Hallmarks of Cancer: New Dimensions - AACR Journals

文章推薦指數: 80 %
投票人數:10人

The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a ... SkiptoMainContent Advertisement Close AACRJournals BloodCancerDiscovery CancerDiscovery CancerEpidemiology,Biomarkers&Prevention CancerImmunologyResearch CancerPreventionResearch CancerResearch CancerResearchCommunications ClinicalCancerResearch MolecularCancerResearch MolecularCancerTherapeutics ForAuthors InformationforAuthors AuthorServices JournalAwards Bestof:AuthorProfiles AboutUs AACRJournals Advertising Permissions&Reprints Subscriptions Submit ArticleCollections JournalCollections HotTopics 'BestOf'Collection Editors'Picks COVID-19 Webinars SearchDropdownMenu headersearch searchinput Searchinputautosuggest Search AdvancedSearch UserToolsDropdown Register SignIn ToggleMenuMenu About TheJournal AACRJournals Subscriptions PermissionsandReprints Articles OnlineFirst Issues MeetingAbstracts Collection:PrecisionMedicineandTherapeuticResistance Collection:ClinicalTrials Collection:Immuno-oncology Collection:Editors'Picks 'Best'Of'Collection ForAuthors InformationforAuthors AuthorServices Bestof:AuthorProfiles Submit Alerts News COVID-19 Webinars 10thAnniversary SkipNavDestination ArticleNavigation Closemobilesearchnavigation Articlenavigation Volume12,Issue1 1January2022 Abstract Introduction UnlockingPhenotypicPlasticity NonmutationalEpigeneticReprogramming PolymorphicMicrobiomes SenescentCells ConcludingRemarks Author'sDisclosures Acknowledgments References ArticleNavigation Review| January122022 HallmarksofCancer:NewDimensions DouglasHanahan DouglasHanahan * *CorrespondingAuthor:DouglasHanahan,AgoraTranslationalCancerResearchCenter,RueduBugnon25A,LausanneCH-1011,Switzerland.Phone:41-21-545-1119;E-mail:[email protected] Searchforotherworksbythisauthoron: ThisSite PubMed GoogleScholar Author&ArticleInformation *CorrespondingAuthor:DouglasHanahan,AgoraTranslationalCancerResearchCenter,RueduBugnon25A,LausanneCH-1011,Switzerland.Phone:41-21-545-1119;E-mail:[email protected] CancerDiscov2022;12:31–46 Received: August042021 RevisionReceived: November172021 Accepted: November182021 OnlineIssn:2159-8290 PrintIssn:2159-8274 ©2022AmericanAssociationforCancerResearch2022AmericanAssociationforCancerResearch CancerDiscov(2022)12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059 Articlehistory Received: August042021 RevisionReceived: November172021 Accepted: November182021 Split-Screen ViewsIcon Views Articlecontents Figures&tables Video Audio SupplementaryData PeerReview PDF ShareIcon Share Twitter LinkedIn ToolsIcon Tools GetPermissions CiteIcon Cite SearchSite ArticleVersionsIcon Versions VersionofRecord January122022 Citation DouglasHanahan;HallmarksofCancer:NewDimensions.CancerDiscov1January2022;12(1):31–46.https://doi.org/10.1158/2159-8290.CD-21-1059 Downloadcitationfile: Ris(Zotero) ReferenceManager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbarsearch SearchDropdownMenu toolbarsearch searchinput Searchinputautosuggest Search AdvancedSearch Abstract Thehallmarksofcancerconceptualizationisaheuristictoolfordistillingthevastcomplexityofcancerphenotypesandgenotypesintoaprovisionalsetofunderlyingprinciples.Asknowledgeofcancermechanismshasprogressed,otherfacetsofthediseasehaveemergedaspotentialrefinements.Herein,theprospectisraisedthatphenotypicplasticityanddisrupteddifferentiationisadiscretehallmarkcapability,andthatnonmutationalepigeneticreprogrammingandpolymorphicmicrobiomesbothconstitutedistinctiveenablingcharacteristicsthatfacilitatetheacquisitionofhallmarkcapabilities.Additionally,senescentcells,ofvaryingorigins,maybeaddedtotherosteroffunctionallyimportantcelltypesinthetumormicroenvironment.Significance:Cancerisdauntinginthebreadthandscopeofitsdiversity,spanninggenetics,cellandtissuebiology,pathology,andresponsetotherapy.Evermorepowerfulexperimentalandcomputationaltoolsandtechnologiesareprovidinganavalancheof“bigdata”aboutthemyriadmanifestationsofthediseasesthatcancerencompasses.Theintegrativeconceptembodiedinthehallmarksofcancerishelpingtodistillthiscomplexityintoanincreasinglylogicalscience,andtheprovisionalnewdimensionspresentedinthisperspectivemayaddvaluetothatendeavor,tomorefullyunderstandmechanismsofcancerdevelopmentandmalignantprogression,andapplythatknowledgetocancermedicine. Introduction TheHallmarksofCancerwereproposedasasetoffunctionalcapabilitiesacquiredbyhumancellsastheymaketheirwayfromnormalcytoneoplasticgrowthstates,morespecificallycapabilitiesthatarecrucialfortheirabilitytoformmalignanttumors.Inthesearticles(1,2),BobWeinbergandIenumeratedwhatweimaginedweresharedcommonalitiesthatunitealltypesofcancercellsatthelevelofcellularphenotype.Theintentwastoprovideaconceptualscaffoldthatwouldmakeitpossibletorationalizethecomplexphenotypesofdiversehumantumortypesandvariantsintermsofacommonsetofunderlyingcellularparameters.Initiallyweenvisagedthecomplementaryinvolvementofsixdistincthallmarkcapabilitiesandlaterexpandedthisnumbertoeight.Thisformulationwasinfluencedbytherecognitionthathumancancersdevelopasproductsofmultistepprocesses,andthattheacquisitionofthesefunctionalcapabilitiesmightbemappedinsomefashiontothedistinguishablestepsoftumorpathogenesis.Certainly,thediversityofmalignantpathogenesisspanningmultipletumortypesandanincreasingplethoraofsubtypesincludesvariousaberrations(andhenceacquiredcapabilitiesandcharacteristics)thataretheresultoftissue-specificbarriersnecessarilycircumventedduringparticulartumorigenesispathways.Whileappreciatingthatsuchspecializedmechanismscanbeinstrumental,welimitedthehallmarksdesignationtoparametershavingbroadengagementacrossthespectrumofhumancancers. Theeighthallmarkscurrentlycomprise(Fig.1,left)theacquiredcapabilitiesforsustainingproliferativesignaling,evadinggrowthsuppressors,resistingcelldeath,enablingreplicativeimmortality,inducing/accessingvasculature,activatinginvasionandmetastasis,reprogrammingcellularmetabolism,andavoidingimmunedestruction.Inthemostrecentelaborationofthisconcept(2),deregulatingcellularmetabolismandavoidingimmunedestructionweresegregatedas“emerginghallmarks,”butnow,elevenyearslater,itisevidentthatthey,muchliketheoriginalsix,canbeconsideredcorehallmarksofcancer,andareincludedassuchinthecurrentdepiction(Fig.1,left). Figure1.ViewlargeDownloadslideInessence:theHallmarksofCancer,circa2022.Left,theHallmarksofCancercurrentlyembodyeighthallmarkcapabilitiesandtwoenablingcharacteristics.Inadditiontothesixacquiredcapabilities—HallmarksofCancer—proposedin2000(1),thetwoprovisional“emerginghallmarks”introducedin2011(2)—cellularenergetics(nowdescribedmorebroadlyas“reprogrammingcellularmetabolism”)and“avoidingimmunedestruction”—havebeensufficientlyvalidatedtobeconsideredpartofthecoreset.Giventhegrowingappreciationthattumorscanbecomesufficientlyvascularizedeitherbyswitchingonangiogenesisorbyco-optingnormaltissuevessels(128),thishallmarkisalsomorebroadlydefinedasthecapabilitytoinduceorotherwiseaccess,principallybyinvasionandmetastasis,vasculaturethatsupportstumorgrowth.The2011sequelfurtherincorporated“tumor-promotinginflammation”asasecondenablingcharacteristic,complementingoverarching“genomeinstabilityandmutation,”whichtogetherwerefundamentallyinvolvedinactivatingtheeighthallmark(functional)capabilitiesnecessaryfortumorgrowthandprogression.Right,thisreviewincorporatesadditionalproposedemerginghallmarksandenablingcharacteristicsinvolving“unlockingphenotypicplasticity,”“nonmutationalepigeneticreprogramming,”“polymorphicmicrobiomes,”and“senescentcells.”ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure1.ViewlargeDownloadslideInessence:theHallmarksofCancer,circa2022.Left,theHallmarksofCancercurrentlyembodyeighthallmarkcapabilitiesandtwoenablingcharacteristics.Inadditiontothesixacquiredcapabilities—HallmarksofCancer—proposedin2000(1),thetwoprovisional“emerginghallmarks”introducedin2011(2)—cellularenergetics(nowdescribedmorebroadlyas“reprogrammingcellularmetabolism”)and“avoidingimmunedestruction”—havebeensufficientlyvalidatedtobeconsideredpartofthecoreset.Giventhegrowingappreciationthattumorscanbecomesufficientlyvascularizedeitherbyswitchingonangiogenesisorbyco-optingnormaltissuevessels(128),thishallmarkisalsomorebroadlydefinedasthecapabilitytoinduceorotherwiseaccess,principallybyinvasionandmetastasis,vasculaturethatsupportstumorgrowth.The2011sequelfurtherincorporated“tumor-promotinginflammation”asasecondenablingcharacteristic,complementingoverarching“genomeinstabilityandmutation,”whichtogetherwerefundamentallyinvolvedinactivatingtheeighthallmark(functional)capabilitiesnecessaryfortumorgrowthandprogression.Right,thisreviewincorporatesadditionalproposedemerginghallmarksandenablingcharacteristicsinvolving“unlockingphenotypicplasticity,”“nonmutationalepigeneticreprogramming,”“polymorphicmicrobiomes,”and“senescentcells.”ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal Aswenotedatthetime,thesehallmarktraits,ontheirown,failtoaddressthecomplexitiesofcancerpathogenesis,thatis,theprecisemolecularandcellularmechanismsthatallowevolvingpreneoplasticcellstodevelopandacquiretheseaberrantphenotypiccapabilitiesinthecourseoftumordevelopmentandmalignantprogression.Accordingly,weaddedanotherconcepttothediscussion,portrayedas“enablingcharacteristics,”consequencesoftheaberrantconditionofneoplasiathatprovidemeansbywhichcancercellsandtumorscanadoptthesefunctionaltraits.Assuch,theenablingcharacteristicsreflecteduponmolecularandcellularmechanismsbywhichhallmarksareacquiredratherthantheaforementionedeightcapabilitiesthemselves.Thesetwoenablingprocessesweregenomeinstabilityandtumor-promotinginflammation. Wefurtherrecognizedthatthetumormicroenvironment(TME),hereindefinedtobecomposedofheterogeneousandinteractivepopulationsofcancercellsandcancerstemcellsalongwithamultiplicityofrecruitedstromalcelltypes—thetransformedparenchymaandtheassociatedstroma—isnowwidelyappreciatedtoplayanintegralroleintumorigenesisandmalignantprogression. GiventhecontinuedinterestintheseformulationsandourenduringintenttoencourageongoingdiscussionandrefinementoftheHallmarksscheme,itisappropriatetoconsiderafrequentlyposedquestion:arethereadditionalfeaturesofthisconceptualmodelthatmightbeincorporated,respectingtheneedtoensurethattheyarebroadlyapplicableacrossthespectrumofhumancancers?Accordingly,Ipresentseveralprospectivenewhallmarksandenablingcharacteristics,onesthatmightinduecoursebecomeincorporatedascorecomponentsofthehallmarksofcancerconceptualization.Theseparametersare“unlockingphenotypicplasticity,”“nonmutationalepigeneticreprogramming,”“polymorphicmicrobiomes,”and“senescentcells”(Fig.1,right).Importantly,theexamplespresentedinsupportofthesepropositionsareillustrativebutbynomeanscomprehensive,asthereisagrowingandincreasinglypersuasivebodyofpublishedevidenceinsupportofeachvignette. UnlockingPhenotypicPlasticity Duringorganogenesis,thedevelopment,determination,andorganizationofcellsintotissuesinordertoassumehomeostaticfunctionsisaccompaniedbyterminaldifferentiation,wherebyprogenitorcells—sometimesirrevocably—stopgrowinguponculminationoftheseprocesses.Assuch,theendresultofcellulardifferentiationisinmostcasesantiproliferativeandconstitutesaclearbarriertothecontinuingproliferationthatisnecessaryforneoplasia.Thereisincreasingevidencethatunlockingthenormallyrestrictedcapabilityforphenotypicplasticityinordertoevadeorescapefromthestateofterminaldifferentiationisacriticalcomponentofcancerpathogenesis(3).Thisplasticitycanoperateinseveralmanifestations(Fig.2).Thus,nascentcancercellsoriginatingfromanormalcellthathadadvanceddownapathwayapproachingorassumingafullydifferentiatedstatemayreversetheircoursebydedifferentiatingbacktoprogenitor-likecellstates.Conversely,neoplasticcellsarisingfromaprogenitorcellthatisdestinedtofollowapathwayleadingtoend-stagedifferentiationmayshort-circuittheprocess,maintainingtheexpandingcancercellsinapartiallydifferentiated,progenitor-likestate.Alternatively,transdifferentiationmayoperate,inwhichcellsthatwereinitiallycommittedintoonedifferentiationpathwayswitchtoanentirelydifferentdevelopmentalprogram,therebyacquiringtissue-specifictraitsthatwerenotpreordainedbytheirnormalcells-of-origin.Thefollowingexamplessupporttheargumentthatdifferingformsofcellularplasticity,whentakentogether,constituteafunctionallydistincthallmarkcapability. Figure2.ViewlargeDownloadslideUnlockingphenotypicplasticity.Left,phenotypicplasticityisarguablyanacquiredhallmarkcapabilitythatenablesvariousdisruptionsofcellulardifferentiation,including(i)dedifferentiationfrommaturetoprogenitorstates,(ii)blocked(terminal)differentiationfromprogenitorcellstates,and(iii)transdifferentiationintodifferentcelllineages.Right,depictedarethreeprominentmodesofdisrupteddifferentiationintegraltocancerpathogenesis.Byvariouslycorruptingthenormaldifferentiationofprogenitorcellsintomaturecellsindevelopmentallineages,tumorigenesisandmalignantprogressionarisingfromcellsoforigininsuchpathwaysisfacilitated.