The systemic hallmarks of cancer

文章推薦指數: 80 %
投票人數:10人

Specifically, he and his team discovered that non-metastatic breast tumors may influence the endocrine and the immune systems of the hosts. jcmt Search OAEJournals SearchinallOAEJournals Advanced JournalofCancerMetastasisandTreatment Advanced HotKeywords BiomarkerDiscovery AutophagyandCancer BreastCancerMetastasis BrainMetastases GastricCancerMetastasis LungCancer GeneticHeterogeneity ColorectalCancer ProstateCancer CancerImmunotherapy CirculatingTumorCells NeuroendocrineTumors NavigationBar Menu jcmt Home About AbouttheJournal AimsandScope EditorialPolicies EditorialBoard JuniorEditorialBoard OrderOffprints News JournalHistory Partners ContactUs ForAuthors AuthorInstructions ArticleProcessingCharges EditorialProcess ManuscriptTemplates SubmitaManuscript ForReviewers PeerReviewGuidelines ReviewerAcknowledgments Articles SpecialIssues AllSpecialIssues OngoingSpecialIssues SpecialIssueEbooks SpecialIssueGuidelines Volumes Webinars AcceptedManuscripts AbouttheJournal EditorialPolicies APCs Articles EditorialProcess AllSpecialIssues News ContactUs SignIn Submit Top Home  Articles  ArticleJCancerMetastasisTreat 2020;6:29.10.20517/2394-4722.2020.63©TheAuthor(s)2020.OpenAccessReviewThesystemichallmarksofcancerViews: 14056 | Downloads: 2107 | Cited:  8DoruPaul MedicalOncology,WeillCornellMedicine,NewYork,NY10021,USA.CorrespondenceAddress:Dr.DoruPaul,MedicalOncology,WeillCornellMedicine,1305YorkAvenue12thFloor,NewYork,NY10021,USA.E-mail:[email protected]:14056 | Downloads:2107 | Cited:8 | Comments:0 | :7Received:19Jun2020|FirstDecision:17Jul2020|Revised:22Jul2020|Accepted:6Aug2020|Published:28Aug2020AcademicEditor:CiroIsidoro|CopyEditor:Cai-HongWang|ProductionEditor:JingYu©TheAuthor(s)2020.OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense(https://creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse,sharing,adaptation,distributionandreproductioninanymediumorformat,foranypurpose,evencommercially,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.AbstractCancerisnotjustalumpofcellsthatdivide,invade,andspreadrandomly,butratheramulti-layeredpreciselytunedprocessthatrequirestheparticipationofthewholeorganism.Thereisanurgentneedtozoom-outfromthecellularandthelocalstromalviewandbroadenourperspectivebyincludingthewholeorganismlevel.Geographicallyseparatedcancertissuescommunicatebetweenthemselves,formingasystemthatinteractswiththerestoftheorganismthroughcancerinducedsystemicpathogenicnetworks.Inthepresentpaper,Iintroducesixsystemichallmarksofcancerthatemergeasaresultoftheseinteractions.Ialsodescribeseveralpotentialtherapeuticapproachesthatcanbedevelopedusingthecancersystemconcept.Overall,Iarguethatthetumoricentricparadigmshouldbereplacedwithabroaderapproachthatbringsintofocusthe“cancerized”organism. KeywordsCancersystem,metastasis,cancerhallmarks,organism,tissue,systemofcancer,systemicnetworks,systembiologyIntroductionThecancersystemFromthesystemicbiologypointofview,organismsarecomplex,embedded,multi-layerednetworksofinteractions.Atthecellularlevel,thenetworksarecomprisedofgenes,metabolicintermediates,miRNAandsignalingmolecules(proteins,lipids,ions).Atthetissularlevel,thenetworksarecomprisedofinteractionsbetweendifferentcelltypesandbetweenthecellsandthesupportingstroma.Attheorganismiclevel,thenetworksarecomprisedofinteractionsbetweendifferentbodysystems(endocrine,nervous,immune,etc.).AsdescribedbytheseminalworkofDenisNoble[1-3]thesethreelevelsofnetworks(cellular,tissular,organismic)[Figure1]areco-dependentandthereisnopriviledgedlevelofcausation.Theyinteractandinfluenceeachother.Figure1.ThreelevelsoforganizationCancerisalsoamulti-layereddiseasewithmultiplecomplexnetworksofinteractionslocatedatdifferentlevels,(i.e.,cellular,tissular,organismic).Thefocusonthegenome,thecancercells,oreventhecancertissues,istoonarrowand,inordertobetterunderstandthecancerprocess,thereisanurgentneedtozoom-outandbroadenourperspectivebyincludingabroader,organismiclevel.Wedefineasystemasadynamicentityofseveralinteractingcomponentsthatareco-dependentandfunctioninanintegratedway.Asinglecell,anorgan,theentirehumanbodyareallsystems.Inthepresentpaper,Iwillfocusoncanceratthemacroscopiclevel.Macroscopically,experimentaldataaccumulatedovermorethanadecade,supportstheconceptofacancersystemformedbyseveralgeographicallyseparatedcancertissues(theprimarytumor,thelocalandthedistantmetastasis).Thecancersystemandthebodysystemsareco-dependentand,throughtheirinteraction,newcancerinducedpathologicsystemicnetworks(CISPN)appearandthewholeorganismis“cancerized”tosupportcancerdevelopment[Figure2].Figure2.ThecancersystemandthebodysystemsinteractleadingtonovelcancerinducedsystemicpathologicnetworksCancerasasystemicdiseaseOverthelastdecade,severalmodelsofcancerasasystemicdiseasehavebeenproposed[4-8].In2010,MikalaEgebladandhercollaboratorsintroducedthemodelofthetumorasanorganthatmayinfluencetheimmunity,themetabolismandthecoagulationstatusofthehost[4].Inapaperpublishedthesameyear,SandraMcAllisterandRobertWeinbergsuggestedthattumor-hostinteractionsextendwellbeyondthelocaltissuemicroenvironmentandintroducedthetumor“instigation”conceptinwhichprimarytumorsperturbnormalhostorgansandsupportthegrowthofmetastatictumorsatdistantanatomicsites[5].Theylistedseveralfactorssecretedbythetumorswithsystemiceffects:vascularendothelialgrowthfactor(VEGF),interleukin(IL)-6,IL-8,stromalcell-derivedfactor-1(SDF1),fibroblastgrowthfactor,growth-relatedoncogene-α(CXCL1),platelet-derivedgrowthfactor(PDGF),angiopoietins,transforminggrowthfactorβ(TGF-β),hepatocytegrowthfactor(HGF),angiogenin,leptin,sonichedgehoghomolog,regulateduponactivationnormalT-cellexpressed(CCL5),andosteopontin[5].Theyalsoproposedanoveltreatmentofmetastasesbyblockingtheiraccesstosupportingstromalcellsderivedfromthebonemarrow.Inasubsequentpublication,thesameauthors[7],refinedtheiroriginalmodelbringingadditionalsupporttothecomplementaryideathattumorscanbealsosignificantlyinfluencedbysystemicprocesses.In2014,aresearchteamfromAustria,introducedtheconceptoftumormacroenvironmentanddescribedmainlytheglobalmetabolicchangesthattumorsexertonthewholeorganism[6].ThissystemicperspectiveshouldnotbelimitedsolelytoclinicallystageIVcancers.Often,systemiceffectsappearalsowhenthetumorsarelocalizedand,inmanyinstances,metastasisispresentinasubclinicalformevenwhenthetumorappearslocalized.Thismaybethereasonwhyevenwhendetectedveryearly,asignificantproportionofcancersisincurable.Forexample,the5yearsurvivalofstageInon-smallcelllungcancerdiseaseisapproximately60%(AmericanCancerSocietyStatistics,2020).In2019,aneuroscientist,JeremyBorniger,publishedtwopapers[8,9]focusedonbrain-tumorinteractions,withspecialemphasisontheinteractionofsubcorticalneuralpopulationsandcancer.Specifically,heandhisteamdiscoveredthatnon-metastaticbreasttumorsmayinfluencetheendocrineandtheimmunesystemsofthehosts.Usingabreastcancermousemodel,theydemonstratedthatbyinhibitingthesignalingofthelateralhypothalamicorexin/hypocretinneurons,thesleepqualityandthemetabolicdysregulationsinducedbythetumorwereimproved[9].Wehavealsoproposedpreviouslytheneedforabroader,systemicperspectiveoncancerandintroducedbrieflytheideaofthecancersystem[10].Thenotionofthecancersystemalthoughcloselyrelatedtotheideaofthecancer-systemicdiseaseisdifferentinafundamentalway.Themeaningoftheword“systemic”refersto“affectingthebodygenerally”.Metastaticand,sometimes,localizedcancers,influencethewholeorganismandthereforetheyareclassifiedassystemicdiseases.Ontheotherhand,macroscopically,cancerbehaveslikeasortofanorganismwithinanorganismandmetastasisappearsasafinelyorchestratedprocess.Theconceptofacancersystemtriestocapturepreciselythisdeterministicbehavior.CancerasadevelopmentaldiseaseTheideathatcancerrepresentsanembryonaldevelopmentalprogramgonehaywirehasbeenaroundformorethanfourdecades[11,12].Asshownbyarecentreview[13]therearesometissularandorganismicgenesthatmayplayarolebothinembryogenesisandcancer.Itisimportanttopointoutthatuntilapproximatelythreeweeksafterfertilization,theembryodoesnothaveafunctioningcirculatorysystem,and,therefore,thedevelopmentalprogramsinvolvedintheembyodevelopmentarelikelydifferentfromthatofthemetastaticprocess.Anotableexceptionistheneuralcrestmigrationwhereepithelial-to-mesenchymaltransitionplaysacriticalrole.Similartotheneuralcrestmigration[14],themetastaticprocessrepresentsatransformedcellularprogramthatonceactivatedleadstothedevelopmentofdisseminatedtumorsatdistancefromtheoriginalsite.Thefactthatthatthesamegenes(i.e.,thenuclearhormonereceptors,Hedgehog,Wnt,TGF-β,Notch)areinvolvedinthegenerationandmaintenanceofmulticellularity,and,theyarealsodysregulatedinstemcellsandmetastasis[15],suggestthestrikingideathatcancer,ingeneral,andthemetastaticprocess,inparticular,mayrepresenttheactivationofadevelopmentalprogramthatleadstothecreationofanovel,pervasive,multicellularentity.AspreviouslysuggestedbyMarkVincent,cancerappearstobemuchmorethanasimpledysregulatedgrowthandmayrepresentaformofmulticellularlife,withsymbioticproperties[16,17],thatestablishesacommensualrelationshipwiththeorganismwhereitdevelops.Inthisprocess,thewholeorganism,“cancerized”throughthedevelopmentofCISPN,aswewillargueinthispaper,farfrombeingapassivebystander,becomesanactiveenablerofcancerprogressionandspread.MetastasisasafinelyorchestrateddeterministicprocessAsopposedtotheapparitionofmalignanttumorsthatis,ingeneral,relatedtogeneticmutations,metastasisappearstobemainlyanepigeneticprocess.Inthe2011updatedversionoftheiroriginalhallmarksarticle[18],HannahanandWeinberg,notedthattheabilityofcancercellstoinvadeandmetastasizemaynotrequireadditionalgeneticmutationsinadditiontothosealreadypresentintheprimarytumors[19].Also,themajorityofthegenesproposedbyMassaguéandcollaboratorsmorethanadecadeago[20,21]intheirstepbystepmodelofmetastasisarenotmutated.Inaddition,Vogelsteinetal.[22]notedthatdespiteconsiderableeffort,specificgeneticalterationsthatdistinguishcancersthatmetastasizefromcancersthatdonotmetastasizehavenotbeenyetidentified.Theimmediateconclusion,drawnbytheVogelsteinteam[22],isthattherearenospecificmetastasisgenes.Thisopinionofmetastasisasarandom,nondeterministicprocesshasbeenchallengedfor130yearssincePagetaskedthefamousquestion:“Whatiswhatdecideswhatorganssufferfromdisseminatedcancer?”andlaunchedthe“seedandsoil”hypothesis[23].Bythelate70’s,metastasisstartedtobeunderstoodmoreandmoreastheresultofnon-randomtumor-hostinteractions[24],andthePaget’s“seedandsoil”hypothesishasbeenstronglysupportedbytheworkofFidlerandKripke[25]andPriceetal.[26].Arecentstudydescribedwidespreadepigeneticreprogrammingduringtheevolutionofdistantmetastasisofpancreaticcancerintheabsenceofmetastasis-specificdrivermutations[27].ThismanifestedasglobalreprogrammingofhistoneH3K9andDNAmethylationwithinlargeheterochromatindomains(LOCKs)aswellasregionalchangesingeneregulatorymodifications.Interestingly,theauthorsfoundthattheepigeneticchangeswerecontrolledbyananabolicglucosemetabolismenzyme6-phosphogluconatedehydrogenase(PGD).Glucosedeprivation,RNAinterference(RNAi)againstPGD,and,treatmentwith6-aminonicotinamide,reprogrammedthechromatinstateofthedistantmetastasis.Inaddition,cellstreatedwithRNAiagainstPGDdidnotformdistalmetastasis[27].Anotherrecentstudy[28],foundalsothatinprostatecancerthemasterregulatorgenesofmetastasisaregenesinvolvedinepigeneticregulation.Silencingaparticularhistonemethyltyransferasegene(NuclearreceptorbindingSETDomainprotein2,NSD2)invivoallografts,resultedinsignificantimprovementinsurvivalinthemicetreatedaswellasasignificantreductioninthemetastaticburdenwithoutanyeffectontheprimarytumorgrowth[28].Theseobservationssuggestadifferentviewofmetastasis.Theplethoraofgeneticabnormalitiespresentinestablishedmalignanttumorsmaynotbethemaindriverofmetastasis.Nogeneticmutationormutationshavebeenunequivocallyshowntobeassociatedwithprogressionfromlocalizedtometastaticdisease[29].Asshownbyseveralinvitroexperiments,epigeneticfactorspresentinsideandoutsidetumorcellsmaycontrolthemetastaticprocess.Thecytoplasmofhumanembryonicstemcellscanepigeneticallyreprogrammultipotentmetastaticmelanomacellsandmadethemtoassumeamelanocyte-likephenotype[30].AdamTelermanandRobertAmson,tworesearchersfromÉcoleNormaleSupérieurefromParis,France,whohavebeenmodelingtumorreversionformorethan20years,stated[31]thatthe“reversionprocessinvolvesareprogrammingmechanismusingepigeneticandprobablygenetictoolsthatwillsupersedethechangesincancerbyassemblingandtriggeringalternativewaysleadingtothesuppressionoftumorigenicity”.Someofthemetastasismasterregulatorsmaynotbeevenlocatedinsidethecancercell.TheworkofBissellandRadisky[32]andOrimoandWeinberg[33]demonstratedthecrucialroleofthetumorassociatedstromainpromotingtumormetastasis.Convincingly,arecentreview[34]illustratedhowhyaluronan,anintegratedcomponentoftheextracellularmatrix(ECM),maymodulateseveralkeyhallmarksofcancer:sustainingoftheproliferativesignaling,evasionofapoptosis,angiogenesis,activationofinvasionandmetastasis,reprogrammingofenergymetabolismandevasionoftheimmuneresponse.CancercellprogramsIfcancercellsswitchbackandforthbetweendifferentprograms,cancermayrepresentacontrollablecellularstatethatcanreroutedtoanon-neoplasticphenotype.Themodelofcancerasapotentiallyreversiblecellularprogram[35]complementsandrefinesthegeneticmodel.Ithasbeenpreviouslysuggestedthatmanyofthepropertiesassociatedwithinvasionandmetastasisdonotariseaspurelycellautonomousprocesses[36].Inmostofthecases,themetastaticprocessseemstobeduetoadaptationandnottoselectionofthecancercells[37].ItisthesecretionoffactorssuchasTGF-β,HGF,tumornecrosisfactor(TNF)-α,WntandPDGFbythesurroundingtumorstroma,and,theactivationinthetumorcellsofseveralmasterregulatorsofembryogenesis,suchasthetranscriptionfactorsTwist,Snail,Slug,Zeb1andZeb2,regardedastheepithelialtomesenchymaltransition(EMT)coreregulators,thatdrivemetastasis[13,29].TheseprocessesmaybemediatedbymiRNAs[38],thatcoordinatemultiplegenesatthesametime,soitwillbemoreappropriatetotalkintermsofvariouscellularprograms,i.e.,adivisionprogrampossiblycontrollingkeymitoticgenes[39],aninvasionprogrampossiblycontrollingkeyinvasiongenes[40,41],and,ametastaticprogram,possiblycontrollingkeyEMTgenes[13][Figure3].Themasterregulatorsoftheseprogramsmayormaynotpartiallyoverlap.Forexample,miR-21andmiR-222areinvolvedinuncontrolledproliferation,miR-130andmiR-126areinvolvedintumorangiogenesisandmiR-373andmiR-155areinvolvedbothininvasionandmetastasis[38].Theexistenceofspecificcellularprogramsactivatedduringthecancerprocess,suggeststhepossibilitythatthetransformationsinducedbycancerbothatthelevelofthetissuewhereitoriginallyappears,andatdistantsiteswheremetastasisareformed,arenotsimplerandomby-productsofmalignancybutrepresentawellorchestratedprocessoflocalandglobal“cancerization”.Inthispaper,Iarguethatthemetastaticphenotypeisinitiatedandmaintainedbynon-randomCISPNdevelopedattheorganismiclevel.TheemergenceoftheseCISPNmayresultmainlyfromthefinelyregulatedsecretionbythetumorsandtheirstromaofspecificexosomes[42,43].Exosomeshavebeeninvolvedinthecommunicationbetweentheprimarytumorandremotemetastaticsites[44]and,cancercell-derivedexosomescontainmiRNAsthatmayregulateallthesystemichallmarksofcancerdescribedbelow.InspiteofthepresenceofRNaseinblood,miRNAssurviveduetotheirpresenceinexosomes[45].Boththenatureoftheproteinsexpressedonthesurfaceofexosomesandtheexosomescargoarenon-randomasdemonstratedbytheworkofDavidLyden’slab[46,47].Recentlyhisteamanalyzedtheproteinexosomesfromplasmaofpatientswithfivecancertypes(breast,colorectal,lung,pancreatic,mesothelioma)andfoundthatincancerpatients,thecirculatingplasmaexosomesproteins,derivenotonlyfromthetumoritself,butalsofromthetumorenvironment,distantorgans(i.e.,liver)andtheimmunecells,thisdatasupportingthe“cancerized”organismmodel[43].Figure3.ThecancercellprogramsClinicalimplicationsofthemodelofcancerasamodifiedcellularprogramThedivision,invasionandmetastaticprogramsmaybeactivateddifferentlyandindifferentorderinvariouscancertypes,andthismayexplainthefactthatcancersarisingindifferenttissueshavedifferentpropensitytogrowlocally,toinvadethesurroundingstromaandtometastasize.ThismightberelatedtodistinctmodifiedcellularprogramspresentinCancerStemCells(CSCs).CSCsbydefinitionareasmallsubpopulationofcellswithintumorswithcapabilitiesofself-renewal,differentiation,andtumorigenicitywhentransplantedintoananimalhost.WhenwethinkofCSCwemainlythinkoftheirabilitytogrowandformcoloniesbutCSCspresentindifferenttissuesmaynotbethesamequalitatively,andeven,quantitatively[48].Itislikelythatduetothesedifferences,programsfordivision,invasionandmetastasisaredifferentlyactivatedindifferentCSCs.SomeCSCsmay“instigate”or“educate”thestromalcellsbysecretingsignalsthatinducechangesinthesecellsthatfacilitatelocalinvasionofthetumor[49].Otherdistinctpopulationofstemcells,socalledmigratingcancerstem(MCS)cells,mayberesponsibleformetastasisasproposedoriginallybyBrabletz[50].Recently,thispopulationoftumorcellswithMCSpropertieswasidentifiedinastudyconductedatMemorialSloanKetteringCancerInstitute(MSKCI)[51].Usingacolorectalcancermousemodel,theMSKCIinvestigatorsfoundtwodistinctpopulationofstemcells:anadenomaformingstemcellspopulationwithoncogenicmutationsandaL1CAMpositivetumor-propagatingmetastasis-initiatingstemcellswithoutoncogenicmutations[51].Apervasiveoncologydogmapostulatesthatcancerdevelopsinalinearwaybyinitiallygrowinglocally,thensubsequentlyinvadingthetissuewheretheyappearand,finally,ifgivenenoughtime,inthemajorityofcases,metastasize.Experimentaldataandclinicalpracticesuggestthatthisassumptionisincorrect.Somecancers,likebreastorprostate,forexample,sometimesbehaveasbenigntumorsthatdonotinvadelocallyormetastasizeand,maybe,thisiswhy,theglobal,indiscriminatelyscreeningprogramsforbreastandprostatecancers,mayleadtoovertreatmentofsomepatients.Anotherexampleissarcoma,whereroughly50%ofthesarcomametastasizeand50%donot[52].AsdemonstratedbytheworkofGaneshetal.[51],theclassicalstepbystepgeneticmodelofcolorectalcarcinogenesisofFearonandVogelstein[53]maynotapplytothemetastaticprocesswhodoesnotinvolveaspecificsetofmutatedgenes.Thedifferentactivationofdifferentcancercellsprogramsintumorsofdifferenttypesmightexplainthestrikingdifferenceinclinicalstagepresentationsofdifferentcancerlocations.Forexample,asmanyas55%ofsquamousheadandneckcancerpresentsasstage4mostfrequentlywithlymphnodesmetastasis[54],butonlyapproximately7%ofthyroidcancerspresentasstage4[55].Thepresenceofdistinctcellularprogramsincancermayalsosolvetheenigmaoftheexistenceofcarcinomasofunknownoriginwheretheprimarytumorisneverfound.Itisconceivablethatinmetastasisofcancersofunknownoriginthemetastaticprogramisactivatedbeforethedivisionandinvasiveprograms.ThesystemichallmarksofcancerThehallmarksofcancerdescribedbyHanahanandWeinbergintheirtwoarticles[18,19],refermainlytothecellularandtissularhallmarksofcancer.Morerecently[56],WelchandHurstproposedfourcancerhallmarksspecificallyassociatedwiththemetastaticprocess:motilityandinvasion,colonization,plasticityandmodulationbutthesefourhallmarksarepracticallyidenticalwiththesuccesivestepsofthemetastaticprocessdescribedmorethanadecadeagobyJoaoMassagué[20,21]andhiscollaborators.Inthispaper,wedescribesixnovelsystemiccancerhallmarks,thatappearasaresultoftheinteractionbetweencancerandtheorganismatthemacroscopiclevel.Thefirstsystemichallmarkisthecancersystemitselfestablishedthroughtheconnectionsbetweentheprimarytumor,thebonemarrowandthedistalmetastasis.Thefiveothersystemichallmarksareasfollowing:theglobalinflammation,theimmunityinhibition,themetabolicchangesleadingtocachexia,thepropensitytothrombosis,andtheneuro-endocrinechanges[Figure4].Figure4.SystemichallmarksofcancerEachofthesesixhallmarksisestablishedthroughadifferentCISPN.Inthesectionsbelow,Iwilldiscussonebyone,thesixCISPN.Theaccompanyingfigures[Figures5-10]arerawsketchesillustratingthesalientcomponentsofthedifferentCISPN.Apartfromthenervoussystem,theconnectionsbetweentheCISPNcomponentsaremadethroughexosomes,cytokinesandothersolublefactors,representedbythedottedlines.Figure5.Primarytumor-metastasis-bonemarrownetworkFigure6.ThesystemicinflammationnetworkFigure7.TheimmunityinhibitionnetworkFigure8.Theglobalmetabolism/cachexianetworkFigure9.ThethrombosisnetworkFigure10.Theneuro-endocrinenetworkTheprimarytumor-metastasisnetworkClinically,ithasbeennoticedforalongtimethattheprimarytumorandthedistalmetastasesareinterconnectedandco-dependent.Insomecasesofrenalcellcancer,forexample,resectingtheprimarytumorinducesaregressioninthedistalmetastasis[57].Onthecontrary,inseveralexperimentalmodels,asshownbyFolkmanandhiscollaborators,resectingtheprimarytumormayacceleratethedevelopmentofmetastasis[58,59].Overthelasttwodecades,ithasbeendemonstratedalsothatbesidesthisprimarytumor-metastasisinfluence,thereisapermanent“trialogue”betweentheprimarytumor,themetastaticsitesandthebonemarrow[Figure5].Bonemarrowcanfunctionasasourceofhematogenicprogenitorcellsthatpreparethenicheformetastasis[60,61]and,alsopossibly,asasourceofmalignantstemcells[62].Bonemarrow-derivedcells(BMDCs),whicharefrequentlyrecruitedtositesoftissueinjuryandinflammation,arecrucialforthemalignantprocess.Inanelegantexperiment,Houghtonetal.[63]demonstratedthatinsomecases,BMDCsmayevenrepresenttheoriginofmalignantcells.Thesefindingsweresubsequentlyconfirmedbyadifferentresearchteaminasarcomamousemodel[64].Kaplanetal.[60]pioneeredtheworkonthemetastaticnichebydemonstratingthatBMDCsthatexpressvascularendothelialgrowthfactorreceptor1(VEGFR-1)hometotumor-specificpre-metastaticsitesandformcellularclustersbeforethearrivaloftumorcells.Besides,BMDCsthatfacilitatethegrowthoftumorcellsatdistancefromthesiteoforiginand,cytokinesandvesiclesreleasedintothecirculationalsocontributetothedevelopmentofdistalmetastasis[65-68].Inarecentreview[69],acomprehensivelistof34primary-tumor,tumorstromaandmyeloidderivedfactorsthatmobilizeandrecruitmyeloidcellsdirectlyfromthebonemarrowtothepre-metastaticnichewascompiled.Theauthorsalsoproposedsixcharacteristicsofthepre-metastaticnichethatempowerthenichetofavortumorcellcolonizationandpromotemetastasis:angiogenesisandvascularpermeability,lymphangiogenesis,inflammation,immunosuppression,organotropismandreprogramming.Thesecharacteristicsdeterminewhetherthemetastaticcellspresentinthebloodcirculationcancolonizeandsurviveorbecomedormantafterarrival[69].Thebestwelldescribedtumorsecretedsolublemoleculesresponsibleforthenicheformationanddevelopmentare:VEGF-A,placentalgrowthfactor,andversican[69].Besidesthecancercells,therearealsofactorssecretedbythetumorstromathatplayasimilarrole:TGF-β,TNF-α,hypoxia-induciblefactor-1(HIF-1),granulocytecolony-stimulatingfactor(G-CSF).SomeofthesefactorsaresecretedbytheBDMCsthemselves:VLA-4(integrinα4β1),matrixmetalloproteinase(MMP)9andID3protein(IDisatermthatreferstoitsfunctionalpropertiesasbothaninhibitorofDNAbindingandaninhibitorofcelldifferentiation)[70].Theexosomesarekeyfactorsresponsibleforthepreparationofthepre-metastaticnicheandthecommunicationbetweenthetumor,thebonemarrowandthedistalmetastaticsite[43,71].Differentmaterials(proteins,mRNAs,DNAandmiRNAs)carriedinsidetheexosomescanbefunctionallydeliveredbetweendifferenttypesofcellsandtransferredtodistantlocations,influencingthebiologicalactivitiesoftumorandnon-tumorcellsandpromotingtumorgrowth,invasion,metastasis,angiogenesis,anddrugresistance[43,71].AcomprehensivereviewhighlightedthekeyroleplayedbytheECMcomponentslikesyndecaninregulatingexosomebiogenesis,proteincomposition,function,anddockingtorecipientcells[72].Heparansulphatechainsofsyndecansareessentialforexosomeformationwithinendosomalcompartments,andtrimmingofheparansulphatebyheparanaseactivatestheformationofanendosomalcomplexcontainingsyndecancoupledtosynteninandALIX[73].Reversely,tumorexosomesexpressinghighCD44expressionbindtohyaluronicacidandmodulatetheECMasdemonstratedfordegradationofcollagens,laminins,andfibronectin[74].Tumor-associatedexosomeshavebeenidentifiedinbiological(plasma,urine,saliva)andpathological(malignanteffusions,pleuraleffusions,ascites)fluidsfromcancerpatients.DavidLyden’steamfromWeillCornellMedicalCenter(WCMC),wasabletodemonstratethatinmelanomathetransferoftheMEToncoproteinfromtumor-derivedexosomestoBMprogenitorcellspromotedthemetastaticprocessandtodescribequantitativeandqualitativeexosomesignatures,alongwithspecificBMprogenitorcellpopulationsmobilizedasrepresentativehallmarksofmetastaticdisease[75].CertainmiRNAsareenrichedinexosomescomingfromthecancercells,indicatingthattheexosomescompositionseemstobecontrolled[76].ExosomesfrommutantKRAScolorectalcancercellsforexampleshowadistinctmiRNAprofilecomparedtowildtypecells[77].ThesameWCMCteamshowedthatinpancreaticcancer,theexosomescontainedmacrophageinhibitoryfactor(MIF)thatisinvolvedintherecruitmentofbonemarrow-derivedmacrophagesandtheblockadeofMIFpreventedliverpre-metastaticnicheformationandmetastasis.Byreleasingsolublefactors,tumorcellswereabletospecificallydirectbonemarrowderivedcellstothesitesweretheyweresupposedtogo[68].An“integrincode”presentonthesurfaceoftheexosomesseemstoberesponsibleforthehomingoffuturemetastasistopreciseprespecifieddistalorgans[46].RedigandMcAllisteralsoincludedtheparticipationofthebonemarrowasasinequanoncomponentofthe“instigation”model[78].Theseauthorsdemonstratedaprocessof“systemicinstigation”byinjectingcellscomingfromanaggressivebreasttumorintheflankofamouseandanalyzingtheeffectofthesecellsonthegrowthintheoppositeflankoftumorcellscomingfromanindolentbreastcancertumor.Theexplanationfortheinfluenceatdistanceofonecancertissueonthegrowthofanotherwasestablishedtobebonemarrow-derivedcellsthatwererecruitedtothedistalsitesandinstigatedthepreviouslyindolenttumorcellstogrow[78].TheimportanceofstudyingcancerasasystemicdiseasewasunderscoredbyanotherstudydonebyagroupofresearchersfromHarvardMedicalSchool[79].Theauthorsdescribedasystemiccross-talkbetweenlungtumorsandbones.Inanelegantmousemodel,lungadenocarcinomaswereabletoremotelyactivateosteoblastsinbonesevenintheabsenceoflocalmetastasis.Inturn,theseosteoblastssuppliedtumorswithneutrophils,whichfosteredcancerprogression[79].Sometimes,theinitiatorsofthis“trialogue”arenotthetumorcellsthemselves,butotherstromalcellsderivedfromthe“cancerized”stroma.Cancer-associatedfibroblastshavebeenshown,forexample,toreleasecytokines[80][i.e.,SDF1]thatonceenteredinthecirculationmaytriggerthesystemicreleasefromthebonemarrowofstemcellsandhaematopoieticprogenitorsthatwillsupporttheformationofmetastases[81].AresearchteamfromMDAndersonhaveshownthattheoriginofthesecancer-associatedfibroblastsisprimarilythebonemarrow[82]buttheiroriginandfunctionwithinthetumorstromavaries[83].Theexistenceofthesenetworksofcommunicationbetweengeographicallyseparatedsites,bringsexperimentalevidencetothecancersystemmodel,and,supportstheideathatmetastasisisanon-random,finelyregulatedprocess.ThesystemicinflammationnetworkThelinkbetweenlocalstromalinflammationandcancerprogressioniswellknownandthemolecularpathwaysresponsibleforthislinkhavebeenwellcharacterized[84].Asanypathologistwouldcertify,localinflammationispresentinthestromaofmanytumorsand,inflammatorycellsandmolecules,maybeinvolvedinalmosteveryaspectofcancerprogression,includingthetumourcells’abilitytometastasize.Colottaetal.[85]proposedthatcancerrelatedinflammationrepresentsaseventhhallmarkofcancer.AsdescribedbyGrivennikovetal.