Introduction of K-Map (Karnaugh Map) - GeeksforGeeks

文章推薦指數: 80 %
投票人數:10人

K-map can take two forms Sum of Product (SOP) and Product of Sum (POS) according to the need of problem. K-map is table like representation but ... Skiptocontent CoursesForWorkingProfessionalsLIVEDSALiveClassesSystemDesignJavaBackendDevelopmentFullStackLIVEExploreMoreSelf-PacedDSA-SelfPacedSDETheoryAllDevelopmentCoursesExploreMoreForStudentsLIVECompetitiveProgrammingGATELiveCourse2023DataScienceExploreMoreSelf-PacedDSA-SelfPacedCIPJAVA/Python/C++ExploreMoreSchoolCoursesSchoolGuidePythonProgrammingLearnToMakeAppsExploremoreAllCoursesTutorialsAlgorithmsAnalysisofAlgorithmsAsymptoticAnalysisWorst,AverageandBestCasesAsymptoticNotationsLittleoandlittleomeganotationsLowerandUpperBoundTheoryAnalysisofLoopsSolvingRecurrencesAmortizedAnalysisWhatdoes'SpaceComplexity'mean?Pseudo-polynomialAlgorithmsPolynomialTimeApproximationSchemeATimeComplexityQuestionSearchingAlgorithmsSortingAlgorithmsGraphAlgorithmsPatternSearchingGeometricAlgorithmsMathematicalBitwiseAlgorithmsRandomizedAlgorithmsGreedyAlgorithmsDynamicProgrammingDivideandConquerBacktrackingBranchandBoundAllAlgorithmsDataStructuresArraysLinkedListStackQueueBinaryTreeBinarySearchTreeHeapHashingGraphAdvancedDataStructureMatrixStringsAllDataStructuresInterviewCornerCompanyPreparationTopTopicsPracticeCompanyQuestionsInterviewExperiencesExperiencedInterviewsInternshipInterviewsCompetititveProgrammingDesignPatternsSystemDesignTutorialMultipleChoiceQuizzesLanguagesCC++JavaPythonC#JavaScriptjQuerySQLPHPScalaPerlGoLanguageHTMLCSSKotlinML&DataScienceMachineLearningDataScienceCSSubjectsMathematicsOperatingSystemDBMSComputerNetworksComputerOrganizationandArchitectureTheoryofComputationCompilerDesignDigitalLogicSoftwareEngineeringGATEGATEComputerScienceNotesLastMinuteNotesGATECSSolvedPapersGATECSOriginalPapersandOfficialKeysGATE2021DatesGATECS2021SyllabusImportantTopicsforGATECSWebTechnologiesHTMLCSSJavaScriptAngularJSReactJSNodeJSBootstrapjQueryPHPSoftwareDesignsSoftwareDesignPatternsSystemDesignTutorialSchoolLearningSchoolProgrammingMathematicsNumberSystemAlgebraTrigonometryStatisticsProbabilityGeometryMensurationCalculusMathsNotes(Class8-12)Class8NotesClass9NotesClass10NotesClass11NotesClass12NotesNCERTSolutionsClass8MathsSolutionClass9MathsSolutionClass10MathsSolutionClass11MathsSolutionClass12MathsSolutionRDSharmaSolutionsClass8MathsSolutionClass9MathsSolutionClass10MathsSolutionClass11MathsSolutionClass12MathsSolutionPhysicsNotes(Class8-11)Class8NotesClass9NotesClass10NotesClass11NotesChemistryNotesClass8NotesClass9NotesClass10NotesCSExams/PSUsISROISROCSOriginalPapersandOfficialKeysISROCSSolvedPapersISROCSSyllabusforScientist/EngineerExamUGCNETUGCNETCSNotesPaperIIUGCNETCSNotesPaperIIIUGCNETCSSolvedPapersStudentCampusAmbassadorProgramSchoolAmbassadorProgramProjectGeekoftheMonthCampusGeekoftheMonthPlacementCourseCompetititveProgrammingTestimonialsStudentChapterGeekontheTopInternshipCareersJobsApplyforJobsPostaJobHirewithUsKnowaboutJobathonJobathonPracticeAllDSAProblemsProblemoftheDayInterviewSeries:WeeklyContestsBi-WizardCoding:SchoolContestsContestsandEventsPracticeSDESheetCuratedDSAListsTop50ArrayProblemsTop50StringProblemsTop50TreeProblemsTop50GraphProblemsTop50DPProblems ComewritearticlesforusandgetfeaturedLearnandcodewiththebestindustryexpertsGetaccesstoad-freecontent,doubtassistanceandmore!ComeandfindyourdreamjobwithusGeeksDigestQuizzesGeeksCampusGblogArticlesIDECampusMantriHomeSavedVideosCoursesGBlogPuzzlesWhat'sNew? ChangeLanguage DataStructuresAlgorithmsInterviewPreparationTopic-wisePracticeC++JavaPythonCompetitiveProgrammingMachineLearningHTMLSDESheetPuzzlesGFGSchoolProjects RelatedArticles ▲RelatedArticlesIntroductionofBooleanAlgebraandLogicGatesDigitalElectronicsandLogicDesignTutorialsIntroductionofLogicGatesPropertiesofBooleanAlgebraMinimizationofBooleanFunctionsRepresentationofBooleanFunctionsCanonicalandStandardFormFunctionalCompletenessinDigitalLogicIntroductionofK-Map(KarnaughMap)VariousImplicantsinK-MapPDNFandPCNFinDiscreteMathematicsVariableEntrantMap(VEM)inDigitalLogicConsensusTheoreminDigitalLogicDifferencebetweencombinationalandsequentialcircuitCombinationalCircuitsHalfAdderinDigitalLogicFullAdderinDigitalLogicHalfSubtractorinDigitalLogicFullSubtractorinDigitalLogicHalfAdderandHalfSubtractorusingNANDNORgatesEncodersandDecodersinDigitalLogicEncoderinDigitalLogicBinaryDecoderinDigitalLogicCombinationalcircuitsusingDecoderMultiplexersinDigitalLogicCarryLook-AheadAdderParallelAdderandParallelSubtractorBCDAdderinDigitalLogicMagnitudeComparatorinDigitalLogicBCDto7SegmentDecoderProgrammableLogicArrayProgrammingArrayLogicClassificationandProgrammingofRead-OnlyMemory(ROM)SequentialCircuitsIntroductionofSequentialCircuitsFlip-floptypes,theirConversionandApplicationsSynchronousSequentialCircuitsinDigitalLogicCountersinDigitalLogicRingCounterinDigitalLogicn-bitJohnsonCounterinDigitalLogicRippleCounterinDigitalLogicDesigncounterforgivensequenceMaster-SlaveJKFlipFlopAsynchronousSequentialCircuitsShiftRegistersinDigitalLogicDesign101sequencedetector(Mealymachine)AmortizedanalysisforincrementincounterNumberRepresentationandComputerAirthmeticNumberSystemandBaseConversionsCodeConverters–BCD(8421)to/fromExcess-3CodeConverters–Binaryto/fromGrayCodeProgramforDecimaltoBinaryConversionProgramforBinaryToDecimalConversionProgramforDecimaltoOctalConversionProgramforOctaltoDecimalConversionProgramforHexadecimaltoDecimalComputerArithmetic|Set–1ComputerArithmetic|Set–2IntroductionofFloatingPointRepresentationDifferencebetween1’sComplementrepresentationand2’sComplementrepresentationTechniqueComputerOrganization|Booth’sAlgorithmRestoringDivisionAlgorithmForUnsignedIntegerNon-RestoringDivisionForUnsignedIntegerDLDGATEQuestionsDigitalLogic&NumberrepresentationNumberRepresentationIntroductionofBooleanAlgebraandLogicGatesDigitalElectronicsandLogicDesignTutorialsIntroductionofLogicGatesPropertiesofBooleanAlgebraMinimizationofBooleanFunctionsRepresentationofBooleanFunctionsCanonicalandStandardFormFunctionalCompletenessinDigitalLogicIntroductionofK-Map(KarnaughMap)VariousImplicantsinK-MapPDNFandPCNFinDiscreteMathematicsVariableEntrantMap(VEM)inDigitalLogicConsensusTheoreminDigitalLogicDifferencebetweencombinationalandsequentialcircuitCombinationalCircuitsHalfAdderinDigitalLogicFullAdderinDigitalLogicHalfSubtractorinDigitalLogicFullSubtractorinDigitalLogicHalfAdderandHalfSubtractorusingNANDNORgatesEncodersandDecodersinDigitalLogicEncoderinDigitalLogicBinaryDecoderinDigitalLogicCombinationalcircuitsusingDecoderMultiplexersinDigitalLogicCarryLook-AheadAdderParallelAdderandParallelSubtractorBCDAdderinDigitalLogicMagnitudeComparatorinDigitalLogicBCDto7SegmentDecoderProgrammableLogicArrayProgrammingArrayLogicClassificationandProgrammingofRead-OnlyMemory(ROM)SequentialCircuitsIntroductionofSequentialCircuitsFlip-floptypes,theirConversionandApplicationsSynchronousSequentialCircuitsinDigitalLogicCountersinDigitalLogicRingCounterinDigitalLogicn-bitJohnsonCounterinDigitalLogicRippleCounterinDigitalLogicDesigncounterforgivensequenceMaster-SlaveJKFlipFlopAsynchronousSequentialCircuitsShiftRegistersinDigitalLogicDesign101sequencedetector(Mealymachine)AmortizedanalysisforincrementincounterNumberRepresentationandComputerAirthmeticNumberSystemandBaseConversionsCodeConverters–BCD(8421)to/fromExcess-3CodeConverters–Binaryto/fromGrayCodeProgramforDecimaltoBinaryConversionProgramforBinaryToDecimalConversionProgramforDecimaltoOctalConversionProgramforOctaltoDecimalConversionProgramforHexadecimaltoDecimalComputerArithmetic|Set–1ComputerArithmetic|Set–2IntroductionofFloatingPointRepresentationDifferencebetween1’sComplementrepresentationand2’sComplementrepresentationTechniqueComputerOrganization|Booth’sAlgorithmRestoringDivisionAlgorithmForUnsignedIntegerNon-RestoringDivisionForUnsignedIntegerDLDGATEQuestionsDigitalLogic&NumberrepresentationNumberRepresentationIntroductionofK-Map(KarnaughMap)ViewDiscussion