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure2.ViewlargeDownloadslideUnlockingphenotypicplasticity.Left,phenotypicplasticityisarguablyanacquiredhallmarkcapabilitythatenablesvariousdisruptionsofcellulardifferentiation,including(i)dedifferentiationfrommaturetoprogenitorstates,(ii)blocked(terminal)differentiationfromprogenitorcellstates,and(iii)transdifferentiationintodifferentcelllineages.Right,depictedarethreeprominentmodesofdisrupteddifferentiationintegraltocancerpathogenesis.Byvariouslycorruptingthenormaldifferentiationofprogenitorcellsintomaturecellsindevelopmentallineages,tumorigenesisandmalignantprogressionarisingfromcellsoforigininsuchpathwaysisfacilitated.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal Dedifferentiation Coloncarcinogenesisexemplifiesdisrupteddifferentiation,inthatthereisateleologicalnecessityforincipientcancercellstoescapefromtheconveyerbeltofterminaldifferentiationandexfoliation,whichcouldinprincipleoccurviadedifferentiationofnotyetirrevocablyterminallydifferentiatedcolonicepithelialcells,orviablockeddifferentiationofprogenitor/stemcellsinthecryptsthatspawnthesedifferentiatingcells.Bothdifferentiatedcellsandstemcellshavebeenimplicatedascell-of-originforcoloncancer(4–6).Twodevelopmentaltranscriptionfactors(TF),thehomeoboxproteinHOXA5andSMAD4,thelatterinvolvedinBMPsignaltransmission,arehighlyexpressedindifferentiatingcolonicepithelialcells,andtypicallylostinadvancedcoloncarcinomas,whichcharacteristicallyexpressmarkersofstemandprogenitorcells.FunctionalperturbationsinmousemodelshaveshownthatforcedexpressionofHOXA5incoloncancercellsrestoresdifferentiationmarkers,suppressesstemcellphenotypes,andimpairsinvasionandmetastasis,providingarationaleforitscharacteristicdownregulation(7,8).SMAD4,bycontrast,bothenforcesdifferentiationandtherebysuppressesproliferationdrivenbyoncogenicWNTsignaling,revealedbytheengineeredlossofSMAD4expression,providinganexplanationforitslossofexpressionsoastoenablededifferentiationand,subsequently,WNT-drivenhyperproliferation(5).Notably,thelossofbothofthese“differentiationsuppressors”withconsequentdedifferentiationisassociatedwithacquisitionofotherhallmarkcapabilities,asareotherhallmark-inducingregulators,whichcomplicatesthestrictdefinitionofthisprovisionalhallmarkasseparableandindependent. AnotherlineofevidenceinvolvessuppressedexpressionoftheMITFmasterregulatorofmelanocytedifferentiation,whichisevidentlyinvolvedinthegenesisofaggressiveformsofmalignantmelanoma.LossofthisdevelopmentalTFisassociatedwiththereactivationofneuralcrestprogenitorgenesandthedownregulationofgenesthatcharacterizefullydifferentiatedmelanocytes.Thereappearanceoftheneuralcrestgenesindicatesthatthesecellsreverttotheprogenitorstatefromwhichmelanocytesarisedevelopmentally.Moreover,alineagetracingstudyofBRAF-inducedmelanomasestablishedmaturepigmentedmelanocytesasthecellsoforigin,whichundergodedifferentiationduringthecourseoftumorigenesis(9).Ofnote,themutantBRAFoncogene,whichisfoundinmorethanhalfofcutaneousmelanomas,induceshyperproliferationthatprecedesandhenceismechanisticallyseparablefromthesubsequentdedifferentiationarisingfromdownregulationofMITF.AnotherstudyfunctionallyimplicatedupregulationofthedevelopmentalTFATF2,whosecharacteristicexpressioninmouseandhumanmelanomasindirectlysuppressesMITF1,concomitantwithmalignantprogressionoftheconsequentlydedifferentiatedmelanomacells(10).Conversely,expressioninmelanomasofmutantformsofATF2thatfailtorepressMITFresultsinwell-differentiatedmelanomas(11). Additionally,arecentstudy(12)hasassociatedlineagededifferentiationwithmalignantprogressionfrompancreaticisletcellneoplasiasintometastasis-pronecarcinomas;theseneuroendocrinecellsandderivativetumorsarisefromadevelopmentallineagethatisdistinctfromtheonegeneratingthefarlargernumberofadjacentcellsthatformtheexocrineandpancreasandtheductaladenocarcinomasthatarisetherefrom.Notably,themultistepdifferentiationpathwayofisletprogenitorcellsintomatureβcellshasbeenthoroughlycharacterized(13).Comparativetranscriptomeprofilingrevealsthatadenoma-likeislettumorsaremostsimilartoimmaturebutdifferentiatedinsulin-producingβcells,whereastheinvasivecarcinomasaremostsimilartoembryonicisletcellprecursors.Theprogressiontowardpoorlydifferentiatedcarcinomasinvolvesafirststepofdedifferentiationthatdoesnotinitiallyinvolveincreasedproliferationorreducedapoptosiswhencomparedwiththewell-differentiatedadenomas,bothofwhichratheroccurlater.Thus,thediscretestepofdedifferentiationisnotdrivenbyobservablealterationsinthehallmarktraitsofsustainedproliferationandresistancetoapoptosis.Rather,upregulationofamiRNApreviouslyimplicatedinspecifyingtheisletprogenitorstate,onethatisdownregulatedduringterminaldifferentiationofβcells,hasbeenshowntoorchestratetheobserveddedifferentiationoccurringduringmalignantprogression(12). BlockedDifferentiation Whiletheaboveexamplesillustratehowsuppressionofdifferentiationfactorexpressioncanfacilitatetumorigenesisbyenablingmorewell-differentiatedcellstodedifferentiateintoprogenitors,inothercasesincompletelydifferentiatedprogenitorcellscansufferregulatorychangesthatactivelyblocktheircontinuedadvanceintofullydifferentiated,typicallynonproliferativestates. Acutepromyelocyticleukemia(APL)haslongbeendocumentedtoresultfromachromosomaltranslocationthatfusesthePMLlocuswiththegeneencodingtheretinoicacidαnuclearreceptor(RARα).Myeloidprogenitorcellsbearingsuchtranslocationsareevidentlyunabletocontinuetheirusualterminaldifferentiationintogranulocytes,resultingincellstrappedinaproliferative,promyelocyticprogenitorstage(14).Proof-of-conceptofthisschemecomesfromtreatingculturedAPLcells,mousemodelsofthisdisease,aswellasafflictedpatients,withretinoicacid,theligandofRARα;thistherapeutictreatmentcausestheneoplasticAPLcellstodifferentiateintoostensiblymaturenonproliferatinggranulocytes,short-circuitingtheircontinuingproliferativeexpansion(14–16). Avariationonthisthemeinvolvesanotherformofacutemyeloidleukemia,thisonecarryingthet(8;21)translocation,whichproducestheAML1–ETOfusionprotein.Thisproteincan,onitsown,transformmyeloidprogenitors,atleastinpartbyblockingtheirdifferentiation.Therapeuticinterventioninmousemodelsandinpatientswithapharmacologicinhibitorofachromatin-modifyinghistonedeacetylase(HDAC)causesthemyeloidleukemiacellstorecommencetheirdifferentiationintocellswithamorematuremyeloidcellmorphology.Concomitantwiththisresponseisareductioninproliferativecapacity,therebyimpairingtheprogressionofthisleukemia(17,18). Athirdexample,inmelanoma,involvesadevelopmentalTF,SOX10,whichisnormallydownregulatedduringmelanocytedifferentiation.Gain-andloss-of-functionstudiesinazebrafishmodelofBRAF-inducedmelanomahavedemonstratedthataberrantlymaintainedexpressionofSOX10blocksdifferentiationofneuralprogenitorcellsintomelanocytes,enablingBRAF-drivenmelanomastoform(19). Otherexamplesofdifferentiationmodulatorsinvolvethemetabolitealpha-ketoglutarate(αKG),anecessarycofactorforanumberofchromatin-modifyingenzymes,whichisdemonstrablyinvolvedinstimulatingcertaindifferentiatedcellstates.Inpancreascancer,thetumorsuppressorp53stimulatestheproductionofαKGandmaintenanceofamorewell-differentiatedcellstate,whereasprototypicallossofp53functionresultsinreductionsinαKGlevelsandconsequentdedifferentiationassociatedwithmalignantprogression(20).Inoneformoflivercancer,mutationofanisocitratedehydrogenasegene(IDH1/2)resultsintheproductionnotofdifferentiation-inducingαKGbutratherarelated“oncometabolite,”D-2-hydroxygluterate(D2HG),whichhasbeenshowntoblockhepatocytedifferentiationfromliverprogenitorcellsbyD2HG-mediatedrepressionofamasterregulatorofhepatocytedifferentiationandquiescence,HNF4a.TheD2HG-mediatedsuppressionofHNF4afunctionelicitsaproliferativeexpansionofthehepatocyteprogenitorcellsintheliver,whichbecomesusceptibletooncogenictransformationuponsubsequentmutationalactivationoftheKRASoncogenethatdrivesmalignantprogressiontolivercholangiocarcinoma(21).MutantIDH1/2andtheironcometaboliteD2HGarealsooperativeinavarietyofmyeloidandothersolidtumortypes,whereD2HGinhibitsαKG-dependentdioxygenasesnecessaryforhistoneandDNAmethylationeventsthatmediatealterationsinchromatinstructureduringdevelopmentallineagedifferentiation,therebyfreezingincipientcancercellsinaprogenitorstate(22,23). Anadditional,relatedconceptis“circumventeddifferentiation,”whereinpartiallyorundifferentiatedprogenitor/stemcellsexitthecellcycleandbecomedormant,residinginprotectiveniches,withthepotentialtoreinitiateproliferativeexpansion(24),albeitstillwiththeselectivepressuretodisrupttheirprogrammeddifferentiationinonewayoranother. Transdifferentiation Theconceptoftransdifferentiationhaslongbeenrecognizedbypathologistsintheformoftissuemetaplasia,whereincellsofaparticulardifferentiatedphenotypemarkedlychangetheirmorphologytobecomeclearlyrecognizableaselementsofanothertissue,ofwhichoneprominentexampleisBarrett'sesophagus,wherechronicinflammationofthestratifiedsquamousepitheliumoftheesophagusinducestransdifferentiationintoasimplecolumnarepitheliumthatischaracteristicoftheintestine,therebyfacilitatingthesubsequentdevelopmentofadenocarcinomas,andnotthesquamouscellcarcinomasthatwouldbeanticipatedtoarisefromthissquamousepithelium(3).Now,moleculardeterminantsarerevealingmechanismsoftransdifferentiationinvariouscancers,bothforcaseswheregrosstissuemetaplasiaisevidentandforotherswhereitisrathermoresubtle,asthefollowingexamplesillustrate. Oneilluminatingcasefortransdifferentiationasadiscreteeventintumorigenesisinvolvespancreaticductaladenocarcinoma(PDAC),whereinoneoftheimplicatedcellsoforigin,thepancreaticacinarcell,canbecometransdifferentiatedintoaductalcellphenotypeduringtheinitiationofneoplasticdevelopment.TwoTFs—PTF1aandMIST1—govern,viatheirexpressioninthecontextofself-sustaining,“feed-forward”regulatoryloops,thespecificationandmaintenanceofthedifferentiatedpancreaticacinarcellstate(25).BothoftheseTFsarefrequentlydownregulatedduringneoplasticdevelopmentandmalignantprogressionofhumanandmousePDAC.FunctionalgeneticstudiesinmiceandculturedhumanPDACcellshavedemonstratedthatexperimentallyforcedexpressionofPTF1aimpairsKRAS-inducedtransdifferentiationandproliferation,andcanalsoforcetheredifferentiationofalreadyneoplasticcellsintoaquiescentacinarcellphenotype(26).Conversely,suppressionofPTF1aexpressionelicitsacinar-to-ductalmetaplasia,namelytransdifferentiation,andtherebysensitizestheduct-likecellstooncogenicKRAStransformation,acceleratingsubsequentdevelopmentofinvasivePDAC(27).Similarly,forcedexpressionofMIST1inKRAS-expressingpancreasalsoblockstransdifferentiationandimpairstheinitiationofpancreatictumorigenesisotherwisefacilitatedbytheformationofpremalignantduct-like(PanIN)lesions,whereasgeneticdeletionofMIST1enhancestheirformationandtheinitiationofKRAS-drivenneoplasticprogression(28).LossofeitherPTF1orMIST1expressionduringtumorigenesisisassociatedwithelevatedexpressionofanotherdevelopmentalregulatoryTF,SOX9,whichisnormallyoperativeinthespecificationofductalcells(27,28).ForcedupregulationofSOX9,obviatingtheneedtodownregulatePTF1aandMIST1,hasalsobeenshowntostimulatetransdifferentiationofacinarcellsintoaductalcellphenotypethatissensitivetoKRAS-inducedneoplasia(29),implicatingSOX9asakeyfunctionaleffectoroftheirdownregulationinthegenesisofhumanPDAC.Thus,threeTFsthatregulatepancreaticdifferentiationcanbevariouslyalteredtoinduceatransdifferentiatedstatethatfacilitates—inthecontextofmutationalactivationofKRAS—oncogenictransformationandtheinitiationoftumorigenesisandmalignantprogression. AdditionalmembersoftheSOXfamilyofchromatin-associatedregulatoryfactorsareontheonehandbroadlyassociatedbothwithcellfatespecificationandlineageswitchingindevelopment(30),andontheotherwithmultipletumor-associatedphenotypes(31).AnothersalientexampleofSOX-mediatedtransdifferentiationinvolvesamechanismoftherapeuticresistanceinprostatecarcinomas.Inthiscase,lossoftheRBandp53tumorsuppressors—whoseabsenceischaracteristicofneuroendocrinetumors—inresponsetoantiandrogentherapyisnecessarybutnotsufficientforthefrequentlyobservedconversionofwell-differentiatedprostatecancercellsintocarcinomacellsthathaveenteredadifferentiationlineagewithmolecularandhistologicfeaturesofneuroendocrinecells,whichnotablydonotexpresstheandrogenreceptor.InadditiontolossofRBandp53,theacquiredresistancetoantiandrogentherapyrequiresupregulatedexpressionoftheSOX2developmentalregulatorygene,whichisdemonstrablyinstrumentalininducingtransdifferentiationofthetherapy-responsiveadenocarcinomacellsintoderivativesthatresideinaneuroendocrinecellstatethatisrefractorytothetherapy(32). Athirdexamplealsorevealstransdifferentiationasastrategyemployedbycarcinomacellstoavoideliminationbyalineage-specifictherapy,inthiscaseinvolvingbasalcellcarcinomas(BCC)oftheskintreatedwithapharmacologicinhibitoroftheHedgehog-Smoothened(HH/SMO)oncogenicsignalingpathwayknowntodrivetheneoplasticgrowthofthesecells(33).Drug-resistantcancercellsswitch,viabroadepigeneticshiftsinspecificchromatindomainsandthealteredaccessibilityoftwosuperenhancers,toadevelopmentallyrelatedbutdistinctcelltype.ThenewlygainedphenotypicstateoftheBCCcellsenablesthemtosustainexpressionoftheWNToncogenicsignalingpathway,whichinturnimpartsindependencefromthedrug-suppressedHH/SMOsignalingpathway(34).Asmightbeanticipatedfromthistransdifferentiation,thetranscriptomeofthecancercellsshiftsfromagenesignaturereflectingtheimplicatedcell-of-originofBCCs,namelythestemcellsofhairfolliclebulge,tooneindicativeofthebasalstemcellsthatpopulatetheinterfollicularepidermis.Suchtransdifferentiationtoenabledrugresistanceisbeingincreasinglydocumentedindifferentformsofcancer(35). Developmentallineageplasticityalsoappearstobeprevalentamongthemajorsubtypesoflungcarcinomas,thatis,neuroendocrinecarcinomas[small-celllungcancer(SCLC)]andadenocarcinomas+squamouscellcarcinomas[collectivelynon–smallcelllungcancer(NSCLC)].Single-cellRNAsequencinghasrevealedremarkablydynamicandheterogeneousinterconversionamongthesesubtypesaswellasdistinctvariationsthereofduringthestagesinlungtumorigenesis,subsequentmalignantprogression,andresponsestotherapy(36–38).Thus,ratherthanthesimpleconceptualizationofapureclonalswitchfromonelineageintoanother,thesestudiespaintamuchmorecomplexpicture,ofdynamicallyinterconvertingsubpopulationsofcancercellsexhibitingcharacteristicsofmultipledevelopmentallineagesandstagesofdifferentiation,asoberingrealizationinregardtolineage-basedtherapeutictargetingofhumanlungcancer.Regulatorydeterminantsofthisdynamicphenotypicplasticityarebeginningtobeidentified(37,39,40). Synopsis Thethreeclassesofmechanismdescribedabovehighlightselectiveregulatorsofcellularplasticitythatareseparable—atleastinpart—fromcoreoncogenicdriversandotherhallmarkcapabilities.Beyondtheseexamplesliesaconsiderablebodyofevidenceassociatingmanyformsofcancerwithdisrupteddifferentiationconcomitantwiththeacquisitionoftranscriptomesignaturesandotherphenotypes—forexample,histologicmorphology—associatedwithprogenitororstemcellstagesobservedinthecorrespondingnormaltissue-of-originorinothermoredistantlyrelatedcelltypesandlineages(41–43).Assuch,thesethreesubclassesofphenotypicplasticity—dedifferentiationofmaturecellsbacktoprogenitorstates,blockeddifferentiationtofreezedevelopingcellsinprogenitor/stemcellstates,andtransdifferentiationtoalternativecelllineages—appeartobeoperativeinmultiplecancertypesduringprimarytumorformation,malignantprogression,and/orresponsetotherapy.Thereare,however,twoconceptualconsiderations.First,dedifferentiationandblockeddifferentiationarelikelyintertwined,beingindistinguishableinmanytumortypeswherethecell-of-origin—differentiatedcellorprogenitor/stemcell—iseitherunknownoralternativelyinvolved.Second,theacquisitionormaintenanceofprogenitorcellphenotypesandlossofdifferentiatedfeaturesisinmostcasesanimprecisereflectionofthenormaldevelopmentalstage,beingimmersedinamilieuofotherhallmark-enablingchangesinthecancercellthatarenotpresentinnaturallydevelopingcells.Inaddition,yetanotherformofphenotypicplasticityinvolvescellsenescence,discussedmoregenerallybelow,whereincancercellsinducedtoundergoostensiblyirreversiblesenescenceareinsteadabletoescapeandresumeproliferativeexpansion(44).Finally,aswithotherhallmarkcapabilities,cellularplasticityisnotanovelinventionoraberrationofcancercells,butratherthecorruptionoflatentbutactivatablecapabilitiesthatvariousnormalcellsusetosupporthomeostasis,repair,andregeneration(45). Collectively,theseillustrativeexamplesencourageconsiderationofthepropositionthatunlockingcellularplasticitytoenablevariousformsofdisrupteddifferentiationconstitutesadiscretehallmarkcapability,distinguishableinregulationandcellularphenotypefromthewell-validatedcorehallmarksofcancer(Fig.2). NonmutationalEpigeneticReprogramming Theenablingcharacteristicofgenome(DNA)instabilityandmutationisafundamentalcomponentofcancerformationandpathogenesis.Atpresent,multipleinternationalconsortiaarecatalogingmutationsacrossthegenomeofhumancancercells,doingsoinvirtuallyeverytypeofhumancancer,atdifferentstagesofmalignantprogression,includingmetastaticlesions,andduringthedevelopmentofadaptiveresistancetotherapy.Oneresultisthenowwidespreadappreciationthatmutationsingenesthatorganize,modulate,andmaintainchromatinarchitecture,andtherebygloballyregulategeneexpression,areincreasinglydetectedandfunctionallyassociatedwithcancerhallmarks(46–48). Thereis,inaddition,acasetobemadeforanotherapparentlyindependentmodeofgenomereprogrammingthatinvolvespurelyepigeneticallyregulatedchangesingeneexpression,onethatmightbetermed“nonmutationalepigeneticreprogramming”(Fig.3).Indeed,thepropositionofmutation-lesscancerevolutionandpurelyepigeneticprogrammingofhallmarkcancerphenotypeswasraisedalmostadecadeago(49)andisincreasinglydiscussed(46,50–52). Figure3.ViewlargeDownloadslideNonmutationalepigeneticreprogramming.Muchasduringembryogenesisandtissuedifferentiationandhomeostasis,growingevidencemakesthecasethatinstrumentalgene-regulatorycircuitsandnetworksintumorscanbegovernedbyaplethoraofcorruptedandco-optedmechanismsthatareindependentfromgenomeinstabilityandgenemutation.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure3.ViewlargeDownloadslideNonmutationalepigeneticreprogramming.Muchasduringembryogenesisandtissuedifferentiationandhomeostasis,growingevidencemakesthecasethatinstrumentalgene-regulatorycircuitsandnetworksintumorscanbegovernedbyaplethoraofcorruptedandco-optedmechanismsthatareindependentfromgenomeinstabilityandgenemutation.