[86],thereareseveraltypesofinflammationthatcanpromotecancerdevelopmentandprogression,differingbycause,mechanism,outcome,andintensity.Briefly,thereischronicinflammationassociatedwithinfectionsorautoimmunedisease,thereisinflammationduetoprolongedexposuretoenvironmentalirritantsorobesity,thereisanotherdistincttypeofinflammationrelatedtothetumor,and,finally,thereisinflammationrelatedtocancertherapiesthemselves.Approximately20%ofhumancancersmayberelatedtochronicinflammationcausedbyinfections,exposuretoirritants,orautoimmunedisease[87].Ontheotherhand,notonlychronicinflammationmayleadtocancer,butcancermayalsocauselocalandsystemicinflammation.Oncogeneactivationincancercellsleadtoexpressionofpro-inflammatorytranscriptionfactorswithintumorcells[suchasnuclearfactor-kappaB(NF-κB),signaltransducerandactivatoroftranscription(STAT)3orHIF-1α].Theseactivatedtranscriptionfactorsmediatetheexpressionofkeycytokinesandchemokinesaswellasinflammatoryenzymeswithinthetumormicroenvironment.Atthetissularlevel,differentcytokinescaneitherpromoteorinhibittumordevelopmentandprogression.Someofthemmayleadtotumorprogression(IL-6,IL-17,IL-23),andalsohavedirecteffectsoncancercellgrowthandsurvival[TNF-relatedapoptosis-inducingligand,Fasligand,TNF-α,epidermalgrowthfactorreceptor(EGFR)ligands,TGF-β].Others[IL-12,interferon(IFN)γ]mayhaveananti-tumoreffect[86].Cancerinflammationisnotonlyalocalphenomenon[Figure6].Highserumconcentrationsofinflammatorycytokines,(i.e.,IL-1,IL-6)arefoundinmanyadvancedmalignancies[88].Circulatingcytokinesandsmallinflammatorymolecules,suchaschemokinesandmatrix-degradingproteins,arealsoinvolvedinthesystemicinflammation,andplayacrucialroleinthemetastaticprocess[88].IL-1,forexample,isinvolvedininvasionandangiogenesis.IL-1mayenhancetheinvasivenessofalreadyexistingtumorcellsbytheinductionofinflammatorymolecules,suchasMMPs,VEGF,heparanase,chemokines,andintegrinsonthemalignantcellsandendothelialcells,orbyswitchingontheangiogenesisleadingtotumordisseminationandmetastasis[89].SystemicinhibitionofIL-1withanakinra(arecombinantderivativeofIL-1RN)inhibitsthegrowthanddensityofnewvesselsinIL-1-producinghumantumorcelllinesxenograftedintoimmunodeficientmice,butnotintheircounterpartsthatdonotproduceIL-1[90].Arecentreview[91],providedacomprehensivelistoffactorsassociatedwithcolorectalsystemicinflammationincludingcytokines,chemokinesandgrowthfactors(IL-6,C-CMotifChemokineLigand(CCL)2,CXCL(C-X-CMotifChemokineLigand)8,CSF1[macrophagecolony-stimulatingfactor(M-CSF)],andCSF2[granulocyte-macrophagecolonystimulatingfactor(GM-CSF)].Theauthorsnotedthatimmunecellsandfibroblastsarecapableofproducingmanyofthesefactorsatmuchhigherlevelthantumorcellsandpointedouttotheroleofthestromainsystemicinflammation.Someoftheseimmunomodulatoryeffectsaremodulatedbyexosomesthatcontainintheircargoalargevarietyofmolecules[92,93].ExosomessecretedbytumorscontainIL-8,CCL2,CCL3,CCL4,CCL5,CCL20andTGF-β[93].Theliverisakeyplayerinthesystemicinflammatoryresponse.Alltheacute-phaseproteins,includingC-reactiveprotein(CRP),amyloidA,α1antitrypsin,andα1acidglycoprotein,aresynthesisedintheliverandsecretedintothecirculation[94].ClassicalstudieshaveshownthedeleteriousroleplayedbythecitokinessecretedbytheKupfercellsinacuteinflammation[95].Forexample,completeeliminationoflivermacrophages,decreasedthemortalityofmicechallengedwithzimosan,apotentinflammatoryagent,from27%to0%[96].Anotherkeycomponentoftheglobalinflammationnetworkisthegutmicrobiota.Thehumanbodyisinsymbiosiswiththegutmicrobiota,whichoutnumbershumancellsbya10-foldfactor.AsshownbytwoSciencearticles,gutmicrobiotamodulatesinflammationinboththetumormicroenvironmentandinthesystemiccirculation[97,98].Microbiotaalsoregulatessteady-statemyelopoiesisandneutrophilhomeostasis[99].Mousemodelshaveshownthatgutmicrobespromotethedevelopmentofmammarycarcinomasviaaneutrophil-mediatedmechanism[100],and,microbiota-drivenmobilizationofmyeloid-derivedsuppressorcells,favorsmalignantprogressionthroughsystemictumorpromotinginflammation[101].Increaseofthesystemicmarkersofinflammationasneutrophils,lymphocytesandplateletcountsandacutephaseproteins,suchasCRPandalbuminortheircombinations,computedindifferentscores,i.e.,theneutrophillymphocyteratio,theplateletlymphocyteratioandtheGlasgowPrognosticScore,areassociatedwithadverseprognosisinseveralmalignancies[102].Asystemicimmune-inflammationindex(SII),whichiscalculatedasplatelet(P)×neutrophil(N)/lymphocyte(L)counts,hasalsobeendemonstratedtobecloselyassociatedwiththeprognosisofsolidtumorsespeciallylungcancer[103].Inmostadvancedcancers,systemicinflammationiscausedbycanceritselfandindicatetheaggressivenessofthetumor[104].Unfortunately,despitepre-clinicalefficacydemonstratedinseveralanimalstudies,untilpresent,agentsusedtomanipulatesystemicinflammationinthetreatmentofpatientswithadvanced-stagecancerhaveonlyshownmodestresults[105].Theclinicaltrialsthatusedinhibitorsofprimaryinflammatorycytokines(e.g.,TNF-α,IL-6,IL-8),inthetreatmentofvarioustypesofhumancancers(i.e.,pancreas,renal)showedonlylimitedbenefit.Thisisnotsurprisingasthefunctionofcytokinevarieswiththeclinicalcontextandthesamecytokinemaypromoteorinhibitcancerprogression.Thesamecytokinecanbebeneficialinsomeclinicalcontextanddetrimentalinothers,andthetermyin-yanghasbeenusedforcytokinebehavior[106].Currentlytherearemultipleclinicalstudiesinprogressusingagentsthattargetcytokines(i.e.,IL-1,CXCR4/CXCL12),transcriptionfactors(i.e.,JAK-STATpathwayinhibitors)orlocalimmune/inflammatorycells(i.e.,macrophagesM2)andthefieldofcancerinflammationiscurrentlyaveryactiveareaofresearch[105,107].TheimmunityinhibitionnetworkTumorpromotinginflammationandanti-tumorimmunityarethetwooppositefactorsthatshapetheevolutionoftumors[108].Asillustratedintheabovesection,tumorsactivelyinduceaglobalinflammatorystate.Theyalsoinhibittheimmunesystem,bothlocallyandsystemically[Figure7].Thelocalinhibitionoftheimmunesystembythetumorcheckpointmoleculeshasbeenwellcharacterizedandtheuseofcheckpointinhibitorsiscurrentlyapprovedinmanytypesofcancers.TumorsmayalsohaveaglobalinhibitoryeffectontheimmunesystemasrecentlyshownbyateamfromtheUniversityofPennsylvania.Theresearchersdescribedthereleaseofexosomescarryingprogrammeddeath-ligand1(PD-L1)ontheirsurfacebymetastaticmelanomacells.StimulationwithIFN-γincreasedtheamountofPD-L1onthesevesicles,whichsuppressedthefunctionofCD8Tcellsandfacilitatedtumorgrowth[108].Tumorcell-derivedexosomescanalsoimpairimmunitythroughdifferentmechanisms:exosomescontainingmiR-203secretedbypancreaticcellsmayimpairactivationoftheimmunesystemthroughdownregulationoftoll-likereceptor4andIL-12[109],exosomescandownregulatethefunctionsofimmunecells[110,111],maypromoteTregsexpansion[112],andinhibittheactivityofnaturalkillers(NK)cells[113].Asisthecasewithinflammation,thereisaco-dependentrelationshipbetweentheimmunesystemandthegutmicrobiome.Theimmunesystemplaysanimportantroleindefiningthecompositionofthemicrobiotaandpreservingtheecologyofthemicrobiota.Reversely,themicrobiotainfluencesallaspectsoftheimmunesystem.Gutmicrobiomeplaysanimportantroleinthetrainingandthefunctionaltuningoftheimmunesystemandcanbeseenasoneofthekeymodulatorsoftheimmunesystem[114].Inadditiontoinfluencinglocalizedimmuneresponses,microbiotaalsohasbroadereffectscontributingtoinnateandadaptiveimmunityatmultiplelevels[115].Myeloidcellsrespondtomicrobialsignals,andinitiateinnateandadaptiveimmuneresponses[99].In2013,ithasbeenshownintwomurinemodelsthatgermfreeorantibiotic-treatedanimalsdidnotrespondtochemotherapy,indicatingthatanintactmicrobiomewasrequiredformodulatingthemyeloid-derivedimmunecellresponsesinthetumormicroenvironment[97,98].Alterationsinthegutmicrobiomecanaffectresponsetoimmunotherapyinseveralcancertypes.Matsonetal.[116]identifieddifferentbacterialspeciesasbeingcriticalforresponsetotherapyintheirpatientswithadvancedmelanoma,withBifidobacteriumlongum,Collinsellaaerofaciens,andEnterococcusfaecium,amongothers,foundtobeenrichedinthefecesofpatientsthatrespondedtoanti-PD-L1.SimilarfindingswerereportedbyRoutyetal.[117]inpatientswithadvancedurothelialcarcinoma,non-smallcelllungcancer,andrenalcellcarcinoma.Patientswhohavebeentreatedwithantibioticswithinseveralmonthsbefore,during,oraftertreatmentwithPD-1/PD-L1blockadehadshorterprogression-freesurvivalandloweroverallsurvivalratescomparedwithpatientswhohadnotreceivedantibiotics.Aftersequencingfecalsamplesfromthesepatients,thegeneraAkkermansiaandAlistipeswereenriched,and,thebacterialspeciesA.muciniphila,specifically,wasfoundtobehighlyrepresentedinpatientsthatrespondedtocheckpointblockade.Theimmunecellsplayadualroleincancer[118,119].Classically,someimmunecellsmaypromotecancergrowth(M2macrophages,Tregscells)andothersfightcancer(M1macrophages,CD8cells).Thisisanoversimplificationasthesametypeofcellsmayplayapro,oranti-neoplasticroledependingonthelocalandsystemiccontext.Forexample,inthemajorityofcancers,anincreasednumberofTregsinthetumorisassociatedwithapoorprognostic,butinpatientswithcolonorbreastcarcinomas,thepresenceandfrequencyofTreginthetumoriscorrelatedwithanimprovedprognostic[120].Asimilarphenomenonhasbeenshownfortumorassociatedmacrophages[121].LikemacrophagesandTregcells,tumor-associatedneutrophilsandNKcellsmayhavebothantitumoralandprotumoralfunctions[122].AsshowninbyLabelleetal.[123],plateletsattractneutrophilsintothetumorthrombicontributingtothemetastaticnichedevelopment.Also,ahighneutrophiltolymphocyteratio,predictspooroutcomeinseveraltypesofcancerincludinglungcancer,pancreaticcancerandcolorectalcancer.Thereisnewdatashowingdirectinvolvementofneutrophilsindifferenttypesofcancerandthereisincreasingevidenceinpreclinicalmodelsthatgranulocyte-CSF(G-CSF)canpromotemetastasis[124,125].Also,asshownbyseveralresearchteams,metastaticcancercellscaninduceneutrophilstoformmetastasis-supportingneutrophilextracellulartraps(NETs)anddrugsthatdegradeNETshavebeenshowntohaveaprofoundinhibitoryeffectonthedevelopmentofmetastaticdiseaseinpreclinicalmodels[126,127].Theglobalmetabolism/cachexianetworkInordertoensuresufficientbiomasssynthesisfortheirgrowth,cancercellsneedtomaintainhighmetabolicturnoverrates.Alargeamountofenergyisrequiredtosupportthisprocess.Forexample,anestimated~17,700kcalarerequiredover3monthstosupportmetastaticcolorectalcancergrowth[128].SincetheseminalworkofWarburg[129],ithasbeenobservedcancercellshavedistinctmetabolicprogramsthannormalcellsandmetabolicreprogramminghasbeenacknowledgedasoneoftheclassicalhallmarksofcancer[19].Themostdistinctivemetabolicdifferencesofcancertissuesareincreasedaerobicglycolysis,elevatedglutaminolyticfluxandenhancedaminoacidandlipidmetabolism.Sometypesofcancercellsutilizeinexcessglucoseand,insomecasessecretelactateeveninthepresenceofoxygen(theWarburgphenomenon).Thepropensityofcancercellstowardsaerobicglycolysisdoesnotseemtoberelatedtoanimpairmentoftherespiration,asrespirationisalsoneededfortumorgrowth[130,131].Insomecancerpatients,lactateisconvertedbacktoglucoseintheliver,aprocessknownastheoncogenicCoricycle[132-134]aprocessthatisenergeticallyveryinefficient.Besidesglucoseandlactate,thereareothernutrimentsneededfortumorgrowthforexample,glutamine,glycineandaspartateforpurineandpyrimidinesynthesis,serineformembranelipidcomponentsynthesis,branchedaminoacids,lipids,acetateandothers[135].NotinallcancerstheWarburgphenomenonispresent,and,sometimes,highglycolyticratesintumorsandmitochondrialrespirationoftenoperatesimultaneouslyintumors[136].AsortofmetabolicparasitismhasbeendescribedatthetissularlevelbyagroupofFrenchresearchers[137]whointroducedtheconceptofthe“reverseWarburgeffect”[138,139].Theseauthorsproposedthataggressivecancercellsare“parasites”thatuseoxidativestressasa“weapon”toextractnutrientsfromsurroundingstromalcells,forcedtoundergoaerobicglycolysis,andproduceenergy-richnutrients(suchaslactateandketones)to“feed”cancercells.Theysuggestedthatstromalcatabolism,viaautophagyandmitophagy,fuelstheanabolicgrowthoftumorcells,promotingtumorprogressionandmetastasis.Whatisalsobecomingapparent,isthatcancercellsortissueshaveanalteredmetabolism,but,theyalsoinducesystemicchangesofthewholebodymetabolismbysecretinghumoralfactors(i.e.,TNF-α,IL-1andIL-6)andpro-cachecticfactors(i.e.,proteolysis-inducingfactorandlipidmobilizationfactor)thatleadtoageneralizedcatabolicstatefollowedbysignificantandprogressiveenergylossfromhosttissueinthefinalstagesofcancer[140,141].AgroupofresearchersfromTaiwanmetaphoricallycomparedtheseinfluencesofthetumoronthehost’smetabolismasa“metabolicdictatorship”,thetumorsimposingtheirhighdemandsonthenormalhostthesemetabolicchanges,ultimately,insometypesofcancers(i.e.,pancreaticorgastriccancer)leadingtocachexia[142].Basically,themetabolicparasitismdescribedatthetissularlevelexistsalsoatthelevelofthewholeorganism[143].Cachexiaisamulti-organsyndromeinvolvingchangesinmanytissuesandorgansbesidesthemuscle,theadiposetissueandthetumoritself,otherorgansincludingtheliver,thepancreas,thebrainandthegut[144][Figure8].Itinvolvesup-regulatedtissuecatabolismandimpairedanabolism,releaseoftumor-derivedcatabolicfactorsandinflammatorycytokines,andneuroendocrinedysfunction[145].AspreviouslysuggestedbyAl-ZoughbiandPorporato,theglobalmetabolicchangesthattumorsexertonthewholeorganismareduetoaprecisereprogrammingofthedifferentkeystructuresinvolvedinthenormalbodyenergyexpenditurebalanceandarenotsimplycomplicationsoftumorprogression[6,134].Thisiswhytheseauthorsintroducednewterminologytodescribethisphenomenon,i.e.,“macroenvironment”[6]and“metaboliccancersyndrome”[134].Inadditiontothedirecteffectsoftumor-derivedcytokinesonindividualorgans,thereisalsoaninterplaybetweenmuscle,fat,andliverinvolvingseveralsignalingpathwaysandmetabolitesleadingtopathologicnetworksformationresultingindisruptionofkeymetabolicpathways[140][Figure8].Theincidenceofcachexiaamongcancerpatientsisveryhigh,especiallyingastricandpancreaticcancerwheretheincidenceismorethan80%.Oneofthemaincausesofcancercachexiaisinflammation.Thecytokinessecretedbythetumormayleadtothesymptomscommonlyassociatedwithcachexia(lossofapetite,pain,fever,fatigue,cachexia)but,ultimately,cachexiaisdependentonthepatientresponsetotumorprogressionandtheactivationoftheinflammatoryresponse[146].OneofthekeycytokinesinvolvedincachexiaisIL-6,linkedtobothcachexiaandmetastasisevents[86],but,alsoothercytokines-suchasTNF-α,IL-1β,andTGF-β-areinvolvedandtheymayinduceinflammationandmuscularandadiposetissuewasting[147,148].Pro-inflammatorycytokinespromotealsoashiftinliverproteinsynthesistowardstheproductionofCRPinsteadofalbumin-whichcontributestosustainingchronicinflammation[149].Inflammationisthekeytriggerofmusclewastinginducingalterationsinproteinandaminoacidmetabolism,togetherwithactivationofapoptosisanddecreasedregeneration[144].Besidesmuscleswasting,adiposetissuewastingisalsopresentinthemajorityofcachexiapatients.Indeed,cachecticpatientsmanifesthighlevelsofcirculatingfreefattyacids,glycerolandtriacylglycerol[150]andthetriggeroflipolysismaybealsosystemicinflammation[151].Anothercharacteristicofcancercachexiaistheprogressiveswitchfromwhiteadiposetissuetobrownadiposetissue-brownadiposetissuederivesitsnamefromthedarkercolorassociatedwiththeenrichmentinmitochondria[152].Pro-inflammatoryfactorseitherderivedfromthehostimmunesystemorthetumor,contributetothisswitch[152].Browningstronglycontributestotheincreasedenergyexpenditurecommonincachecticpatientsand,interestingly,cachecticlipidwastingoccursmostlyintumorsactivelysecretingparathyroidhormone-relatedprotein[152,153].Pro-inflammatorycytokines,suchasIL-6,IL-1,TGF-β,andTNF-α,arecommondenominatorsbothformetastasisandinflammationandforthemetabolicreprogrammingassociatedwithcachexia[86,122,133]andtheirunderlyingmolecularpathwaysmightoverlap[154].Oneofthesemolecularpathwaysmightbeexosomesecretionbytumourcellsoradiposetissue.Ithasbeenshownrecentlythattumorrelatedexosomesplayakeyroleinactivatingtheinflammatoryprocessincancer;thus,theymightbeinvolvedinbothhost-wastingprocesses,aswellasmetastaticdissemination[155-158].Asadirectproofofthisconcept,astudy[159]publishedin2014,showedthatcancer-derivedmicrovesiclescontainingmiR-21induceapoptosisofskeletalmuscleandlipolysisoftheadiposetissue.Similarly,anotherstudydemonstratedthatcancerassociatedmicrovesiclesinducemusclewastinginmicethroughreleasingextracellularHsp70andHsp90[155].Wewilldescribebrieflybelowthecontributionofdifferentorgansorbodysystemstocachexia.First,theliverplaysamajorroleincachexia.IntheKRAS/P53mousemodelithasbeenshownthatlungtumorsactdistallyontheliverandreprogramshepaticmetabolismthroughalteredpro-inflammatoryresponseviatheSTAT3-Socs3pathwayresultingininhibitionofhepaticinsulinsignaling,increasedglucoseproductionandaderegulatedlipidsynthesis[160].Theauthorssuggestedthattumor-secreted‘waste’suchaslactateisconvertedtopyruvateandshuntedthroughgluconeogenesistoproduceglucose,whichcanfurthersatisfytheheightenedenergeticdemandofcancercells.AresearchteamcoordinatedbyDouglasFearonalsodemonstratedintwomousemodelsofcancer-inducedcachexiathatinpre-cachecticmice,evenbeforetheonsetoftheweight-losingphaseofthesyndrome,tumor-inducedIL-6hasalteredthecapacityofthelivertorespondtocaloricdeprivation[141].Tumorsinduceareprogrammingofthehepaticmetabolismblockingthehost’scapacitytomakeavailableendogenoussourcesofenergythatcompensatefordecreasedcaloricintake.Throughsupressingketogenesis,thetumorhampersthehost’scapacitytoproduceendogenoussourcesofenergythatcompensatefordecreasedcaloricintake.Thisenergydeficitmagnifiesthehoststressresponseandleadstoincreasedglucocorticoidlevelsthatsuppressthetumorimmunity[141].Usinganinduciblelungcancermousemodel,aresearchgroupfromWCMC,co-ordinatedbyLewisCantley,foundthatcachexiawasassociatedwithlowketonesandincreasedglucocorticoidlevelsthatsuppressestumordirectedimmunity[161].Thelowketoneslevelassociatedwithreducedexpressionofhepaticperoxisomeproliferator-activatedreceptor-α(PPARα)targetsthatregulatefattyacidoxidationandketogenesis.Treatmentwithfenofibrate,aPPARαagonistrestoredhepaticketogenesis,preventedtherelianceonhepaticgluconeogenesis,andskeletalmusclewasting.Thismodelwasconsistentwiththehypothesisthatglobalinflammationinducedbythetumorsignalsthebrainthatincreasescorticotropin-releasinghormone(CRH)leadingtoglucocorticoidproductionthatwillinducetype2-skeletalmusclefibersbreakdown[161].Thepancreasalsoplaysanimportantroleincachexiathroughsecretionofinsulinandglucagon.Insulinresistanceisbothariskfactorforcancerandisassociatedwithcancerprogression.Theincreaseininsulinleveldrivenbyinsulinresistancecandrivecancergrowthbothdirectlythroughinsulinreceptors,andIGF-1receptorspresentonthesurfaceofcancercells[162,163]andindirectlybypromotinglivergluconeogenesisandmuscularwasting.Also,theincreasedproductionofglucagoninthealphaisletofpancreasduringcancerprogression,mayalsoincreaselivergluconeogenesis[164].Branchedaminoacidsreleasedfromthemusclewillbeusedintheliverforgluconeogenesisorproteinsynthesisinlungtumors[165].Interestingly,theincreaseofbranchedaminoacidsbloodlevelsmayprecedetheclinicalappearanceofpancreaticcancerbyseveralyears[166].Theimpactofgutoncachexiaismostlythroughthegutmicrobiota.Alterationofthegutfloraduetoundernutritionandchemotherapyultimatelyaffectsspecificmetaboliteavailabilityandabsorption,whichinturnaffectstumorgrowthandcachexia[167].Hostmetabolismandenergybalancearealsoinfluencedbyaninterplaybetweentheintestinalmicrobiota,bileacidsandnutrientsthatmayhaveanimpactonglobalinflammation,immuneresponses,guthormonesecretionandneuronalactivity[168].Severalhormonesincludinginsulin,cathecolaminesandatrialnatriureticpeptideareinvolvedinlipolysis[169].Besidestheendocrinesystem,thebrainisalsoactivelyinvolvedinthecachecticsyndromebycontrollingfoodintakethroughappetite,satiation,tasteandsmelloffood.ReceptorsofTNF-αandIL-1arefoundinthehypothalamicareasofthebrain,whichregulatefoodintake.AnorexiainducedbybothTNF-αandIL-6canbeblockedbyinhibitorsofcyclooxygenase,suggestingthataprostaglandin,suchasPGE2,maybethedirectmediatorofappetitesuppression[169,170].Autonomicnervoussystemdysfunctionhasbeenalsodescribedincancerpatientswithcachexia[171].IL-6wasfoundtostimulatehypothalamicreleaseofCRH,andincreaseglucocorticoidproduction[172].Structuralandfunctionalheartchangessimilartothosefoundincardiacfailureareoftenassociatedwiththecachexiasyndrome.Inadditiontoalossofskeletalmusclemassandfunction,manypatientswithcancercachexiaalsoexperiencecardiacatrophy,remodeling,anddysfunction,whichinthefieldofcancercachexiaisdescribedascardiaccachexia[173,174].IthasbeenshownformorethantwodecadesthatcardiaccachexiaislinkedtoraisedplasmalevelsofTNF-αandotherinflammatorycytokinesandthatthedegreeofbodywastingisstronglycorrelatedwithneurohormonalandimmuneabnormalities[175].IsraelandSchwartz[176]postulatedthatcancercellshavehybridmetabolicfeaturesthattakeadvantageofthecatabolicstatethattheyalsoinitiallyinduce.ThetwoFrenchauthorsproposedacomprehensivemodelofthesystemicmetabolicchangesinducedbycancerthatIwilldescribebriefly.Normally,instarvation,whenbloodglucoseleveldecreases,glucagonandepinephrineactivategluconeogenesisandketogenesistoformnutriments,mobilizingbodystores.Onthecontrary,whenglycemiaiselevated,thepancreasreleasesinsulin,activatinganabolismandoxidativeglycolysis,energybeingrequiredtoformnewmoleculesorrefillstores.Usually,thesetwooppositephysiologicalstatesexcludeeachother;whenanabolismistriggeredbyinsulin,catabolismisblockedandthenormalorganismmetabolicconfigurationisfinelyregulatedbythestateofkeyenzymes.Dependingontheneeds,enzymesfunctionlikeswitchesanddirectthemetabolismtowardsdifferentpathwaysthatareopenorcloseddependingontheirphosphorylationstate.Incancer,someoftheirenzymesarephosphorylatedasnormallyobservedwhencatabolichormonesstimulateGs-coupledreceptors,whereasotherenzymesadoptaconfigurationnormallyfoundinanabolicsituations,mediatedviatyrosinekinasereceptors.Basically,despitethefactthattheorganismasawholeisinastarvation-likestateinducedbycancer,tumorcellshavetheiranabolicpathwaysturnedONthroughtyrosinekinasereceptors,sometimesconstitutivelyactivatedthroughgeneticmutationsoramplifications.Thepyruvatekinase(PK)andpyruvatedehydrogenase(PDH)ofcancercellsareOFFinaphosphorylatedformbutthecitratesynthaseisONpullingtheglucosefluxintheglycolyticdirection.So,ononehand,cancercells,havetheirPKsandPDHsinhibitedbyphosphorylation,likeingluconeogenesis,ontheotherhandtheyhaveanincreasedglycolysisthatwillbeusedforthesynthesisofnewmolecularbuildingblocksfornewmitoticdaughtercells.Asaresult,cancercellsburnglucoseandincreasethetumormass,atthesametimeconsumingthemuscleproteinsandthelipidstoresoftheorganism.Theoutcomeofthishybridrewiredmetabolismgivesthemaselectiveadvantageovernormalcells[176].Insubsequentpublications,IsraëlproposedthatthereasonforthishybridmetabolismisanalterationoftheGABAselectionswitchbetweenanabolismandcatabolisminthepancreas,leadingtoaconcomitantreleaseofcatabolicglucagonandanabolicinsulin[177].Accordingtohim,thefirstcellsthatmanifestahybridmetabolismarethestemcells.Subsequently,thismetabolicrewiringisstabilizedthroughmutationsorepigeneticchangesselectingthemostaggressivepopulationandcancercellsarise.Inhismodel,thepancreaticalterationistheprimummovensofcancerfollowedbythemetabolismswitchofstemcells.Thestemcells,initiallycommittedtorepairanorgan,subsequentlytransformintocancercellsthatusetheirmetabolicadvantagetocompeteforresourceswiththerestoftheorganism[177-179].ThepracticalvalueofIsraël’smodelisfirstthepredictionthatcancercouldbedetectedseveralyearsbeforeitsclinicalmanifestationsbecauseofspecificmetabolomechanges,and,second,theproposalofcorrectingtheGABAswitchpancreaticanomalyasamethodforcancerprevention.In2016,agroupofGermanresearchersanalyzingdatafromtheEuropeanProspectiveInvestigationintoCancerandNutritionstudyfoundthatabnormalitiesoftwolipidmetabolites(highlevelsofphosphatidylcholinePCaeC30:0andlowlevelsoflysophosphatidylcholines,C18:0,wereconsistentlyassociatedwithincreasedriskofbreast,prostateandcolorectalcancer.Theseabnormalitiesweredetectedseveralyearsbeforetheclinicalapparitionofcancerpointingtoaglobalmetabolicshiftinphosphatidylcholinemetabolismthatmaydrivetumorigenesis[180].ThethrombosisnetworkTheroleofdifferentbloodcomponents[181]andthelymphaticsystem[182]inthemetastaticprocesshasbeencomingmoreandmoreintofocus.Therapiestargetedagainstotherbloodandlymphaticfactorsinvolvedincancerareindevelopment[181,182].Asmanyas20%ofcancerpatientsmayhaveathrombosiseventduringtheirlifetimes[183].Asshowninarecentreview[184],areciprocalconnectionexistsbetweencancerandthrombosis,ononesidecancercellssupportingclotformation,ontheotherside,clottingproteinssupportcancergrowthanddissemination.Cancerisassociatedwithastateofhypercoagulability,driveninpartbythereleaseofprocoagulantfactors,suchastissuefactor(TF),releasedbythemalignanttissue,aswellasbyinflammation-drivenactivationofendothelialcells,platelets,andleukocytes.Also,cancercellsareabletodirectlyadheretohostcells(i.e.,endothelialcells,monocytes,platelets,andneutrophils),therebystimulatingadditionalprothromboticpropertiesofthehostthrombosiseffectorcells[184][Figure9].TFisconsideredtobethemajormoleculardriverofcancer-associatedcoagulopathyandthromboembolicdisorders.Itisexpressedeitherbycancercellsoritsexpressionisinducedbycancercellsinnormalvasculartissuesbyboththereleaseofsolublemediatorsandthedirectcancercell-hostcellcontact.Itsexpressionisrelatedtowelldefinedoncogenicevents:epidermal-to-mesenchymaltransformation,TGF-βsignaling,EGFR,phosphataseandtensinhomolog(PTEN)andSrcpathways,hypoxiainducedsignaling,etc.Themajorityofhumanepithelialcancers(lung,colorectal,prostate,breast,pancreatic,gastric,melanoma,etc.)arecharacterizedbyabundantlevelsofTF[185].Also,asshownbyaCanadiangroupinagliomamodel,TFmayalsocontrolthestateoftumordormancybyrecruitingtothetumornichemyeloidandbloodvesselsformingcells[186].Interestingly,theprocoagulantandthesignalingeffectofTFintumorbiologycanbetargetedseparately,andtherearetherapiesunderinvestigationthattargetsolelythesignalingeffectofTFwithoutaffectingitshomeostaticfunction[187].Inaddition,cancercellinteractionswithplateletsandneutrophilscontributetocancercelladhesion,extravasation,andtheestablishmentofmetastaticlesions[188].Platelet-derivedsignalsarerequiredfortherapidintravascularrecruitmentofneutrophilstocirculatingtumorcells(CTCs)thrombicontributingto“earlymetastaticniches”[123].Also,TGF-βsecretedbydegranulatingplateletsmaycontributetotheactivationtheNF-κBpathwayincarcinomacells,therebyinducingorsustainingtheexpressionofEMTprogramsintheCTCs[189].Selectinsarecarbohydrate-bindingmoleculesthatbindtoglycanstructures,presentonendothelialcells,plateletsandleukocytes.Therearethreemembersoftheselectinfamily:P-selectinexpressedonactivatedplateletsandendothelialcells,L-selectinpresentonleukocytesandE-selectinexpressedonactivatedendothelialcells[190].P-selectininparticularseemstoplayacrucialroleinseveraltypesofcancermetastasisbymediatingtheaggregationofplateletswithtumorcellsformingclots.ArecentstudyshowedthatintravenousinjectionofmelanomacellsintoWTmiceresultedinmultiplelungmetastases,whileinP-selectin-deficientmicepulmonarytumormetastasisandtrappingoftumorcellsinthelungwassignificantlyreduced[191].Modulatingtheinteractionbetweencancercellsandthecirculatingbloodcells,andrespectively,betweencancercellsandtheendothelialcellsmayrepresentnoveltherapeuticapproaches.Forexample,thereisexperimentalevidencethattargetingspecifictypesoftheintegrinreceptorspresentonthesurfaceoftheplateletsefficientlyreducestumorcellcolonizationintothelungs,suggestingthattheycouldrepresentinterestingtargetsforanti-metastaticdrugs[192].AteamfromFrancecharacterizedthemicroparticulosome,therepertoireofplasmamembranevesiclesproducedbydifferenttypesofcellsandwasabletodifferentiateamicroparticlesignatureassociatedwithpancreaticandcolorectalcancer[193].ThesameteamshowedinsyngeneicectopicandorthotopicmicemodelsthattreatmentwiththedrugClopidogrelpreventedthebindingofcancercell-derivedmicroparticlestofibrinogen-plateletsaggregatesatthesiteofthrombosis,andreducedthemetastasisandtheextentofthrombosisassociatedwithcancer[194].Procoagulantfactorsassociatedwithexosomesfromtumorshavebeendescribedforalmostfourdecades[195]TissuefactorassociatedwithexosomeshasbeenfoundtoberesponsiblefortheTrousseausyndromeinonepatientwithlungcancer[196]andthereareseveralstudiesdocumentingtheprocoagulanteffectoftumorexosomes[197].Theneuro-endocrinenetworkBoththecentralnervoussystemandtheneurovegetativenervoussystemareintimatelyinvolvedincancer.Oneofthemoststudiedlinksbetweencentralnervoussystemandcancerisstress.Theneuroendocrinemediatorsreachthecellsoftheimmunesystemeitherthroughtheperipheralcirculationorthroughdirectinnervationoflymphoidorgans[Figure10].AssuggestedbyClaireMagnon[198],apossibleexplanationfortumorformationassociatedwithstressmightrelyontheactivationofthesympatheticnervoussystem(SNS)throughthesympathetic-adrenal-medullaryaxis,whichcontrolsthereleaseofadrenergicneurotransmitterssuchasepinephrineornorepinephrinebytheadrenalsintothebloodstreaminsupportofthefight-or-flightreflex.Catecholamine-mediatedsuppressionofcellularimmunitymayplayaroleinincreasedgrowthofcertaintumors[199].Also,primaryandsecondarylymphoidorgansareinnervatedbysympatheticnervefibers.Lymphocytesandmonocytesexpressreceptorsforseveralstresshormones,includingCRH,adrenocorticotropichormone(ACTH),cortisol,norepinephrine,andepinephrine.Therefore,itispossiblethattheneuroendocrinehormonesreleasedduringastressfuleventcouldalterimmunefunctionandsubsequentlyalterthecourseofimmune-baseddiseases[200].Ithasbeenreportedthatmicelivinginanenrichedhousingenvironment(EE)showreducedtumorgrowthandincreasedremission[201].Thiseffectwasdescribedinmelanomaandcoloncancermodels,and,itwasproventhatitwasnotcausedbyphysicalactivityalone.Serumfromanimalsheldinanenrichedenvironment(EE)inhibitedcancerproliferationinvitroandwasmarkedlylowerinleptin.Hypothalamicbrainderivedneurotrophicfactor(BDNF)wasselectivelyupregulatedbyEE,itsgeneticoverexpressionreducedtumorburden,whereasBDNFknockdownblockedtheeffectofEE.ThehypothalamicBDNFdownregulatedleptinproductioninadipocytesviasympathoneuralβ-adrenergicsignaling[201].Akeycentralnervoussystemstructureinvolvedincanceristhehypothalamus.Inthecontextofsystemicinflammation,thehypothalamusintegratessignalsfromperipheralsystems,translatingthemintoneuroendocrineperturbations,alteredneuronalsignaling,andglobalmetabolicderangements[202].Cytokines,likeIL-1βandTNF-α,forexample,generatedintheperipheryduringcancerprogressionareamplifiedandmodifiedwithinthehypothalamus,leadingtohypothalamicinflammationandaberrantactivityofweight-andactivity-modulatingneuronsthatmayinducemuscleatrophyviaactivationofthehypothalamic-pituitary-adrenalaxis[203,204].Hypothalamicinflammationmaybefollowedbydysregulationofhomeostaticregulationofautonomicnerves(innervationofmuscles,liver,fattissue,endocrineglandsandotherorgans)thatmayfurtherpotentiatedysregulationofmetabolismandenhanceperipheral,pro-inflammatoryreactions[205].Hypothalamusappearstobeanimportantcontributorinthedevelopmentandmaintenanceofthecachecticstate[202].Lowerhypothalamicactivityhasbeendemonstratedbyfunctionalmagneticresonanceimagingscansinpatientswithcachexiaassociatedwithadvancedlungcancer[206].Auniquecrosstalkbetweenthecentralnervoussystemandprostatetumourswasrecentlyrevealed.Inastrikingexperiment[207],usingamousemodelofprostatecancer,aFrenchgroupdemonstratedaprocessoftumour-associatedneo-neurogenesis,inwhichneuralprogenitorsleavethebrainofthemouseandreach,throughthesystemiccirculation,theprimarytumourorthemetastatictissues.Oncearrivedthere,theydifferentiatedintonewadrenergicneuronsthatareknowntosupporttheearlystagesofthedevelopmentofcancer.Theauthorssuggestedthepossibilitythatthetumouritselfmightdepleteneurogenicnichesinthebrainbyattractingneuralprogenitorstosupportitsowndevelopment[207].Recentexperimentssuggestadirectrelationshipbetweentheneurovegetativenervoussystemandcertaintumors.AsreviewedbyCole[208],SNSactivationmodulatesgeneexpressionprogramsthatpromotemetastasisofsolidtumoursbystimulatingmacrophageinfiltration,inflammation,angiogenesis,epithelial-mesenchymaltransition,andtumourinvasion,andbyinhibitingcellularimmuneresponsesandprogrammedcelldeath.SNSactivationmayalsoinfluencecancerprogressionviaindirectpathwaysinwhichSNSinnervationofdistanttissuestriggerssecondaryhormonalorcellulareffectsthatsubsequentlyaffectthetumourmicroenvironment.Forexample,sympatheticinnervationofbonemarrowcanstimulatetheproductionofmyeloidlineageimmunecellswhichmayinfiltratethetumoralmicroenvironmentandpromotemetastasis[209-211].Inprostatecancer,sympatheticnervefibersmayhelptumorsgrowbyinteractingwithbeta-adrenergicreceptorsonstromalcells[212].Epidemiologicalstudiesshowedthatmenwithprostateadenocarcinomawhotakenon-selectivebeta-blockershavelowerprostatecancer-specificmortalityrates[213].Asimilaractivityofbeta-blockershasbeendescribedinmelanomaorbreastcancerpatientsindicatingthatadrenergicsignalingmightbeinvolvedinvarioustypesofcancer[214,215].Iftheroleofthesympatheticsystemincancerhasbeenwelldocumented,thecontributionoftheparasympatheticdivisionoftheautonomicnervoussystemislessclear.AsshownbyKevinTraceyandhiscollaboratorsfromtheFeinsteinInstituteonLongIsland,NewYork,theefferentvagusnerve-mediatedcholinergicsignalingcontrolsimmunefunctionandpro-inflammatoryresponsesviatheinflammatoryreflex[216].TandBcellsexpressmostcholinergicsystemcomponents-e.g.,acetylcholine,cholineacetyltransferase,acetylcholinesterase,and,bothmuscarinicandnicotinicacethycholine(Ach)receptorsandthecholinergicsignalsgeneratedbyimmunecellsappeartobetriggersofboththeinitiationandterminationofcytokinesynthesis(e.g.,IL-2inTcellsandTNF-αinmacrophages)[217].ArecentstudyfromtheUniversityofSichuan,China,suggestedthatparasympatheticinnervationmaycontributetostomachcancerdevelopmentviaacetylcholine-mediatedactivationofmuscarinicacetylcholinereceptors[218].Inamousemodelofstomachcancer,vagotomysuppressedgastrictumorigenesis[219].Alsoinaprostatecancermousemodelcholinergic-inducedtumorinvasionandmetastasiswereinhibitedbypharmacologicalblockadeofthestromaltype1muscarinicreceptor,leadingtoimprovedsurvivalofthemice[212].However,asdiscussedbyColeetal.[208],cholinergicblockademaystimulateindirectlytheSNSpromotionofcancer.Analternativestrategywouldbetotargetneurotrophicgrowthfactorsincancerasmanycancersareassociatedwithnerveinfiltration.Anantineurotrophicantibody(tanezumab)hasbeendevelopedbyPfizerandiscurrentlyusedasananalgesic[220].Asmanyas8%ofcancersmightbeassociatedwithendocrineparaneoplasticsyndromes[221],but,adetaileddiscussiononthesesyndromes,isbeyondthescopeofthisarticle.Inthecontextofourdiscussiononthesystemichallmarksofcancer,itisclear,however,thatproductionofspecifichormonesbytumorsofparticulartypesisnotarandomevent[222].Forexample,squamouscellcarcinomastypicallyproduceparathyroidhormone-relatedproteinandsmallcellcarcinomas(SCC)ofthelungtypicallyproducecalcitonin,adrenocorticotropin(ACTH),orgastrinreleasingpeptide(GRP).Insomecaseforexample,bombesin(BBS)-likeneuropeptidessecretedbySCCcanactasautocrinegrowthfactors[223].Besidestheinvolvementofcathecolaminesincancerdescribedbefore,severalotherhormones(i.e.,estrogens,androgens)arewellknowntopromotecancerdevelopmentandmetastasis[224].Also,theroleofthethyroidhormonesinpromotingthemetastaticprocesshasbeenrecentlydescribed[225].Otherhormones,likemelatonin,forexample,mayinhibitcancermetastasis[226].Patientwithcancerhavepoorsleepandthismayinfluencemelatoninsecretion.Inarecentstudydonebreastcancerwomenserummelatoninlevelscorrelatedsignificantlywithself-reportedsleepqualityandpsychometricprofilesofdepression[227].Interogatingthesystem:cancerinducedsystemicpathologicnetworksIntherecentyears,liquidbiopisesand“omics”becameusefultoolsofthedevelopingfieldofprecisiononcology.Throughliquidbiopsiesand“omics”wecaninterogatetheglobalcharacteristicsofthetumoritself,andobtainusefulinformationthathelpusinthediagnostic,prognosticandtreatmentofcancerpatients.Inthenearfuture,ofgreatimportancewillbethecharacterizationofthedifferentCISPNthroughspecificbiomarkersdesignedtoanalyzethesystemiccancerhallmarks.ThisinformationmightbeusedtorefinethestagingandprognosticofpatientswithmetastaticcancercurrentlylumpedindiscriminativelyunderonelargeumbrellabytheTNMstagingand,also,designandmonitortargetedinterventionsdirectedspecificallyagainstkeyCISPNthatbehaveasmasterregulatorsofthemetastaticprocess.CirculatingmiRNApresentinsidetheexosomesareplausibleCISPNmasterregulators[42].ExosomalproteinsisolatedfromplasmaofcancerpatientshavebeenrecentlycharacterizednotonlyasusefulbiomarkersassociatedwithseveralcancertypesbutalsofordissectingdifferentCISPNinvolvementinthemalignantprocess[43].Potentialsystemicbiomarkersmightbealsofoundanalysingmetabolomicsdata.Inorderforatumortodevelopandspreadneedsenergyand,globalmetabolicreprogramming,mightwellbeoneofthekeysystemiccancerhallmarksdrivingcancerfromitsemergencethroughitsprogressionandmetastasis.TheConsortiumofMetabolomicsStudies(COMETS)wasestablishedin2014tofacilitatelarge-scalecollaborativeresearchonthehumanmetabolomeanditsrelationshipwithdiseaseetiology,diagnosis,andprognosis[228].Systemicmetabolicchangesinadvancedcancershavebeendescribedinthepastforseveraltumortypes[229,230].Theessentialroleofmetabolismatthecellularlevelincontrollingcancerhallmarkswasrecentlyproven.Usingmoleculardataof9,125patientsamplesfromTheCancerGenomeAtlas,agroupofresearchersidentifieddistinctmetabolicexpressionsubtypesin27cancertypesbasedonmRNAexpressionpatternsofsevenmajormetabolicprocesses(aminoacidmetabolism,carbohydratemetabolism,integrationofenergy,lipidmetabolism,nucleotidemetabolism,tricarboxylicacidcycleandvitamin&cofactormetabolism)[231].Themetabolicexpressionsubtypescorrelatedwithclinicaloutcomes:subtypeswithupregulatedcarbohydrate,nucleotide,andvitamin/cofactormetabolismmostconsistentlycorrelatedwithworseprognosis,whereassubtypeswithupregulatedlipidmetabolismshowedtheopposite.Themostinterestingfindingwasthatthesemetabolicsubtypeswerenotrelatedtospecificgeneticsomaticdriversbutwereintrinsicallycoupledwithcancerhallmarkpathways(i.e.,angiogenesis,celldivision,etc.)andweremodulatedbyhighlyrecurrentmasterregulatorsacrosscancertypes,ultimatelyleadingtoconsistentsurvivalpatterns.Asaproof-of-conceptinvitroexperiment,theauthorsalsodemonstratedthatknockdownoftwomasterregulatorsgenesofcarbohydratemetabolicsubtypes(SNAI1inalungcancercelllineorRUNX1inasarcomacellline)significantlydecreasedtheconcentrationsofintracellularglucose.Accordingtothismodel,themastermetabolicregulatorsidentifiedwerekeynodeswiththegreatestinfluenceonsystems-levelmetabolicactivitiesandtargetingthesemetabolicmasterregulatorsmayinhibittumorprogression.Strikingly,allfourmastermetabolismregulatorsgenesidentifiedinthe8cancertypeswithsignificantlyworsesurvivalratesduetoupregulatedcarbohydratemetabolism,SNAI1,RUNX1,RUNX2,andFOSL1[231],playalsoakeyroleinembryonaldevelopmentandEMT[13,232,233]andmightbealsomasterregulatorsofthemetastaticcellularprogram[Figure3].NoveltherapeuticapproachesusingthecancersystemmodelMarkVincentclassifiedcancertreatmentsintwofundamentallydifferentapproaches:a“causality-inhibition”strategy,targetedtowardsthecancercause,whichatpresentisstilla“moonshot”,remotefromourcurrentcancertreatmentpractices,and,an”acausal”approachthattargetaspecificcancermarkerorsignature[234].Atpresent,manyaspectsofcancer,ingeneral,and,bylarge,themetastaticprocessarestillincompletelychartedterritories,and,therefore,mostourcurrentcancertreatmentsarenotdirectedtowardsthespecificcausethattriggeresthecancerprocess.Inthenearfuture,hopefully,oncethemechanismsofthedifferentcancercellularprogramsarebetterdescribed,wewillbeabletodesigneffectivecausality-inhibitiontherapies.Forexample,theimmunomodulatoryfunctionofexosomesmaybeexploitedfortherapeuticeffect.In2008,aChinesegroupfromGuangxiUniversity[235]reportedtheresultsofaPhaseIstudyinwhich40patientswithadvancedcolorectalcancerreceivedfourweeklyintravenousinjectionsofascitesderivedexosomesplusorminusGM-CSF.Stablediseaseandaminorresponsewereobservedintwoofthepatientstreated.Morerecently,anotherChinesegroup[236],suggestedthatmiRNAdepletedpancreaticcancerexosomesmightenhancethekillingcapacityofdendriticorcytokine-inducedkillercells,andactivatetheimmunesystemagainstpancreaticcancer.Theexosomespackagingiscloselyregulated,and,differentclonesevenfromthesametumormaysecretexosomescarryingadifferentcargowithdifferentproperties[237].DismantellingcancernetworksattheorganismlevelNetworks,composedofvariousnodesandedgesmaybedescribedatdifferentlevelsinanorganism.Inacell,nodesmaybeaminoacidsofcancer-relatedproteins,whereedgesaretheirdistancesinthe3Dproteinstructureornodesmayrepresentprotein/RNAmoleculesorDNA-segments,whereedgesaretheirphysicalorsignalingcontacts.Inmetabolicnetworks,nodesaremetabolitesandedgesaretheenzymes,whichcatalyzethereactionstoconvertthemtoeachother.Atthetissularlevels,nodescanbethecancercellsandthestromalcellsandtheedgesthedifferentmoleculesthroughwhichtheycommunicate.Atthelevelofthewholeorganism,nodesmayrepresentthedifferentcomponentsofthecancersystemandthedifferentcomponentsofthenormalbodysystems[Figure2]and,theedges,cellular,exosomalorproteicsignalsexchangedbetweenthem.Cancerisarobustsystemthatisabletomaintainstablefunctioningdespitevariousperturbations.Theessentialrobustnessofcancerismaintainedthroughheterogeneousredundancy,i.e.,thecancertissuecontainsaheterogeneousdistributionofgeneticallydifferentcancercellsmaintainedbygeneticinstability[238].Communicationiscrucialforthedevelopmentofthecancersystem.Inordertobeabletodismantlesuchacomplexmulti-layerednetworkascancer,noveltargetedmulti-scaleapproachesareneededthattargetsimultaneouslykeyelementsofthecellular,tissularandsystemiccancernetworks[239].Targetingthemastergeneticregulatorsorthehubsatthecellularlevelledtopromisingresults[28,240].Also,atherapeuticapproachbasedongametheorytargetingthecollaborationbetweencancercellsatthetissularlevelwasrecentlyproposedbyArchettiandPienta[241].Itisconceivablethatusingsimilarmathematicaltools,treatmentstargetingspecificCISPNelementsattheorganismiclevelcanbedesigned.Evaluatingthecancersystemvulnerabilitiesthroughanalysisofnetworktopologyand,especially,networkdynamicscanpredictnovelanti-cancerdrugtargets[242].Ingeneral,therapeuticapproachestargetinglevelsabovethecellularlevelmaybelessaffectedbycancergeneticinstabilityandheterogeneitythantreatmentstargetingthecancercellsthemselves.Asuggestiveexampleistheimprovementinthelongtermsurvivalassociatedwithcheck-pointinhibitorsthattargetcancertissueasopposedtocancercells[243-245]asopposedtothealmostuniversaldevelopmentofacquiredresistenceassociatedtotheuseoftyrosinekinaseinhibitorsthattargetspecificintra-cellularcancernetworks[246].Anattractivetop-downregulatorofcanceristhenervoussystemandnoveltherapiescouldbedesignedstimulatingorinhibitingsomeofitscomponents[198].Asaproofofprinciple,amplyfingasinglegeneinthehypothalamusofobesemicethroughgenetransferofBDNFinhibitedbreastcancerprogressionandmetastasis[247].“Horizontal”vs.