXA2andmiR-34a.CancerRes.2017;77(23):6704–16.CAS  PubMed  GoogleScholar  JajooS,MukherjeaD,KaurT,SheehanKE,ShethS,BorseV,etal.EssentialroleofNADPHoxidase-dependentreactiveoxygenspeciesgenerationinregulatingmicroRNA-21expressionandfunctioninprostatecancer.AntioxidRedoxSignal.2013;19(16):1863–76.CAS  PubMed  PubMedCentral  GoogleScholar  SeuxM,PeugetS,MonteroMP,SiretC,RigotV,ClercP,etal.TP53INP1decreasespancreaticcancercellmigrationbyregulatingSPARCexpression.Oncogene.2011;30(27):3049–61.CAS  PubMed  GoogleScholar  WangWT,YeH,WeiPP,HanBW,HeB,ChenZH,etal.LncRNAsH19andHULC,activatedbyoxidativestress,promotecellmigrationandinvasionincholangiocarcinomathroughaceRNAmanner.JHematolOncol.2016;9(1):117.CAS  PubMed  PubMedCentral  GoogleScholar  YuT,WangY,FanY,FangN,WangT,XuT,etal.CircRNAsincancermetabolism:areview.JHematolOncol.2019;12(1):90.PubMed  PubMedCentral  GoogleScholar  ZhangHD,JiangLH,SunDW,HouJC,JiZL.CircRNA:anoveltypeofbiomarkerforcancer.BreastCancer.2018;25(1):1–7.PubMed  GoogleScholar  MengS,ZhouH,FengZ,XuZ,TangY,LiP,etal.CircRNA:functionsandpropertiesofanovelpotentialbiomarkerforcancer.MolCancer.2017;16(1):94.PubMed  PubMedCentral  GoogleScholar  XianZY,HuB,WangT,CaiJL,ZengJY,ZouQ,etal.CircABCB10silencinginhibitsthecellferroptosisandapoptosisbyregulatingthemiR-326/CCL5axisinrectalcancer.Neoplasma.2020.ZhangHY,ZhangBW,ZhangZB,DengQJ.CircularRNATTBK2regulatescellproliferation,invasionandferroptosisviamiR-761/ITGB8axisinglioma.EurRevMedPharmacolSci.2020;24(5):2585–600.PubMed  GoogleScholar  XiaQ,DingT,ZhangG,LiZ,ZengL,ZhuY,etal.CircularRNAexpressionprofilingidentifiesprostatecancer-specificcircRNAsinprostatecancer.CellPhysiolBiochem.2018;50(5):1903–15.CAS  PubMed  GoogleScholar  DownloadreferencesAcknowledgementsThisworkwassupportedbygrantsfromtheNationalNaturalScienceFoundationofChina(81821002,81790251and81672381),GuangdongBasicandAppliedBasicResearchFoundation(2019B030302012),theNational973BasicResearchProgramofChina(2013CB911300),andScienceandTechnologyDepartmentofSichuanProvince(no.2018RZ0133). Consenttoparticipate Notapplicable. Codeavailability Notapplicable. FundingThisworkwassupportedbygrantsfromtheNationalNaturalScienceFoundationofChina(81821002,81790251and81672381),GuangdongBasicandAppliedBasicResearchFoundation(2019B030302012),theNational973BasicResearchProgramofChina(2013CB911300),andScienceandTechnologyDepartmentofSichuanProvince(no.2018RZ0133).AuthorinformationAuthornotesLiZhou,ZheZhangandZhaoHuangcontributedequallytothiswork.AffiliationsStateKeyLaboratoryofBiotherapyandCancerCenter,WestChinaHospital,andWestChinaSchoolofBasicSciences&ForensicMedicine,SichuanUniversity,andCollaborativeInnovationCenterforBiotherapy,Chengdu,610041,P.R.ChinaLiZhou, ZheZhang, ZhaoHuang & CanhuaHuangDepartmentofBiochemistryandMolecularBiology,MonashUniversity,Clayton,Victoria,3800,AustraliaEdouardNiceDepartmentofThoracicOncologyandDepartmentofRadiationOncology,CancerCenter,WestChinaHospital,SichuanUniversity,Chengdu,610041,P.R.ChinaBingwenZouSchoolofBasicMedicalSciences,ChengduUniversityofTraditionalChineseMedicine,Chengdu,611137,P.R.ChinaCanhuaHuangAuthorsLiZhouViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarZheZhangViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarZhaoHuangViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarEdouardNiceViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarBingwenZouViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarCanhuaHuangViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsCHandBWZconceivedthestructureofmanuscript.LZ,ZZandZHdraftedinitialmanuscript.ECNrevisedthemanuscript.Allauthorsreadandapprovedthefinalmanuscript.CorrespondingauthorsCorrespondenceto BingwenZouorCanhuaHuang.Ethicsdeclarations Ethicsapprovalandconsenttoparticipate Notapplicable. Consentforpublication AllauthorsgiveconsentforthepublicationofmanuscriptinMolecularBiomedicine. Competinginterests Theauthorsdeclarethattheyhavenocompetinginterests. AdditionalinformationPublisher’sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Rightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicence,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle'sCreativeCommonslicence,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle'sCreativeCommonslicenceandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicence,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleZhou,L.,Zhang,Z.,Huang,Z.etal.Revisitingcancerhallmarks:insightsfromtheinterplaybetweenoxidativestressandnon-codingRNAs. MolBiomed1,4(2020).https://doi.org/10.1186/s43556-020-00004-1DownloadcitationReceived:11June2020Accepted:21July2020Published:31August2020DOI:https://doi.org/10.1186/s43556-020-00004-1SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative KeywordsncRNAsOxidativestressROSCancerhallmarks DownloadPDF Advertisement



請為這篇文章評分?