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal Theconceptofnonmutationalepigeneticregulationofgeneexpressionisofcoursewellestablishedasthecentralmechanismmediatingembryonicdevelopment,differentiation,andorganogenesis(53–55).Intheadult,forexample,long-termmemoryinvolveschangesingeneandhistonemodification,inchromatinstructure,andinthetriggeringofgeneexpressionswitchesthatarestablymaintainedovertimebypositiveandnegativefeedbackloops(56,57).Growingevidencesupportsthepropositionthatanalogousepigeneticalterationscancontributetotheacquisitionofhallmarkcapabilitiesduringtumordevelopmentandmalignantprogression.Afewexamplesarepresentedbelowinsupportofthishypothesis. MicroenvironmentalMechanismsofEpigeneticReprogramming Ifnotsolelybyconsequenceofoncogenicmutations,howthenisthecancercellgenomereprogrammed?Agrowingbodyofevidenceindicatesthattheaberrantphysicalpropertiesofthetumormicroenvironmentcancausebroadchangesintheepigenome,fromwhichchangesbeneficialtothephenotypicselectionofhallmarkcapabilitiescanresultinclonaloutgrowthofcancercellswithenhancedfitnessforproliferativeexpansion.Onecommoncharacteristicoftumors(orregionswithintumors)ishypoxia,consequenttoinsufficientvascularization.Hypoxia,forexample,reducestheactivityoftheTETdemethylases,resultinginsubstantivechangesinthemethylome,inparticularhypermethylation(58).Insufficientvascularizationlikelyalsolimitsthebioavailabilityofcriticalblood-bornenutrients,andnutrientdeprivationhasbeenshownforexampletoaltertranslationalcontrolandconsequentlyenhancethemalignantphenotypeofbreastcancercells(59). Apersuasiveexampleofhypoxia-mediatedepigeneticregulationinvolvesaformofinvariablylethalpediatricependymoma.Likemanyembryonicandpediatrictumors,thisformlacksrecurrentmutations,inparticularadearthofdrivermutationsinoncogenesandtumorsuppressors.Rather,theaberrantgrowthofthesecancercellsisdemonstrablygovernedbyageneregulatoryprograminducedbyhypoxia(60,61).Notably,theputativecell-of-originofthiscancerresidesinahypoxiccompartment,likelysensitizingcellsresidentthereintotheinitiationoftumorigenesisbyasyetunknowncofactors. Anotherpersuasivelineofevidenceformicroenvironmentallymediatedepigeneticregulationinvolvestheinvasivegrowthcapabilityofcancercells.Aclassicexampleinvolvesthereversibleinductionofinvasivenessofcancercellsatthemarginsofmanysolidtumors,orchestratedbythedevelopmentalregulatoryprogramknownastheepithelial-to-mesenchymaltransition(EMT;refs.62–64).Notably,amasterregulatoroftheEMT,ZEB1,hasbeenrecentlyshowntoinduceexpressionofahistonemethyltransferase,SETD1B,thatinturnsustainsZEB1expressioninapositivefeedbackloopthatmaintainsthe(invasive)EMTregulatorystate(65).ApreviousstudysimilarlydocumentedthatinductionofEMTbyupregulatedexpressionofarelatedTF,SNAIL1,causedmarkedalterationsinthechromatinlandscapeconsequenttoinductionofanumberofchromatinmodifiers,whoseactivitywasdemonstrablynecessaryforthemaintenanceofthephenotypicstate(66).Furthermore,arosterofconditionsandfactorstowhichcancercellsatthemarginsoftumorsareexposed,includinghypoxiaandcytokinessecretedbystromalcells,canevidentlyinducetheEMTandinturninvasiveness(67,68). Adistinctiveexampleofmicroenvironmentalprogrammingofinvasiveness,ostensiblyunrelatedtotheEMTprogram,involvesautocrineactivation,inpancreascancercellsandothers,viainterstitialpressure–drivenfluidflow,ofaneuronalsignalingcircuitinvolvingsecretedglutamateanditsreceptorNMDAR(69,70).Notably,theprototypicalstiffnessofmanysolidtumors,embodiedinextensivealterationstotheextracellularmatrix(ECM)thatenvelopthecellswithin,hasbroadeffectsontheinvasiveandotherphenotypiccharacteristicsofcancercells.ComparedwiththenormaltissueECMfromwhichtumorsoriginate,thetumorECMistypicallycharacterizedbyincreasedcross-linkinganddensity,enzymaticmodifications,andalteredmolecularcomposition,whichcollectivelyorchestrate—inpartviaintegrinreceptorsforECMmotifs—stiffness-inducedsignalingandgene-expressionnetworksthatelicitinvasivenessandotherhallmarkcharacteristics(71). Inadditiontosuchregulatorymechanismsendowedbythephysicaltumormicroenvironment,paracrinesignalinginvolvingsolublefactorsreleasedintotheextracellularmilieubythevariouscelltypespopulatingsolidtumorscanalsocontributetotheinductionofseveralmorphologicallydistinctinvasivegrowthprograms(72),onlyoneofwhich—dubbed“mesenchymal”—seemstoinvolvetheaforementionedEMTepigeneticregulatorymechanism. EpigeneticRegulatoryHeterogeneity Agrowingknowledgebaseisheighteningappreciationoftheimportanceofintratumoralheterogeneityingeneratingthephenotypicdiversitywherethefittestcellsforproliferativeexpansionandinvasionoutgrowtheirbrethrenandhenceareselectedformalignantprogression.Certainly,onefacetofthisphenotypicheterogeneityisfoundedinchronicorepisodicgenomicinstabilityandconsequentgeneticheterogeneityinthecellspopulatingatumor.Inaddition,itisincreasinglyevidentthattherecanbenon–mutationallybasedepigeneticheterogeneity.AsalientexampleinvolvesthelinkerhistoneH1.0,whichisdynamicallyexpressedandrepressedinsubpopulationsofcancercellswithinanumberoftumortypes,withconsequentsequestrationoraccessibility,respectively,ofmegabase-sizeddomains,includingonesconveyinghallmarkcapabilities(73).Notably,thepopulationofcancercellswithrepressedH1.0werefoundtohavestem-likecharacteristics,enhancedtumor-initiatingcapability,andanassociationwithpoorprognosisinpatients. Anotherexampleofepigeneticallyregulatedplasticityhasbeendescribedinhumanoralsquamouscellcarcinomas(SCC),whereincancercellsattheinvasivemarginsadoptapartialEMT(p-EMT)statelackingtheaforementionedmesenchymalTFsbutexpressingotherEMT-defininggenesthatarenotexpressedinthecentralcoreofthetumors(74).Thep-EMTcellsevidentlydonotrepresentaclonalcompartmentalizationofmutationallyalteredcells:culturesofprimarytumor-derivedcancercellscontaindynamicmixturesofbothp-EMThiandp-EMTlocells,andwhenp-EMThi/locellswereFACS-purifiedandcultured,bothrevertedtomixedpopulationsofp-EMThiandp-EMTlocellswithin4days.Moreover,althoughparacrinesignalsfromtheadjacentstromacouldbeenvisagedasdeterministicforthep-EMThistate,thestablepresenceandregenerationofthetwoepigeneticstatesinculturearguesforacancercell–intrinsicmechanism.Notably,thisconclusionissupportedbyanalysisof198celllinesrepresenting22cancertypes,includingSCC,wherein12stablyheterogeneousepigeneticstates(includingthep-EMTinSCC)werevariouslydetectedinthecelllinemodelsaswellastheircognateprimarytumors(75).Again,theheterogeneousphenotypicstatescouldnotbelinkedtodetectablegeneticdifferences,andinseveralcasesFACS-sortedcellsofaparticularstatewereshowntodynamicallyreequilibrateuponculture,recapitulatingastablebalanceamongtheheterogeneousstatesseenintheoriginalcelllines. Additionally,technologiesforgenome-wideprofilingofdiverseattributes—beyondDNAsequenceanditsmutationalvariation—areilluminatinginfluentialelementsofthecancercellgenome'sannotationandorganizationthatcorrelatewithpatientprognosis,andincreasinglywithhallmarkcapabilities(76–78).Epigenomicheterogeneityisbeingrevealedbyincreasinglypowerfultechnologiesforprofilinggenome-wideDNAmethylation(79,80),histonemodification(81),chromatinaccessibility(82),andposttranscriptionalmodificationandtranslationofRNA(83,84).Achallengeinregardtothepostulatebeingconsideredhereinwillbetoascertainwhichepigenomicmodificationsinparticularcancertypes(i)haveregulatorysignificanceand(ii)arerepresentativeofpurelynonmutationalreprogramming,asopposedtobeingmutation-drivenandthusexplainablebygenomeinstability. EpigeneticRegulationoftheStromalCellTypesPopulatingtheTumorMicroenvironment