“vertical”approachesModalitiestotargetcanceratthecellularlevel(i.e.,tyrosinekinaseinhibitorsandantibodiesdirectedtotheantigenspresentonthesurfaceofthecancercells)havebeenalreadyinplacenowforalmosttwodecades.ImmunotherapieswithcheckpointinhibitorsandCAR-Tcellapproacheshaverecentlyimprovedthequalityanddurationoflifeofmanycancerpatients.Weenvisionthatagentstargetingthesystemichallmarksofcancerandinterruptingthecommunicationbetweenthedifferentcomponentsofthecancersystemwillrepresentthe“newwave”ofcancertreatments.Inthemulti-scalemodelofcancera“horizontal”approachisconsideredtargetingthecross-talkbetweenthedifferentcomponentsoftheCISPNandblockingthecommunicationbetweenitspartsanda“vertical”approachwouldusedrugsthatactsimultaneouslyatthecellular,tissularandsystemiclevelinaparticularsub-componentoftheCISPN.Anexampleofa“horizontal”approachisthefindingthattheblockadeoftheCXCL5/7receptorCXCR2,orthetransientdepletionofeitherplateletsorgranulocytes,preventstheformationofearlymetastaticnichesandsignificantlyreducedmetastaticseedingandprogression[123].GranulocyterecruitmentdependsonthesecretionofCXCL5andCXCL7chemokinesbyplateletsuponcontactwithtumorcells[123].Anexampleofa“vertical”approachusingtrans-leveldrugsactingsimultaneouslyatthecellular,tissularandorganismiclevelssimultaneouslyistheuseofbeta-blockers.Somebeta-blockers,forexample,likepropranolol,atthetissularlevelhaveanimmunomodulatoryeffect[248]andattheorganismiclevelalterthemetastaticpotentialofcancercells[208].AgroupofresearchersatPennStateUniversityfoundthatmelanomapatientswhoreceivedimmunotherapywhiletakingpanβ-blockerslivedlongerthanpatientswhoreceivedimmunotherapyaloneorpatinetsthatreceivedimmunotherapyandβ1-selectiveblockers[249].Inafollow-upexperimentwithmice,theresearcherssawthesameresults[249].Bisoprololisanotherselectiveβ1-blockercommonlyusedtotreathypertension,cardiacischemia,andcongestiveheartfailure.Bisoprololimprovedsurvival,increasedtotalheartmass,andotherheartparametersand,importantly,improvedfoodintakeandactivitylevelsinanAH-130tumor-bearingratsmodel[250].ClinicalstudieswithBisoprololareplannedinpatientswithcancercachexia(ProfessorAnker,CharitéHospital,Berlin,personalcommunication).ConclusionCancerisamultidimensionalprocesswithspecificcharacteristicsatthecellular,tissularandtheorganismiclevel.Basicresearchandclinicaldataobtainedoverthelastdecadesuggeststhat,atthemacroscopiclevel,cancerbehaveslikeanevolvingco-dependentsystemthatinteractscontinuouslythroughCISPNwiththemodifiedbodysystems.Cancercellsandcancerstromasecretedexosomes,cytokinesandothersolublefactorstogetherwiththemodified,cancer-supportingbodysystems,areresponsibleforestablishingtheCISPNandthesystemichallmarksofcancer.Withouttakingintoconsiderationthislarger,organism-levelpicture,someofthecurrentlocaltreatmentstargetedtowardsthecancercellsortissuesmayleadtocancerprogression.Forexample,insomecasesofheadandneckcancer,(upto29%insomeseries),checkpointinhibitortreatmentsmayinducecancerhyperprogression[251].Treatmentstargetedtowardsthecancersystemandthesystemichallmarksofcancerareurgentlyneeded.Movingtotheorganismiclevelandtargetingthesystemichallmarksofcancerinconcertedtherapeuticapproacheswithcurrentlyexistingtherapiesmayfurtherimproveourcancerarmamentariumintheimmediatefuture.DeclarationsAuthors’contributionsTheauthorsolelycontributedtothearticle.AvailabilityofdataandmaterialsNotapplicable.FinancialsupportandsponsorshipNotapplicable.ConflictsofinterestTheauthordeclaredthattherearenoconflictsofinterest.EthicalapprovalandconsenttoparticipateNotapplicable.ConsentforpublicationAwritteninformedconsentforpublicationwasprovided.Copyright©TheAuthor(s)2020.References1.Noble D.Atheoryofbiologicalrelativity:noprivilegedlevelofcausation.InterfaceFocus2012;2:55-64.DOIPubMedPMC2.Noble D.Abiologicalrelativityviewoftherelationshipsbetweengenomesandphenotypes.ProgBiophysMolBiol2013;111:59-65.DOIPubMed3.Noble D.Themusicoflife.Oxford;2006.4.Egeblad M,Nakasone ES,Werb Z.Tumorsasorgans:complextissuesthatinterfacewiththeentireorganism.DevCell2010;18:884-901.DOIPubMedPMC5.McAllister SS,Weinberg RA.Tumor-hostinteractions:afar-reachingrelationship.JClinOncol2010;28:4022-8.DOIPubMed6.Al-Zoughbi W,Huang J,Paramasivan GS,Till H,Pichler M,etal.Tumormacroenvironmentandmetabolism.SeminOncol2014;41:281-95.DOIPubMedPMC7.McAllister SS,Weinberg RA.Thetumour-inducedsystemicenvironmentasacriticalregulatorofcancerprogressionandmetastasis.NatCellBiol2014;16:717-27.DOIPubMedPMC8.Borniger JC.Centralregulationofbreastcancergrowthandmetastasis.JCancerMetastasisTreat2019;5.DOIPubMedPMC9.Borniger JC,Walker IiWH, Surbhi,Emmer KM,Zhang N,Zalenski AA,etal.Aroleforhypocretin/orexininmetabolicandsleepabnormalitiesinamousemodelofnon-metastaticbreastcancer.CellMetab2018;28:118-29.e5.DOIPubMedPMC10.Paul D.Cancerthebigpicture:seeingtheforestbeyondthetrees.Oncolog-Hematolog2015;1:28-30.11.Udrişte O.Genaancestralăşiorigineacancerului(inRomanian).Bucharest,Romania:Edituraştiinţificăşienciclopedică;1978.12.Arechaga J.Ontheboundarybetweendevelopmentandneoplasia.AninterviewwithProfessorG.BarryPierce.IntJDevBiol1993;37:5-16.PubMed13.Dongre A,Weinberg RA.Newinsightsintothemechanismsofepithelial-mesenchymaltransitionandimplicationsforcancer.NatRevMolCellBiol2019;20:69-84.DOIPubMed14.Gallik KL,Treffy RW,Nacke LM,Ahsan K,Rocha M,etal.Neuralcrestandcancer:divergenttravelersonsimilarpaths.MechDev2017;148:89-99.DOIPubMedPMC15.Vincent MD.Theanimalwithin:carcinogenesisandtheclonalevolutionofcancercellsarespeciationeventssensustricto.Evolution2010;64:1173-83.DOIPubMed16.Vincent MD.Cancer:beyondspeciation.AdvCancerRes2011;112:283-350.DOIPubMed17.Vincent M.Cancer:ade-repressionofadefaultsurvivalprogramcommontoallcells?alife-historyperspectiveonthenatureofcancer.Bioessays2012;34:72-82.DOIPubMed18.Hanahan D,Weinberg RA.Thehallmarksofcancer.Cell2000;100:57-70.DOIPubMed19.Hanahan D,Weinberg RA.Hallmarksofcancer:thenextgeneration.Cell2011;144:646-74.DOIPubMed20.Nguyen DX,Massague J.Geneticdeterminantsofcancermetastasis.NatRevGenet2007;8:341-52.DOIPubMed21.Chiang AC,Massague J.Molecularbasisofmetastasis.NEnglJMed2008;359:2814-23.DOIPubMedPMC22.Vogelstein B,Papadopoulos N,Velculescu VE,Zhou S,Diaz LAJr,etal.Cancergenomelandscapes.Science2013;339:1546-58.DOIPubMedPMC23.Paget S.Thedistributionofsecondarygrowthsincancerofthebreast.Lancet1889;1:571-3.DOI24.Sugarbaker EV.Cancermetastasis:aproductoftumor-hostinteractions.CurrProblCancer1979;3:1-59.DOIPubMed25.Fidler IJ,Kripke ML.Metastasisresultsfrompreexistingvariantcellswithinamalignanttumor.Science1977;197:893-5.DOIPubMed26.Price JE,Naito S,Fidler IJ.Growthinanorganmicroenvironmentasaselectiveprocessinmetastasis.ClinExpMetastasis1988;96:91-102.DOIPubMed27.McDonald OG,Li X,Saunders T,Tryggvadottir R,Mentch SJ,etal.Epigenomicreprogrammingduringpancreaticcancerprogressionlinksanabolicglucosemetabolismtodistantmetastasis.NatGenet2017;49:367-76.DOIPubMed28.Aytes A,Giacobbe A,Mitrofanova A,Ruggero K,Cyrta J,etal.NSD2isaconserveddriverofmetastaticprostatecancerprogression.NatCommun2018;9:5201.DOIPubMed29.Lambert AW,Pattabiraman DR,Weinberg RA.Emergingbiologicalprinciplesofmetastasis.Cell2017;168:670-91.DOIPubMedPMC30.Hendrix MJC,Seftor EA,Seftor REB,Kasemeier-Kulesa J,Kulesa PM,etal.Reprogrammingmetastatictumourcellswithembryonicmicroenvironments.NatRevCancer2007;7:246-55.DOIPubMed31.Telerman A,Amson R.Themolecularprogrammeoftumourreversion:thestepsbeyondmalignanttransformation.NatRevCancer2009;9:206-16.DOIPubMed32.Bissell MJ,Radisky D.Puttingtumoursincontext.NatRevCancer2001;1:46-54.DOIPubMedPMC33.Orimo A,Weinberg RA.Stromalfibroblastsincancer:anoveltumor-promotingcelltype.CellCycle2006;5:1597-601.DOIPubMed34.Caon I,Bartolini B,Parnigoni A,Carava E,Moretto P,etal.Revisitingthehallmarksofcancer:theroleofhyaluronan.SeminCancerBiol2020;62:9-19.DOIPubMed35.Amson R,Karp JE,Telerman A.Lessonsfromtumorreversionforcancertreatment.CurrOpinOncol2013;25:59-65.DOIPubMed36.Sun Y,Ma L.Theemergingmolecularmachineryandtherapeutictargetsofmetastasis.TrendsPharmacolSci2015;36:349-59.DOIPubMedPMC37.Scheel C,Onder T,Karnoub A,Weinberg RA.Adaptationversusselection:theoriginsofmetastaticbehavior.CancerRes2007;67:11476-9.discussion9-80PubMed38.Ruan K,Fang X,Ouyang G.MicroRNAs:novelregulatorsinthehallmarksofhumancancer.CancerLett2009;285:116-26.DOIPubMed39.Nath S,Ghatak D,Das P,Roychoudhury S.Transcriptionalcontrolofmitosis:deregulationandcancer.FrontEndocrinol(Lausanne)2015;6:60.DOIPubMedPMC40.Chiaretti S,deCurtis I.Roleofliprinsintheregulationoftumorcellmotilityandinvasion.CurrCancerDrugTargets2016;16:238-48.DOIPubMed41.Saini P,Courtneidge SA.Tksadaptorproteinsataglance.JCellSci2018;131.DOIPubMedPMC42.Anfossi S,Fu X,Nagvekar R,Calin GA.MicroRNAs,regulatorymessengersinsideandoutsidecancercells.AdvExpMedBiol2018;1056:87-108.DOIPubMed43.Hoshino A,Kim HS,Bojmar L,Gyan KE,Cioffi C,etal.Extracellularvesicleandparticlebiomarkersdefinemultiplehumancancers.Cell2020;182:1-18.DOIPubMed44.Wortzel I,Dror S,Kenific CM,Lyden D.Exosome-mediatedmetastasis:communicationfromadistance.DevCell2019;49:347-60.DOIPubMed45.Schwarzenbach H,Gahan PB.MicroRNAshuttlefromcell-to-cellbyexosomesanditsimpactincancer.NoncodingRNA2019;5.DOIPubMedPMC46.Hoshino A,Costa-Silva B,Shen TL,Rodrigues G,Hashimoto A,etal.Tumourexosomeintegrinsdetermineorganotropicmetastasis.Nature2015;527:329-35.DOIPubMedPMC47.Rodrigues G,Hoshino A,Kenific CM,Matei IR,Steiner L,etal.TumourexosomalCEMIPproteinpromotescancercellcolonizationinbrainmetastasis.NatCellBiol2019;21:1403-12.DOIPubMedPMC48.Tomasetti C,Vogelstein B.Canceretiology.Variationincancerriskamongtissuescanbeexplainedbythenumberofstemcelldivisions.Science2015;347:78-81.DOIPubMedPMC49.Lau EY,Ho NP,Lee TK.Cancerstemcellsandtheirmicroenvironment:biologyandtherapeuticimplications.StemCellsInt2017;2017:3714190.DOIPubMedPMC50.Brabletz T,Jung A,Spaderna S,Hlubek F,Kirchner T.Opinion:migratingcancerstemcells-anintegratedconceptofmalignanttumourprogression.NatRevCancer2005;5:744-9.DOIPubMed51.Ganesh K,Basnet H,Kaygusuz Y,Laughney AM,He L,etal.L1CAMdefinestheregenerativeoriginofmetastasis-initiatingcellsincolorectalcancer.NatureCancer2020:20-45.DOIPubMedPMC52.Brennan MF,Antonescu CR,Moraco N,Singer S.Lessonslearnedfromthestudyof10,000patientswithsofttissuesarcoma.AnnSurg2014;260:416-21.discussion21-2PubMedPMC53.Fearon ER,Vogelstein B.Ageneticmodelforcolorectaltumorigenesis.Cell1990;61:759-67.DOIPubMed54.Guizard AN,Dejardin OJ,Launay LC,Bara S,Lapotre-Ledoux BM,etal.Diagnosisandmanagementofheadandneckcancersinahigh-incidenceareainFrance:apopulation-basedstudy.Medicine(Baltimore)2017;96:e7285.DOIPubMedPMC55.Olson E,Wintheiser G,Wolfe KM,Droessler J,Silberstein PT.Epidemiologyofthyroidcancer:areviewofthenationalcancerdatabase,2000-2013.Cureus2019;11:e4127.DOIPubMedPMC56.Welch DR,Hurst DR.DefiningtheHallmarksofMetastasis.CancerRes2019;79:3011-27.DOIPubMedPMC57.Flanigan RC,Yonover PM.Theroleofradicalnephrectomyinmetastaticrenalcellcarcinoma.SeminUrolOncol2001;19:98-102.PubMed58.O’Reilly MS,Boehm T,Shing Y,Fukai N,Vasios G,etal.Endostatin:anendogenousinhibitorofangiogenesisandtumorgrowth.Cell1997;88:277-85.DOIPubMed59.Kisker O,Onizuka S,Banyard J,Komiyama T,Becker CM,etal.Generationofmultipleangiogenesisinhibitorsbyhumanpancreaticcancer.CancerRes2001;61:7298-304.PubMed60.Kaplan RN,Riba RD,Zacharoulis S,Bramley AH,Vincent L,etal.VEGFR1-positivehaematopoieticbonemarrowprogenitorsinitiatethepre-metastaticniche.Nature2005;438:820-7.DOIPubMedPMC61.Mareel M,Oliveira MJ,Madani I.Cancerinvasionandmetastasis:interactingecosystems.VirchowsArch2009;454:599-622.DOIPubMed62.Kano Y,Ishii H,Konno M,Yamasaki M,Miyata H,etal.Cellsoforiginofsquamousepithelium,dysplasiaandcancerintheheadandneckregionafterbonemarrowtransplantation.IntJOncol2014;44:443-50.DOIPubMed63.Houghton J,Stoicov C,Nomura S,Rogers AB,Carlson J,etal.Gastriccanceroriginatingfrombonemarrow-derivedcells.Science2004;306:1568-71.DOIPubMed64.Guest I,Ilic Z,Ma J,Grant D,Glinsky G,etal.Directandindirectcontributionofbonemarrow-derivedcellstocancer.IntJCancer2010;126:2308-18.DOIPubMedPMC65.Kaplan RN,Rafii S,Lyden D.Preparingthe"soil":thepremetastaticniche.CancerRes2006;66:11089-93.66.Kim S,Takahashi H,Lin WW,Descargues P,Grivennikov S,etal.Carcinoma-producedfactorsactivatemyeloidcellsthroughTLR2tostimulatemetastasis.Nature2009;457:102-6.DOIPubMedPMC67.Spano D,Zollo M.Tumormicroenvironment:amainactorinthemetastasisprocess.ClinExpMetastasis2012;29:381-95.DOIPubMed68.Costa-Silva B,Aiello NM,Ocean AJ,Singh S,Zhang H,etal.Pancreaticcancerexosomesinitiatepre-metastaticnicheformationintheliver.NatCellBiol2015;17:816-26.DOIPubMedPMC69.Liu Y,Cao X.Characteristicsandsignificanceofthepre-metastaticniche.CancerCell2016;30:668-81.DOIPubMed70.Norton JD,Deed RW,Craggs G,Sablitzky F.Idhelix-loop-helixproteinsincellgrowthanddifferentiation.TrendsCellBiol1998;8:58-65.PubMed71.Guo L,Guo N.Exosomes:potentregulatorsoftumormalignancyandpotentialbio-toolsinclinicalapplication.CritRevOncolHematol2015;95:346-58.DOIPubMed72.Karamanos NK,Piperigkou Z,Theocharis AD,Watanabe H,Franchi M,etal.Proteoglycanchemicaldiversitydrivesmultifunctionalcellregulationandtherapeutics.ChemRev2018;118:9152-232.DOIPubMed73.Baietti MF,Zhang Z,Mortier E,Melchior A,Degeest G,etal.Syndecan-syntenin-ALIXregulatesthebiogenesisofexosomes.NatCellBiol2012;14:677-85.DOIPubMed74.Mu W,Rana S,Zoller M.Hostmatrixmodulationbytumorexosomespromotesmotilityandinvasiveness.Neoplasia2013;15:875-87.DOIPubMedPMC75.Peinado H,Aleckovic M,Lavotshkin S,Matei I,Costa-Silva B,etal.Melanomaexosomeseducatebonemarrowprogenitorcellstowardapro-metastaticphenotypethroughMET.NatMed2012;18:883-91.DOIPubMedPMC76.Hessvik NP,Llorente A.Currentknowledgeonexosomebiogenesisandrelease.CellMolLifeSci2018;75:193-208.DOIPubMedPMC77.Cha DJ,Franklin JL,Dou Y,Liu Q,Higginbotham JN,etal.KRAS-dependentsortingofmiRNAtoexosomes.Elife2015;4:e07197.DOIPubMedPMC78.Redig AJ,McAllister SS.Breastcancerasasystemicdisease:aviewofmetastasis.JInternMed2013;274:113-26.DOIPubMedPMC79.Engblom C,Pfirschke C,Zilionis R,DaSilva MartinsJ,Bos SA,etal.Osteoblastsremotelysupplylungtumorswithcancer-promotingSiglecF(high)neutrophils.Science2017;358.DOIPubMedPMC80.Orimo A,Gupta PB,Sgroi DC,Arenzana-Seisdedos F,Delaunay T,etal.StromalfibroblastspresentininvasivehumanbreastcarcinomaspromotetumorgrowthandangiogenesisthroughelevatedSDF-1/CXCL12secretion.Cell2005;121:335-48.DOIPubMed81.Hattori K,Heissig B,Tashiro K,Honjo T,Tateno M,etal.Plasmaelevationofstromalcell-derivedfactor-1inducesmobilizationofmatureandimmaturehematopoieticprogenitorandstemcells.Blood2001;97:3354-60.DOIPubMed82.Kidd S,Spaeth E,Watson K,Burks J,Lu H,etal.Originsofthetumormicroenvironment:quantitativeassessmentofadipose-derivedandbonemarrow-derivedstroma.PLoSOne2012;7:e30563.DOIPubMedPMC83.LeBleu VS,Kalluri R.Apeekintocancer-associatedfibroblasts:origins,functionsandtranslationalimpact.DisModelMech2018;11.DOIPubMedPMC84.Allavena P,Germano G,Mantovani A.Molecularlinksbetweeninflammationandcancer.SystemsBiologyofCancer:CambridgeUniversityPress;2015.pp.273-81.85.Colotta F,Allavena P,Sica A,Garlanda C,Mantovani A.Cancer-relatedinflammation,theseventhhallmarkofcancer:linkstogeneticinstability.Carcinogenesis2009;30:1073-81.DOIPubMed86.Grivennikov SI,Greten FR,Karin M.Immunity,inflammation,andcancer.Cell2010;140:883-99.DOIPubMedPMC87.Kundu JK,Surh YJ.Inflammation:gearingthejourneytocancer.MutatRes2008;659:15-30.DOIPubMed88.Terlizzi M,Casolaro V,Pinto A,Sorrentino R.Inflammasome:cancer'sfriendorfoe?PharmacolTher2014;143:24-33.89.Setrerrahmane S,Xu H.Tumor-relatedinterleukins:oldvalidatedtargetsfornewanti-cancerdrugdevelopment.MolCancer2017;16:153.DOIPubMedPMC90.Elaraj DM,Weinreich DM,Varghese S,Puhlmann M,Hewitt SM,etal.Theroleofinterleukin1ingrowthandmetastasisofhumancancerxenografts.ClinCancerRes2006;12:1088-96.DOIPubMed91.Tuomisto AE,Makinen MJ,Vayrynen JP.Systemicinflammationincolorectalcancer:Underlyingfactors,effects,andprognosticsignificance.WorldJGastroenterol2019;25:4383-404.DOIPubMedPMC92.Becker A,Thakur BK,Weiss JM,Kim HS,Peinado H,etal.Extracellularvesiclesincancer:cell-to-cellmediatorsofmetastasis.CancerCell2016;30:836-48.DOIPubMedPMC93.Manning S,Danielson KM.Theimmunomodulatoryroleoftumor-derivedextracellularvesiclesincolorectalcancer.ImmunolCellBiol2018;doi:10.1111/imcb.12038.DOIPubMed94.Jain S,Gautam V,Naseem S.Acute-phaseproteins:asdiagnostictool.JPharmBioalliedSci2011;3:118-27.DOIPubMedPMC95.Bankey PE.Hepaticreagulationofsystemicinflammationfollowingacuteinjury.CurrOpinCritCare1996;2:280-6.96.Nieuwenhuijzen GA,Haskel Y,Lu Q,Berg RD,vanRooijen N,etal.Macrophageeliminationincreasesbacterialtranslocationandgut-originsepticemiabutattenuatessymptomsandmortalityrateinamodelofsystemicinflammation.AnnSurg1993;218:791-9.DOIPubMedPMC97.Iida N,Dzutsev A,Stewart CA,Smith L,Bouladoux N,etal.Commensalbacteriacontrolcancerresponsetotherapybymodulatingthetumormicroenvironment.Science2013;342:967-70.DOIPubMedPMC98.Viaud S,Saccheri F,Mignot G,Yamazaki T,Daillere R,etal.Theintestinalmicrobiotamodulatestheanticancerimmuneeffectsofcyclophosphamide.Science2013;342:971-6.DOIPubMedPMC99.Gorjifard S,Goldszmid RS.Microbiota-myeloidcellcrosstalkbeyondthegut.JLeukocBiol2016;100:865-79.DOIPubMedPMC100.Kostic AD,Chun E,Meyerson M,Garrett WS.Microbesandinflammationincolorectalcancer.CancerImmunolRes2013;1:150-7.DOIPubMed101.Rutkowski MR,Conejo-Garcia JR.TLR5signaling,commensalmicrobiotaandsystemictumorpromotinginflammation:thethreeparcaeofmalignantprogression.Oncoimmunology2015;4:e1021542.DOIPubMedPMC102.Hui D.Prognosticationofsurvivalinpatientswithadvancedcancer:predictingtheunpredictable?CancerControl2015;22:489-97.DOIPubMedPMC103.Wang C,Jin S,Xu S,Cao S.Highsystemicimmune-inflammationindex(SII)representsanunfavorableprognosticfactorforsmallcelllungcancertreatedwithetoposideandplatinum-basedchemotherapy.Lung2020;198:405-14.DOIPubMed104.Dupréa A,Malika HZ.Inflammationandcancer:whatasurgicaloncologistshouldknow.EurJSurgOncol2018;44:566-70.DOIPubMed105.Nakamura K,Smyth MJ.Targetingcancer-relatedinflammationintheeraofimmunotherapy.ImmunolCellBiol2017;95:325-32.DOIPubMed106.Dinarello CA.Whynottreathumancancerwithinterleukin-1blockade?CancerMetastasisRev2010;29:317-29.DOIPubMedPMC107.Crusz SM,Balkwill FR.Inflammationandcancer:advancesandnewagents.NatRevClinOncol2015;12:584-96.DOIPubMed108.Chen G,Huang AC,Zhang W,Zhang G,Wu M,etal.ExosomalPD-L1contributestoimmunosuppressionandisassociatedwithanti-PD-1response.Nature2018;560:382-6.DOIPubMedPMC109.Zhou M,Chen J,Zhou L,Chen W,Ding G,etal.PancreaticcancerderivedexosomesregulatetheexpressionofTLR4indendriticcellsviamiR-203.CellImmunol2014;292:65-9.DOIPubMed110.Liu Y,Gu Y,Cao X.Theexosomesintumorimmunity.Oncoimmunology2015;4:e1027472.DOIPubMedPMC111.Whiteside TL.Exosomesandtumor-mediatedimmunesuppression.JClinInvest2016;126:1216-23.DOIPubMedPMC112.Yin Y,Cai X,Chen X,Liang H,Zhang Y,etal.Tumor-secretedmiR-214inducesregulatoryTcells:amajorlinkbetweenimmuneevasionandtumorgrowth.CellRes2014;24:1164-80.DOIPubMedPMC113.Berchem G,Noman MZ,Bosseler M,Paggetti J,Baconnais S,etal.Hypoxictumor-derivedmicrovesiclesnegativelyregulateNKcellfunctionbyamechanisminvolvingTGF-betaandmiR23atransfer.Oncoimmunology2016;5:e1062968.DOIPubMedPMC114.Belkaid Y,Harrison OJ.HomeostaticImmunityandtheMicrobiota.Immunity2017;46:562-76.DOIPubMedPMC115.Honda K,Littman DR.Themicrobiotainadaptiveimmunehomeostasisanddisease.Nature2016;535:75-84.DOIPubMed116.Matson V,Fessler J,Bao R,Chongsuwat T,Zha Y,etal.Thecommensalmicrobiomeisassociatedwithanti-PD-1efficacyinmetastaticmelanomapatients.Science2018;359:104-8.DOIPubMedPMC117.Routy B,LeChatelier E,Derosa L,Duong CPM,Alou MT,etal.GutmicrobiomeinfluencesefficacyofPD-1-basedimmunotherapyagainstepithelialtumors.Science2018;359:91-7.DOIPubMed118.Tamura R,Tanaka T,Yamamoto Y,Akasaki Y,Sasaki H.Dualroleofmacrophageintumorimmunity.Immunotherapy2018;10:899-909.DOIPubMed119.Shitara K,Nishikawa H.RegulatoryTcells:apotentialtargetincancerimmunotherapy.AnnNYAcadSci2018;1417:104-15.DOIPubMed120.Whiteside TL.TheroleofregulatoryTcellsincancerimmunology.ImmunotargetsTher2015;4:159-71.DOIPubMedPMC121.Zamarron BF,Chen W.Dualrolesofimmunecellsandtheirfactorsincancerdevelopmentandprogression.IntJBiolSci2011;7:651-8.DOIPubMedPMC122.Shalapour S,Karin M.Immunity,inflammation,andcancer:aneternalfightbetweengoodandevil.JClinInvest2015;125:3347-55.DOIPubMedPMC123.Labelle M,Begum S,Hynes RO.Plateletsguidetheformationofearlymetastaticniches.ProcNatlAcadSciUSA2014;111:E3053-61.DOIPubMedPMC124.Ocana A,Nieto-Jimenez C,Pandiella A,Templeton AJ.Neutrophilsincancer:prognosticroleandtherapeuticstrategies.MolCancer2017;16:137.DOIPubMedPMC125.Mouchemore KA,Anderson RL,Hamilton JA.Neutrophils,G-CSFandtheircontributiontobreastcancermetastasis.FEBSJ2018;285:665-79.DOIPubMed126.Cools-Lartigue J,Spicer J,Najmeh S,Ferri L.Neutrophilextracellulartrapsincancerprogression.CellMolLifeSci2014;71:4179-94.DOIPubMedPMC127.Park J,Wysocki RW,Amoozgar Z,Maiorino L,Fein MR,etal.Cancercellsinducemetastasis-supportingneutrophilextracellularDNAtraps.SciTranslMed2016;8:361ra138.DOIPubMedPMC128.Lieffers JR,Mourtzakis M,Hall KD,McCargar LJ,Prado CM,etal.Aviscerallydrivencachexiasyndromeinpatientswithadvancedcolorectalcancer:contributionsoforganandtumormasstowhole-bodyenergydemands.AmJClinNutr2009;89:1173-9.DOIPubMedPMC129.Warburg O.Ontheoriginofcancercells.Science1956;123:309-14.DOIPubMed130.Vaupel P,Mayer A.Availability,notrespiratorycapacitygovernsoxygenconsumptionofsolidtumors.IntJBiochemCellBiol2012;44:1477-81.DOIPubMed131.Davidson SM,Papagiannakopoulos T,Olenchock BA,Heyman JE,Keibler MA,etal.Environmentimpactsthemetabolicdependenciesofras-drivennon-smallcelllungcancer.CellMetab2016;23:517-28.DOIPubMedPMC132.Tisdale MJ.Mechanismsofcancercachexia.PhysiolRev2009;89:381-410.DOIPubMed133.Fearon KC,Glass DJ,Guttridge DC.Cancercachexia:mediators,signaling,andmetabolicpathways.CellMetab2012;16:153-66.DOIPubMed134.Porporato PE.Understandingcachexiaasacancermetabolismsyndrome.Oncogenesis2016;5:e200.DOIPubMedPMC135.VanderHeiden MG,DeBerardinis RJ.UnderstandingtheIntersectionsbetweenMetabolismandCancerBiology.Cell2017;168:657-69.DOIPubMedPMC136.Alam MM,Lal S,FitzGerald KE,Zhang L.Aholisticviewofcancerbioenergetics:mitochondrialfunctionandrespirationplayfundamentalrolesinthedevelopmentandprogressionofdiversetumors.ClinTranslMed2016;5:3.DOIPubMedPMC137.Martinez-Outschoorn UE,Pavlides S,Howell A,Pestell RG,Tanowitz HB,etal.Stromal-epithelialmetaboliccouplingincancer:integratingautophagyandmetabolisminthetumormicroenvironment.IntJBiochemCellBiol2011;43:1045-51.DOIPubMedPMC138.Pavlides S,Tsirigos A,Migneco G,Whitaker-Menezes D,Chiavarina B,etal.Theautophagictumorstromamodelofcancer:roleofoxidativestressandketoneproductioninfuelingtumorcellmetabolism.CellCycle2010;9:3485-505.DOIPubMedPMC139.Pavlides S,Tsirigos A,Vera I,Flomenberg N,Frank PG,etal.Lossofstromalcaveolin-1leadstooxidativestress,mimicshypoxiaanddrivesinflammationinthetumormicroenvironment,conferringthe“reverseWarburgeffect”:atranscriptionalinformaticsanalysiswithvalidation.CellCycle2010;9:2201-19.DOI140.Tsoli M,Robertson G.Cancercachexia:malignantinflammation,tumorkines,andmetabolicmayhem.TrendsEndocrinolMetab2013;24:174-83.DOIPubMed141.Flint TR,Janowitz T,Connell CM,Roberts EW,Denton AE,etal.Tumor-inducedIL-6reprogramshostmetabolismtosuppressanti-tumorimmunity.CellMetab2016;24:672-84.DOIPubMedPMC142.Lee YM,Chang WC,Ma WL.Hypothesis:solidtumoursbehaveassystemicmetabolicdictators.JCellMolMed2016;20:1076-85.DOIPubMedPMC143.Argiles JM,Stemmler B,Lopez-Soriano FJ,Busquets S.Inter-tissuecommunicationincancercachexia.NatRevEndocrinol2018;15:9-20.DOIPubMed144.Argiles JM,Busquets S,Stemmler B,Lopez-Soriano FJ.Cancercachexia:understandingthemolecularbasis.NatRevCancer2014;14:754-62.DOIPubMed145.George J,Cannon T,Lai V,Richey L,Zanation A,etal.Cancercachexiasyndromeinheadandneckcancerpatients:PartII.pathophysiology.HeadNeck2007;29:497-507.DOIPubMed146.Roxburgh CS,McMillan DC.Cancerandsystemicinflammation:treatthetumourandtreatthehost.BrJCancer2014;110:1409-12.DOIPubMedPMC147.Payen VL,Porporato PE,Baselet B,Sonveaux P.Metabolicchangesassociatedwithtumormetastasis,part1:tumorpH,glycolysisandthepentosephosphatepathway.CellMolLifeSci2016;73:1333-48.DOIPubMed148.Porporato PE,Payen VL,Baselet B,Sonveaux P.Metabolicchangesassociatedwithtumormetastasis,part2:Mitochondria,lipidandaminoacidmetabolism.CellMolLifeSci2016;73:1349-63.DOIPubMed149.Chasen M,Bhargava R,Hirschman S.Immunomodulatoryagentsforthetreatmentofcachexia.CurrOpinSupportPalliatCare2014;8:328-33.DOIPubMed150.Das SK,Eder S,Schauer S,Diwoky C,Temmel H,etal.Adiposetriglyceridelipasecontributestocancer-associatedcachexia.Science2011;333:233-8.DOIPubMed151.Mantovani G,Maccio A,Mura L,Massa E,Mudu MC,etal.Serumlevelsofleptinandproinflammatorycytokinesinpatientswithadvanced-stagecanceratdifferentsites.JMolMed(Berl)2000;78:554-61.DOIPubMed152.Kir S,White JP,Kleiner S,Kazak L,Cohen P,etal.Tumour-derivedPTH-relatedproteintriggersadiposetissuebrowningandcancercachexia.Nature2014;513:100-4.DOIPubMedPMC153.Petruzzelli M,Schweiger M,Schreiber R,Campos-Olivas R,Tsoli M,etal.Aswitchfromwhitetobrownfatincreasesenergyexpenditureincancer-associatedcachexia.CellMetab2014;20:433-47.DOIPubMed154.Tomasin R,Martin A,Cominetti MR.Metastasisandcachexia:alongsideinclinics,butnotsoinanimalmodels.JCachexiaSarcopeniaMuscle2019;10:1183-94.DOIPubMedPMC155.Zhang G,Liu Z,Ding H,Zhou Y,Doan HA,etal.TumorinducesmusclewastinginmicethroughreleasingextracellularHsp70andHsp90.NatCommun2017;8:589.DOIPubMedPMC156.Lazar I,Clement E,Dauvillier S,Milhas D,Ducoux-Petit M,etal.Adipocyteexosomespromotemelanomaaggressivenessthroughfattyacidoxidation:anovelmechanismlinkingobesityandcancer.CancerRes2016;76:4051-7.DOIPubMed157.Tomasetti M,Lee W,Santarelli L,Neuzil J.Exosome-derivedmicroRNAsincancermetabolism:possibleimplicationsincancerdiagnosticsandtherapy.ExpMolMed2017;49:e285.DOIPubMedPMC158.Marinho R,Alcantara PSM,Ottoch JP,Seelaender M.RoleofexosomalmicroRNAsandmyomiRsinthedevelopmentofcancercachexia-associatedmusclewasting.FrontNutr2017;4:69.DOIPubMedPMC159.He WA,Calore F,Londhe P,Canella A,Guttridge DC,etal.MicrovesiclescontainingmiRNAspromotemusclecelldeathincancercachexiaviaTLR7.ProcNatlAcadSciUSA2014;111:4525-9.DOIPubMedPMC160.Masri S,Papagiannakopoulos T,Kinouchi K,Liu Y,Cervantes M,etal.Lungadenocarcinomadistallyrewireshepaticcircadianhomeostasis.Cell2016;165:896-909.DOIPubMedPMC161.Goncalves MD,Hwang SK,Pauli C,Murphy CJ,Cheng Z,etal.Fenofibratepreventsskeletalmusclelossinmicewithlungcancer.ProcNatlAcadSciUSA2018;115:E743-52.DOIPubMedPMC162.Bruning PF,Bonfrer JM,vanNoord PA,Hart AA,deJong-Bakker M,etal.Insulinresistanceandbreast-cancerrisk.IntJCancer1992;52:511-6.DOIPubMed163.Maloney EK,McLaughlin JL,Dagdigian NE,Garrett LM,Connors KM,etal.Ananti-insulin-likegrowthfactorIreceptorantibodythatisapotentinhibitorofcancercellproliferation.CancerRes2003;63:5073-83.PubMed164.Hartl WH,Demmelmair H,Jauch KW,Koletzko B,Schildberg FW.Effectofglucagononproteinsynthesisinhumanrectalcancerinsitu.AnnSurgery1998;227:390-7.DOIPubMedPMC165.Mayers JR,Torrence ME,Danai LV,Papagiannakopoulos T,Davidson SM,etal.Tissueoforigindictatesbranched-chainaminoacidmetabolisminmutantKras-drivencancers.Science2016;353:1161-5.DOIPubMedPMC166.Mayers JR,Wu C,Clish CB,Kraft P,Torrence ME,etal.Elevationofcirculatingbranched-chainaminoacidsisanearlyeventinhumanpancreaticadenocarcinomadevelopment.NatMed2014;20:1193-8.DOIPubMedPMC167.Bindels LB,Delzenne NM.Musclewasting:thegutmicrobiotaasanewtherapeutictarget?IntJBiochemCellBiol2013;45:2186-90.DOIPubMed168.Nieuwdorp M,Gilijamse PW,Pai N,Kaplan LM.Roleofthemicrobiomeinenergyregulationandmetabolism.Gastroenterology2014;146:1525-33.DOIPubMed169.Argiles JM,Lopez-Soriano J,Almendro V,Busquets S,Lopez-Soriano FJ.Cross-talkbetweenskeletalmuscleandadiposetissue:alinkwithobesity?MedResRev2005;25:49-65.DOIPubMed170.Hellerstein MK,Meydani SN,Meydani M,Wu K,Dinarello CA.Interleukin-1-inducedanorexiaintheRat-influenceofprostaglandins.JClinInvest1989;84:228-35.DOIPubMedPMC171.Chauhan A,Sequeria A,Manderson C,Maddocks M,Wasley D,etal.Exploringautonomicnervoussystemdysfunctioninpatientswithcancercachexia:apilotstudy.AutonNeurosci2012;166:93-5.DOIPubMed172.Chrousos GP.Thehypothalamic-pituitary-adrenalaxisandimmune-mediatedinflammation.NEnglJMed1995;332:1351-62.DOIPubMed173.Murphy KT.Thepathogenesisandtreatmentofcardiacatrophyincancercachexia.AmJPhysiolHeartCircPhysiol2016;310:H466-77.DOIPubMed174.Belloum Y,Rannou-Bekono F,Favier FB.Cancer-inducedcardiaccachexia:Pathogenesisandimpactofphysicalactivity(Review).OncolRep2017;37:2543-52.DOIPubMed175.Anker SD,Sharma R.Thesyndromeofcardiaccachexia.IntJCardiol2002;85:51-66.DOIPubMed176.Israel M,Schwartz L.Themetabolicadvantageoftumorcells.MolCancer2011;10:70.DOIPubMedPMC177.Israël M.Aprimarycauseofcancer:GABAdeficiencyinendocrinepancreas.CancerTherapy2012;8:171-83.178.Cancermetabolism:analterationoftheanabolic–catabolicselectionswitch.OACancer2014;2:1.179.Israël M.Metabolicrewiringofstemcellsanddifferentiatedcellsincancer:thehypotheticalconsequencesofaGABAdeficiencyinendocrinepancreas.JCancerMetastasisTreat2019;5.DOI180.Kuhn T,Floegel A,Sookthai D,Johnson T,Rolle-Kampczyk U,etal.Higherplasmalevelsoflysophosphatidylcholine18:0arerelatedtoalowerriskofcommoncancersinaprospectivemetabolomicsstudy.BMCMed2016;14:13.DOIPubMedPMC181.Beleva E,Grudeva-Popova J.FromVirchow'striadtometastasis:circulatinghemostaticfactorsaspredictorsofriskformetastasisinsolidtumors.JBUON2013;18:25-33.PubMed182.Karikoski M,Marttila-Ichihara F,Elima K,Rantakari P,Hollmen M,etal.Clever-1/stabilin-1controlscancergrowthandmetastasis.ClinCancerRes2014;20:6452-64.DOIPubMed183.Khorana AA,Francis CW,Culakova E,Kuderer NM,Lyman GH.Thromboembolismisaleadingcauseofdeathincancerpatientsreceivingoutpatientchemotherapy.JThrombHaemost2007;5:632-4.DOIPubMed184.Falanga A,Russo L,Milesi V,Vignoli