ImproveArticle SaveArticle LikeArticle DifficultyLevel: EasyLastUpdated: 15Jun,2022Inmanydigitalcircuitsandpracticalproblemsweneedtofindexpressionwithminimumvariables.WecanminimizeBooleanexpressionsof3,4variablesveryeasilyusingK-mapwithoutusinganyBooleanalgebratheorems.K-mapcantaketwoformsSumofProduct(SOP)andProductofSum(POS)accordingtotheneedofproblem.K-mapistablelikerepresentationbutitgivesmoreinformationthanTRUTHTABLE.WefillgridofK-mapwith0’sand1’sthensolveitbymakinggroups.StepstosolveexpressionusingK-map- SelectK-mapaccordingtothenumberofvariables.Identifymintermsormaxtermsasgiveninproblem.ForSOPput1’sinblocksofK-maprespectivetotheminterms(0’selsewhere).ForPOSput0’sinblocksofK-maprespectivetothemaxterms(1’selsewhere).Makerectangulargroupscontainingtotaltermsinpoweroftwolike2,4,8..(except1)andtrytocoverasmanyelementsasyoucaninonegroup.Fromthegroupsmadeinstep5findtheproducttermsandsumthemupforSOPform.SOPFORM:1.K-mapof3variables–K-mapSOPformfor3variablesZ=∑A,B,C(1,3,6,7) Fromredgroupwegetproductterm— A’C Fromgreengroupwegetproductterm— AB Summingtheseproductterms weget- Finalexpression(A’C+AB)  2.K-mapfor4variables–K-map4variableSOPformF(P,Q,R,S)=∑(0,2,5,7,8,10,13,15) Fromredgroupwegetproductterm— QS Fromgreengroupwegetproductterm— Q’S’ Summing theseproductterms weget- Finalexpression(QS+Q’S’)  POSFORM:1.K-mapof3variables–K-map3variablePOSformF(A,B,C)=π(0,3,6,7) Fromredgroupwefind terms A   B   Takingcomplementofthesetwo A'     B'   Nowsumupthem (A'+B') Frombrowngroupwefind terms B  C Takingcomplementofthesetwoterms B’ C’ Nowsumupthem (B’+C’) Fromyellowgroupwefindterms A'B'C’ Takingcomplementofthesetwo ABC Nowsumupthem (A+B+C) Wewilltakeproductofthesethreeterms:Finalexpression–(A'+B’)(B’+C’)(A+B+C) 2.K-mapof 4variables– K-map4variablePOSformF(A,B,C,D)=π(3,5,7,8,10,11,12,13)   Fromgreengroupwefind terms C’ D B Takingtheircomplementandsummingthem (C+D’+B’) Fromredgroupwefindterms C D A’ Takingtheircomplementandsummingthem (C’+D’+A) Fromblue groupwefind termsA C’ D’ Takingtheircomplementandsummingthem (A’+C+D) Frombrown groupwefind termsA B’ C Takingtheircomplementandsummingthem (A’+B+C’) Finallyweexpresstheseasproduct–(C+D’+B’).(C’+D’+A).(A’+C+D).(A’+B+C’) PITFALL– *AlwaysrememberPOS≠(SOP)’ *Thecorrectformis(POSofF)=(SOPofF’)’ QuizonK-MAP ThisarticleiscontributedbyAnujBhatam.Pleasewritecommentsifyoufindanythingincorrect,oryouwanttosharemoreinformationaboutthetopicdiscussedabove MyPersonalNotes arrow_drop_upSave LikePreviousFunctionalCompletenessinDigitalLogicNext VariousImplicantsinK-MapRecommendedArticlesPage:23,Apr1809,May1824,Dec1808,Mar1710,Apr2020,Apr2011,May2001,Jun2003,Jun2020,Sep2113,Oct1713,Oct17ArticleContributedBy:GeeksforGeeksVotefordifficultyCurrentdifficulty: EasyEasy Normal Medium Hard ExpertImprovedBy:pdabre18nitupandel001aayushi2402ArticleTags:DigitalElectronics&LogicDesignReportIssueWritingcodeincomment? Pleaseuseide.geeksforgeeks.org, generatelinkandsharethelinkhere. LoadCommentsWhat'sNewViewDetailsViewDetailsViewDetailsImproveyourCodingSkillswithPracticeTryIt! Weusecookiestoensureyouhavethebestbrowsingexperienceonourwebsite.Byusingoursite,you acknowledgethatyouhavereadandunderstoodour CookiePolicy& PrivacyPolicy GotIt! StartYourCodingJourneyNow!Login Register



請為這篇文章評分?