Ingeneral,theaccessorycellsinthetumormicroenvironmentthatfunctionallycontributetotheacquisitionofhallmarkcapabilitiesarenotthoughttosuffergeneticinstabilityandmutationalreprogrammingtoenhancetheirtumor-promotingactivities;ratheritisinferredthatthesecells—cancer-associatedfibroblasts,innateimmunecells,andendothelialcellsandpericytesofthetumorvasculature—areepigeneticallyreprogrammedupontheirrecruitmentbysolubleandphysicalfactorsthatdefinethesolidtumormicroenvironment(2,85).Itcanbeanticipatedthemulti-omicprofilingtechnologiescurrentlybeingappliedtocancercellswillincreasinglybeusedtointerrogatetheaccessory(stromal)cellsintumorstoelucidatehownormalcellsarecorruptedtofunctionallysupporttumordevelopmentandprogression.Forexample,arecentstudy(86)suggeststhatsuchreprogrammingcaninvolvemodificationsoftheepigenomeinadditiontotheinductiveinterchangeofcytokines,chemokines,andgrowthfactorsthatalterintracellularsignalingnetworksinallofthesecelltypes:whenmousemodelsofmetastasistolungweretreatedwithacombinationofaDNAmethyltransferaseinhibitor(5-azacytidine)andaninhibitorofhistonemodification(anHDAC),theinfiltratingmyeloidcellswerefoundtohaveswitchedfromanimmature(tumor-promoting)progenitorstateintocellsresemblingmatureinterstitial(tumor-antagonizing)macrophages,which,incontrasttotheircounterpartsinuntreatedtumors,wereincapableofsupportingthehallmarkcapabilitiesnecessaryforefficientmetastaticcolonization(86).Itcanbeenvisagedthatmulti-omicprofilingandpharmacologicperturbationwillservetoelucidatethereprogrammedepigeneticstateinsuchmyeloidcellsaswellasotherhallmark-enablingaccessorycelltypespopulatingtumormicroenvironments. Synopsis Collectively,theseillustrativesnapshotssupportthepropositionthatnonmutationalepigeneticreprogramingwillcometobeacceptedasabonafideenablingcharacteristicthatservestofacilitatetheacquisitionofhallmarkcapabilities(Fig.3),distinctfromthatofgenomicDNAinstabilityandmutation.Notably,itcanbeanticipatedthatnonmutationalepigeneticreprogrammingwillprovetobeintegrallyinvolvedinenablingtheprovisionalnewhallmarkcapabilityofphenotypicplasticitydiscussedabove,inparticularbeingadrivingforceinthedynamictranscriptomicheterogeneitythatisincreasinglywelldocumentedincancercellspopulatingmalignantTMEs.Theadvanceofsinglecellmulti-omicprofilingtechnologiesisenvisagedtoilluminatetherespectivecontributionsofandinterplaybetweenmutation-drivenversusnonmutationalepigeneticregulationtotheevolutionoftumorsduringmalignantprogressionandmetastasis. PolymorphicMicrobiomes Anexpansivefrontierinbiomedicineisunfoldingviailluminationofthediversityandvariabilityoftheplethoraofmicroorganisms,collectivelytermedthemicrobiota,thatsymbioticallyassociatewiththebarriertissuesofthebodyexposedtotheexternalenvironment—theepidermisandtheinternalmucosa,inparticularthegastrointestinaltract,aswellasthelung,thebreast,andtheurogenitalsystem.Thereisgrowingappreciationthattheecosystemscreatedbyresidentbacteriaandfungi—themicrobiomes—haveprofoundimpactonhealthanddisease(87),arealizationfueledbythecapabilitytoauditthepopulationsofmicrobialspeciesusingnext-generationsequencingandbioinformatictechnologies.Forcancer,theevidenceisincreasinglycompellingthatpolymorphicvariabilityinthemicrobiomesbetweenindividualsinapopulationcanhaveaprofoundimpactoncancerphenotypes(88,89).Associationstudiesinhumanandexperimentalmanipulationinmousemodelsofcancerarerevealingparticularmicroorganisms,principallybutnotexclusivelybacteria,whichcanhaveeitherprotectiveordeleteriouseffectsoncancerdevelopment,malignantprogression,andresponsetotherapy.Sotoocantheglobalcomplexityandconstitutionofatissuemicrobiomeatlarge.Indeed,whilethegutmicrobiomehasbeenthepioneerofthisnewfrontier,multipletissuesandorganshaveassociatedmicrobiomes,whichhavedistinctivecharacteristicsinregardtopopulationdynamicsanddiversityofmicrobialspeciesandsubspecies.Thisgrowingappreciationoftheimportanceofpolymorphicallyvariablemicrobiomesinhealthanddiseasepositsthequestion:isthemicrobiomeadiscreteenablingcharacteristicthatbroadlyaffects,bothpositivelyandnegatively,theacquisitionofhallmarkcapabilitiesforcancer?Ireflectonthispossibilitybelow,illustratingevidenceforsomeoftheprominenttissuemicrobiomesimplicatedincancerhallmarks(Fig.4),beginningwiththemostprominentandevidentlyimpactfulmicrobiome,thatoftheintestinaltract. Figure4.ViewlargeDownloadslidePolymorphicmicrobiomes.Left,whileintersectingwiththeenablingcharacteristicsoftumor-promotinginflammationandgenomicinstabilityandmutation,thereisgrowingreasontoconcludethatpolymorphicmicrobiomesinoneindividualversusanother,beingresidentinthecolon,othermucosaandconnectedorgans,orintumorsthemselves,candiverselyinfluence—byeitherinducingorinhibiting—manyofthehallmarkcapabilities,andthusarepotentiallyaninstrumentalandquasi-independentvariableinthepuzzleofhowcancersdevelop,progress,andrespondtotherapy.Right,multipletissuemicrobiomesareimplicatedinmodulatingtumorphenotypes.Inadditiontothewidelystudiedgutmicrobiome,otherdistinctivetissuemicrobiomes,aswellasthetumormicrobiome,areimplicatedinmodulatingtheacquisition—bothpositivelyandnegatively—oftheillustratedhallmarkcapabilitiesincertaintumortypes.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure4.ViewlargeDownloadslidePolymorphicmicrobiomes.Left,whileintersectingwiththeenablingcharacteristicsoftumor-promotinginflammationandgenomicinstabilityandmutation,thereisgrowingreasontoconcludethatpolymorphicmicrobiomesinoneindividualversusanother,beingresidentinthecolon,othermucosaandconnectedorgans,orintumorsthemselves,candiverselyinfluence—byeitherinducingorinhibiting—manyofthehallmarkcapabilities,andthusarepotentiallyaninstrumentalandquasi-independentvariableinthepuzzleofhowcancersdevelop,progress,andrespondtotherapy.Right,multipletissuemicrobiomesareimplicatedinmodulatingtumorphenotypes.Inadditiontothewidelystudiedgutmicrobiome,otherdistinctivetissuemicrobiomes,aswellasthetumormicrobiome,areimplicatedinmodulatingtheacquisition—bothpositivelyandnegatively—oftheillustratedhallmarkcapabilitiesincertaintumortypes.