A.Mechanismsandriskfactorsofthrombosisincancer.CritRevOncolHematol2017;118:79-83.DOIPubMed185.vandenBerg YW,Osanto S,Reitsma PH,Versteeg HH.Therelationshipbetweentissuefactorandcancerprogression:insightsfrombenchandbedside.Blood2012;119:924-32.DOIPubMed186.Magnus N,Garnier D,Meehan B,McGraw S,Lee TH,etal.Tissuefactorexpressionprovokesescapefromtumordormancyandleadstogenomicalterations.ProcNatlAcadSciUSA2014;111:3544-9.DOIPubMedPMC187.Versteeg HH,Schaffner F,Kerver M,Petersen HH,Ahamed J,etal.Inhibitionoftissuefactorsignalingsuppressestumorgrowth.Blood2008;111:190-9.DOIPubMedPMC188.Labelle M,Hynes RO.Theinitialhoursofmetastasis:theimportanceofcooperativehost-tumorcellinteractionsduringhematogenousdissemination.CancerDiscov2012;2:1091-9.DOIPubMedPMC189.Labelle M,Begum S,Hynes RO.Directsignalingbetweenplateletsandcancercellsinducesanepithelial-mesenchymal-liketransitionandpromotesmetastasis.CancerCell2011;20:576-90.DOIPubMedPMC190.Laubli H,Borsig L.Selectinspromotetumormetastasis.SeminCancerBiol2010;20:169-77.DOIPubMed191.Becker KA,Beckmann N,Adams C,Hessler G,Kramer M,etal.MelanomacellmetastasisviaP-selectin-mediatedactivationofacidsphingomyelinaseinplatelets.ClinExpMetastasis2017;34:25-35.DOIPubMed192.Lavergne M,Janus-Bell E,Schaff M,Gachet C,Mangin PH.Plateletintegrinsintumormetastasis:dotheyrepresentatherapeutictarget?Cancers(Basel)2017;9.DOIPubMedPMC193.Mege D,Panicot-Dubois L,Ouaissi M,Robert S,Sielezneff I,etal.Theoriginandconcentrationofcirculatingmicroparticlesdifferaccordingtocancertypeandevolution:aprospectivesingle-centerstudy.IntJCancer2016;138:939-48.DOIPubMed194.Mezouar S,Frere C,Darbousset R,Mege D,Crescence L,etal.Roleofplateletsincancerandcancer-associatedthrombosis:experimentalandclinicalevidences.ThrombRes2016;139:65-76.DOI195.Dvorak HF,Quay SC,Orenstein NS,Dvorak AM,Hahn P,etal.Tumorsheddingandcoagulation.Science1981;212:923-4.DOIPubMed196.DelConde I,Bharwani LD,Dietzen DJ,Pendurthi U,Thiagarajan P,etal.Microvesicle-associatedtissuefactorandTrousseau’ssyndrome.JThrombHaemost2007;5:70-4.DOIPubMedPMC197.Geddings JE,Mackman N.Tumor-derivedtissuefactor-positivemicroparticlesandvenousthrombosisincancerpatients.Blood2013;122:1873-80.DOIPubMedPMC198.Magnon C.Roleoftheautonomicnervoussystemintumorigenesisandmetastasis.MolCellOncol2015;2:e975643.DOIPubMedPMC199.Elenkov IJ,Wilder RL,Chrousos GP,Vizi ES.Thesympatheticnerve--anintegrativeinterfacebetweentwosupersystems:thebrainandtheimmunesystem.PharmacolRev2000;52:595-638.PubMed200.Li T,Harada M,Tamada K,Abe K,Nomoto K.RepeatedrestraintstressimpairstheantitumorTcellresponsethroughitssuppressiveeffectonTh1-typeCD4+Tcells.AnticancerRes1997;17:4259-68.PubMed201.Cao L,Liu X,Lin EJ,Wang C,Choi EY,etal.Environmentalandgeneticactivationofabrain-adipocyteBDNF/leptinaxiscausescancerremissionandinhibition.Cell2010;142:52-64.DOIPubMedPMC202.Burfeind KG,Michaelis KA,Marks DL.Thecentralroleofhypothalamicinflammationintheacuteillnessresponseandcachexia.SeminCellDevBiol2016;54:42-52.DOIPubMedPMC203.Braun TP,Zhu X,Szumowski M,Scott GD,Grossberg AJ,etal.Centralnervoussysteminflammationinducesmuscleatrophyviaactivationofthehypothalamic-pituitary-adrenalaxis.JExpMed2011;208:2449-63.DOIPubMedPMC204.Burfeind KG,Zhu X,Levasseur PR,Michaelis KA,Norgard MA,etal.TRIFisakeyinflammatorymediatorofacutesicknessbehaviorandcancercachexia.BrainBehavImmun2018;73:364-74.DOIPubMedPMC205.Mravec B,Horvathova L,Cernackova A.Hypothalamicinflammationatacrossroadofsomaticdiseases.CellMolNeurobiol2019;39:11-29.DOIPubMed206.Molfino A,Iannace A,Colaiacomo MC,Farcomeni A,Emiliani A,etal.Canceranorexia:hypothalamicactivityanditsassociationwithinflammationandappetite-regulatingpeptidesinlungcancer.JCachexiaSarcopeniaMuscle2017;8:40-7.DOIPubMedPMC207.Mauffrey P,Tchitchek N,Barroca V,Bemelmans AP,Firlej V,etal.Progenitorsfromthecentralnervoussystemdriveneurogenesisincancer.Nature2019;569:672-8.DOIPubMed208.Cole SW,Nagaraja AS,Lutgendorf SK,Green PA,Sood AK.Sympatheticnervoussystemregulationofthetumourmicroenvironment.NatRevCancer2015;15:563-72.DOIPubMedPMC209.Jones DH,Nakashima T,Sanchez OH,Kozieradzki I,Komarova SV,etal.RegulationofcancercellmigrationandbonemetastasisbyRANKL.Nature2006;440:692-6.DOIPubMed210.Katayama Y,Battista M,Kao WM,Hidalgo A,Peired AJ,etal.Signalsfromthesympatheticnervoussystemregulatehematopoieticstemcellegressfrombonemarrow.Cell2006;124:407-21.DOIPubMed211.Elefteriou F.Roleofsympatheticnervesintheestablishmentofmetastaticbreastcancercellsinbone.JBoneOncol2016;5:132-4.DOIPubMedPMC212.Magnon C,Hall SJ,Lin J,Xue X,Gerber L,etal.Autonomicnervedevelopmentcontributestoprostatecancerprogression.Science2013;341:1236361.DOIPubMed213.Grytli HH,Fagerland MW,Fossa SD,Tasken KA,Haheim LL.Useofbeta-blockersisassociatedwithprostatecancer-specificsurvivalinprostatecancerpatientsonandrogendeprivationtherapy.Prostate2013;73:250-60.DOIPubMed214.Lemeshow S,Sorensen HT,Phillips G,Yang EV,Antonsen S,etal.Beta-blockersandsurvivalamongDanishpatientswithmalignantmelanoma:apopulation-basedcohortstudy.CancerEpidemiolBiomarkersPrev2011;20:2273-9.DOIPubMedPMC215.Melhem-Bertrandt A,Chavez-Macgregor M,Lei X,Brown EN,Lee RT,etal.Beta-blockeruseisassociatedwithimprovedrelapse-freesurvivalinpatientswithtriple-negativebreastcancer.JClinOncol2011;29:2645-52.DOIPubMedPMC216.Pavlov VA,Tracey KJ.Thevagusnerveandtheinflammatoryreflex--linkingimmunityandmetabolism.NatRevEndocrinol2012;8:743-54.DOIPubMedPMC217.Fujii T,Mashimo M,Moriwaki Y,Misawa H,Ono S,etal.Expressionandfunctionofthecholinergicsysteminimmunecells.FrontImmunol2017;8:1085.DOIPubMedPMC218.Yu H,Xia H,Tang Q,Xu H,Wei G,etal.AcetylcholineactsthroughM3muscarinicreceptortoactivatetheEGFRsignalingandpromotesgastriccancercellproliferation.SciRep2017;7:40802.DOIPubMedPMC219.Zhao CM,Hayakawa Y,Kodama Y,Muthupalani S,Westphalen CB,etal.Denervationsuppressesgastrictumorigenesis.SciTranslMed2014;6:250ra115.DOIPubMedPMC220.Jobling P,Pundavela J,Oliveira SM,Roselli S,Walker MM,etal.Nerve-cancercellcross-talk:anovelpromoteroftumorprogression.CancerRes2015;75:1777-81.DOIPubMed221.Pelosof LC,Gerber DE.Paraneoplasticsyndromes:anapproachtodiagnosisandtreatment.MayoClinProc2010;85:838-54.DOIPubMedPMC222.DeLellis RA,Xia L.Paraneoplasticendocrinesyndromes:areview.EndocrPathol2003;14:303-17.DOIPubMed223.Castellone MD,Laukkanen MO,Teramoto H,Bellelli R,Ali G,etal.CrosstalkbetweenthebombesinneuropeptidereceptorandSonichedgehogpathwaysinsmallcelllungcarcinoma.Oncogene2015;34:1679-87.DOIPubMedPMC224.Sherbet GV.Hormonalinfluencesoncancerprogressionandprognosis.VitamHorm2005;71:147-200.DOIPubMed225.Mousa SA,Glinsky GV,Lin HY,Ashur-Fabian O,Hercbergs A,etal.Contributionsofthyroidhormonetocancermetastasis.Biomedicines2018;6:89.DOIPubMedPMC226.Su SC,Hsieh MJ,Yang WE,Chung WH,Reiter RJ,etal.Cancermetastasis:mechanismsofinhibitionbymelatonin.JPinealRes2017;62.DOIPubMed227.Zaki NF,Sabri YM,Farouk O,Abdelfatah A,Spence DW,etal.Depressivesymptoms,sleepprofilesandserummelatoninlevelsinasampleofbreastcancerpatients.NatSciSleep2020;12:135-49.DOIPubMedPMC228.Yu B,Zanetti KA,Temprosa M,Albanes D,Appel N,etal.Theconsortiumofmetabolomicsstudies(COMETS):metabolomicsin47prospectivecohortstudies.AmJEpidemiol2019;188:991-1012.DOIPubMedPMC229.Dean DC,Shen S,Hornicek FJ,Duan Z.Fromgenomicstometabolomics:emergingmetastaticbiomarkersinosteosarcoma.CancerMetastasisRev2018;37:719-31.DOIPubMed230.Xiao S,Zhou L.Gastriccancer:metabolicandmetabolomicsperspectives(Review).IntJOncol2017;51:5-17.DOIPubMed231.Peng X,Chen Z,Farshidfar F,Xu X,Lorenzi PL,etal.Molecularcharacterizationandclinicalrelevanceofmetabolicexpressionsubtypesinhumancancers.CellRep2018;23:255-69.e4.DOIPubMedPMC232.Cieslik M,Hoang SA,Baranova N,Chodaparambil S,Kumar M,etal.Epigeneticcoordinationofsignalingpathwaysduringtheepithelial-mesenchymaltransition.EpigeneticsChromatin2013;6:28.DOIPubMedPMC233.Hong D,Messier TL,Tye CE,Dobson JR,Fritz AJ,etal.Runx1stabilizesthemammaryepithelialcellphenotypeandpreventsepithelialtomesenchymaltransition.Oncotarget2017;8:17610-27.DOIPubMedPMC234.Vincent MD.Cancer:towardsageneraltheoryofthetarget:allsuccessfulcancertherapies,actualorpotential,arereducibletoeither(orboth)oftwofundamentalstrategies.Bioessays2017;39.DOIPubMed235.Dai S,Wei D,Wu Z,Zhou X,Wei X,etal.PhaseIclinicaltrialofautologousascites-derivedexosomescombinedwithGM-CSFforcolorectalcancer.MolTher2008;16:782-90.DOIPubMedPMC236.Que RS,Lin C,Ding GP,Wu ZR,Cao LP.Increasingtheimmuneactivityofexosomes:theeffectofmiRNA-depletedexosomeproteinsonactivatingdendriticcell/cytokine-inducedkillercellsagainstpancreaticcancer.JZhejiangUnivSciB2016;17:352-60.DOIPubMedPMC237.Tauro BJ,Greening DW,Mathias RA,Mathivanan S,Ji H,etal.TwodistinctpopulationsofexosomesarereleasedfromLIM1863coloncarcinomacell-derivedorganoids.MolCellProteomics2013;12:587-98.DOIPubMedPMC238.Kitano H.Biologicalrobustness.NatRevGenet2004;5:826-37.DOIPubMed239.Tyson JJ,Chen KC,Novak B.Sniffers,buzzers,togglesandblinkers:dynamicsofregulatoryandsignalingpathwaysinthecell.CurrOpinCellBiol2003;15:221-31.DOIPubMed240.Chen JC,Alvarez MJ,Talos F,Dhruv H,Rieckhof GE,etal.Identificationofcausalgeneticdriversofhumandiseasethroughsystems-levelanalysisofregulatorynetworks.Cell2014;159:402-14.DOIPubMedPMC241.Archetti M,Pienta KJ.Cooperationamongcancercells:applyinggametheorytocancer.NatRevCancer2019;19:110-7.DOIPubMed242.Csermely P,Korcsmaros T.Cancer-relatednetworks:ahelptounderstand,predictandchangemalignanttransformation.SeminCancerBiol2013;23:209-12.DOIPubMed243.Antonia SJ,Borghaei H,Ramalingam SS,Horn L,DeCastro CarpenoJ,etal.Four-yearsurvivalwithnivolumabinpatientswithpreviouslytreatedadvancednon-small-celllungcancer:apooledanalysis.LancetOncol2019;20:1395-408.DOIPubMedPMC244.Garon EB,Hellmann MD,Rizvi NA,Carcereny E,Leighl NB,etal.Five-yearoverallsurvivalforpatientswithadvancednonsmall-celllungcancertreatedwithpembrolizumab:resultsfromthephaseIkeynote-001study.JClinOncol2019;37:2518-27.DOIPubMedPMC245.Larkin J,Chiarion-Sileni V,Gonzalez R,Grob JJ,Rutkowski P,etal.Five-yearsurvivalwithcombinednivolumabandipilimumabinadvancedmelanoma.NEnglJMed2019;381:1535-46.DOIPubMed246.Rosenzweig SA.Acquiredresistancetodrugstargetingtyrosinekinases.AdvCancerRes2018;138:71-98.DOIPubMedPMC247.Liu X,McMurphy T,Xiao R,Slater A,Huang W,etal.HypothalamicgenetransferofBDNFinhibitsbreastcancerprogressionandmetastasisinmiddleageobesemice.MolTher2014;22:1275-84.DOIPubMedPMC248.Bucsek MJ,Qiao G,MacDonald CR,Giridharan T,Evans L,etal.Beta-adrenergicsignalinginmicehousedatstandardtemperaturessuppressesaneffectorphenotypeinCD8(+)Tcellsandunderminescheckpointinhibitortherapy.CancerRes2017;77:5639-51.249.Kokolus KM,Zhang Y,Sivik JM,Schmeck C,Zhu J,etal.Betablockerusecorrelateswithbetteroverallsurvivalinmetastaticmelanomapatientsandimprovestheefficacyofimmunotherapiesinmice.Oncoimmunology2018;7:e1405205.DOIPubMedPMC250.Springer J,Tschirner A,Haghikia A,vonHaehling S,Lal H,etal.Preventionoflivercancercachexia-inducedcardiacwastingandheartfailure.EurHeartJ2014;35:932-41.DOIPubMedPMC251.Saada-Bouzid E,Defaucheux C,Karabajakian A,Coloma VP,Servois V,etal.Hyperprogressionduringanti-PD-1/PD-L1therapyinpatientswithrecurrentand/ormetastaticheadandnecksquamouscellcarcinoma.AnnOncol2017;28:1605-11.DOIPubMedCiteThisArticle Paul D.Thesystemichallmarksofcancer. JCancerMetastasisTreat 2020;6:29.http://dx.doi.org/10.20517/2394-4722.2020.63 Views14056Downloads2107Citations 8Comments07 DownloadandBookmark Download DownloadPDF AddtoBookmark ShareThisArticle ArticleAccessStatistics Full-TextViewsEachMonth PDFDownloadsEachMonth QuantitiesofCitationsEachYear *AllthedatacomefromCrossref Comments CommentsmustbewritteninEnglish.Spam,offensivecontent,impersonation,andprivateinformationwillnotbepermitted.IfanycommentisreportedandidentifiedasinappropriatecontentbyOAEstaff,thecommentwillberemovedwithoutnotice.Ifyouhaveanyqueriesorneedanyhelp,[email protected]. Post Login 0 Cancel Loginwith OAEMESAS tostartadiscussion! Tip× Ok Citation Paul D.Thesystemichallmarksofcancer. JCancerMetastasisTreat 2020;6:29.http://dx.doi.org/10.20517/2394-4722.2020.63 WelcometofollowOAE'sWeChatAccount!DownloadPDF2107downloadsDownloadXML11downloadsCiteThisArticle91clicksExportCitation49clicksCommentary0commentsLikeThisArticle7likesShareThisArticle ScantheQRcodeforreading!SeeUpdatesContentsFiguresRelatedFigure1ViewinarticleFigure2ViewinarticleFigure3ViewinarticleFigure4ViewinarticleFigure5ViewinarticleFigure6ViewinarticleFigure7ViewinarticleFigure8ViewinarticleFigure9ViewinarticleFigure10ViewinarticleFinalresultsofa2:1control-caseobservationalstudyusinginterferonbetaandinterleukin-2,inadditiontofirst-linehormonetherapy,inestrogenreceptor-positive,endocrine-responsivemetastaticbreastcancerpatientsAndreaNicolini, ... AngeloCarpiHowthe“seed”preparesthe“soil”:thebone/bonemarrowpre-metastaticnicheAntonioMaurizi, ... NadiaRucciStimulationofinvitroboneformationbycanineprostatecancerShiyuYuan, ... ThomasJ.RosolSurgicalresectionforpulmonaryrecurrenceofesophagealcanceraftercurativeesophagectomyMasaruMorita, ... YasushiTohBreast-to-brainmetastasis:afocusonthepre-metastaticnicheKathrynMalone, StellaE.TsirkaOsteolyticeffectsoftumoralestrogensignalinginanestrogenreceptor-positivebreastcancerbonemetastasismodelJuliaN.Cheng, ... JanetL.FunkAdvancesinmurinemodelsofbreastcancerbonediseasePenelopeD.Ottewell, MichelleA.LawsonMultiplexedbioluminescenceimagingofcancercellresponsetohypoxiaandinflammationinthecaudal-arteryinjectionmodelofbonemetastasisduringzoledronicacidtreatmentMisaMinegishi, ... ShinaeKizaka-KondohROR2regulatesthesurvivalofmurineosteosarcomacellsinlungcapillariesDiemThiPhuongTran, ... ShinaeKizaka-KondohIstherearoleforresectionofoligometastaticdiseaseinpancreaticductaladenocarcinoma?YanaPuckett, ... TimothyM.PawlikHotkeywords BiomarkerDiscovery AutophagyandCancer BreastCancerMetastasis BrainMetastases GastricCancerMetastasis LungCancer GeneticHeterogeneity ColorectalCancer ProstateCancer CancerImmunotherapy CirculatingTumorCells NeuroendocrineTumors SubmitaManuscript ManuscriptTemplates AimsandScope EditorialBoard DownloadPDFDownloadXMLCiteThisArticleExportCitationArticleAccessStatisticsViewed:14056Downloaded:2107Cited:8ShareThisArticle SeeUpdates ©2016-2022OAEPublishingInc.,exceptcertaincontentprovidedbythirdparties



請為這篇文章評分?