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal DiverseModulatoryEffectsoftheGutMicrobiome Ithaslongbeenrecognizedthatthegutmicrobiomeisfundamentallyimportantforthefunctionofthelargeintestine(colon)indegradingandimportingnutrientsintothebodyaspartofmetabolichomeostasis,andthatdistortionsinthemicrobialpopulations—dysbiosis—inthecoloncancauseaspectrumofphysiologicmaladies(87).Amongthesehasbeenthesuspicionthatthesusceptibility,development,andpathogenesisofcoloncancerisinfluencedbythegutmicrobiome.Inrecentyears,persuasivefunctionalstudies,involvingfecaltransplantsfromcolontumor–bearingpatientsandmiceintorecipientmicepredisposedtodevelopcoloncancerhasestablishedaprinciple:therearebothcancer-protectiveandtumor-promotingmicrobiomes,involvingparticularbacterialspecies,whichcanmodulatetheincidenceandpathogenesisofcolontumors(90). Themechanismsbywhichmicrobiotaimpartthesemodulatoryrolesarestillbeingelucidated,buttwogeneraleffectsareincreasinglywellestablishedfortumor-promotingmicrobiomesandinsomecasesforspecifictumor-promotingbacterialspecies.Thefirsteffectismutagenesisofthecolonicepithelium,consequenttotheproductionofbacterialtoxinsandothermoleculesthateitherdamageDNAdirectly,ordisruptthesystemsthatmaintaingenomicintegrity,orstresscellsinotherwaysthatindirectlyimpairthefidelityofDNAreplicationandrepair.AcaseinpointisE.colicarryingthePKSlocus,whichdemonstrablymutagenizesthehumangenomeandisimplicatedinconveyinghallmark-enablingmutations(91). Additionally,bacteriahavebeenreportedtobindtothesurfaceofcolonicepithelialcellsandproduceligandmimeticsthatstimulateepithelialproliferation,contributinginneoplasticcellstothehallmarkcapabilityforproliferativesignaling(88).Anothermechanismbywhichspecificbacterialspeciespromotetumorigenesisinvolvesbutyrate-producingbacteria,whoseabundanceiselevatedinpatientswithcolorectalcancer(92).Theproductionofthemetabolitebutyratehascomplexphysiologiceffects,includingtheinductionofsenescentepithelialandfibroblasticcells.Amousemodelofcoloncarcinogenesispopulatedwithbutyrate-producingbacteriadevelopedmoretumorsthanmicelackingsuchbacteria;theconnectionbetweenbutyrate-inducedsenescenceandenhancedcolontumorigenesiswasdemonstratedbytheuseofasenolyticdrugthatkillssenescentcells,whichimpairedtumorgrowth(92).Inaddition,bacterial-producedbutyratehaspleiotropicandparadoxicaleffectsondifferentiatedcellsversusundifferentiated(stem)cellsinthecolonicepitheliuminconditionswheretheintestinalbarrierisdisrupted(dysbiosis)andthebacteriaareinvasive,affecting,forexample,cellularenergeticsandmetabolism,histonemodification,cell-cycleprogression,and(tumor-promoting)innateimmuneinflammationthatisimmunosuppressiveofadaptiveimmuneresponses(93). Indeed,abroadeffectofpolymorphicmicrobiomesinvolvesthemodulationoftheadaptiveandinnateimmunesystemsviamultifariousroutes,includingtheproductionbybacteriaof“immunomodulatory”factorsthatactivatedamagesensorsonepithelialorresidentimmunecells,resultingintheexpressionofadiverserepertoireofchemokinesandcytokinesthatcansculpttheabundanceandcharacteristicsofimmunecellspopulatingthecolonicepitheliaanditsunderlyingstromaanddraininglymphnodes.Inaddition,certainbacteriacanbreachboththeprotectivebiofilmandthemucusliningthecolonicepitheliaandproceedtodisrupttheepithelialcell–celltightjunctionsthatcollectivelymaintaintheintegrityofthephysicalbarrierthatnormallycompartmentalizestheintestinalmicrobiome.Uponinvadingthestroma,bacteriacantriggerbothinnateandadaptiveimmuneresponses,elicitingsecretionofarepertoireofcytokinesandchemokines.Onemanifestationcanbethecreationoftumor-promotingortumor-antagonizingimmunemicroenvironments,consequentlyprotectingagainstorfacilitatingtumorigenesisandmalignantprogression.Concordantly,themodulationbydistinctivemicrobiomesinindividualpatientsoftheintertwinedparametersof(i)eliciting(innate)tumorpromotinginflammationand(ii)escaping(adaptive)immunedestructioncanbeassociatednotonlywithprognosis,butalsowithresponsivenessorresistancetoimmunotherapiesinvolvingimmunecheckpointinhibitorsandothertherapeuticmodalities(89,94–96).Provisionalproof-of-concepthascomefromrecentstudiesdemonstratingrestoredefficacytoimmunotherapyfollowingtransplantsoffecalmicrobiotafromtherapy-responsivepatientsintopatientswithmelanomawhohadprogressedduringpriortreatmentwithimmunecheckpointblockade(97,98). Anongoingmysteryhasinvolvedthemolecularmechanismsbywhichparticularandvariableconstituentsofthegutmicrobiomesystemicallymodulatetheactivityoftheadaptiveimmunesystem,eitherenhancingantitumoralimmuneresponsesevokedbyimmunecheckpointblockade,orratherelicitingsystemicorlocal(intratumoral)immunosuppression.Arecentstudyhasshedsomelight:certainstrainsofEnterococcus(andotherbacteria)expressapeptidoglycanhydrolyasecalledSagAthatreleasesmucopeptidesfromthebacterialwall,whichcanthencirculatesystemicallyandactivatetheNOD2patternreceptor,whichinturncanenhanceT-cellresponsesandtheefficacyofcheckpointimmunotherapy(99).Otherimmunoregulatorymoleculesproducedbyspecificbacterialsubspeciesarebeingidentifiedandfunctionallyevaluated,includingbacteria-producedinosine,arate-limitingmetaboliteforT-cellactivity(100).Theseexamplesandothersarebeginningtochartthemolecularmechanismsbywhichpolymorphicmicrobiomesareindirectlyandsystemicallymodulatingtumorimmunobiology,aboveandbeyondimmuneresponsesconsequenttodirectphysicalinteractionsofbacteriawiththeimmunesystem(101,102). Beyondthecausallinkstocoloncancerandmelanoma,thegutmicrobiome'sdemonstrableabilitytoelicittheexpressionofimmunomodulatorychemokinesandcytokinesthatenterthesystemiccirculationisevidentlyalsocapableofaffectingcancerpathogenesisandresponsetotherapyinotherorgansofthebody(94,95).Anilluminatingexampleinvolvesthedevelopmentofcholangiocarcinomasintheliver:gutdysbiosisallowstheentryandtransportofbacteriaandbacterialproductsthroughtheportalveintotheliver,whereTLR4expressedonhepatocytesistriggeredtoinduceexpressionofthechemokineCXCL1,whichrecruitsCXCR2-expressinggranulocyticmyeloidcells(gMDSC)thatservetosuppressnaturalkillercellssoastoevadeimmunedestruction(103),andlikelyconveyotherhallmarkcapabilities(85).Assuch,thegutmicrobiomeisunambiguouslyimplicatedasanenablingcharacteristicthatcanalternativelyfacilitateorprotectagainstmultipleformsofcancer. BeyondtheGut:ImplicatingDistinctiveMicrobiomesinOtherBarrierTissues Virtuallyalltissuesandorgansexposed,directlyorindirectly,totheoutsideenvironmentarealsorepositoriesforcommensalmicroorganisms(104).Unliketheintestine,wherethesymbioticroleofthemicrobiomeinmetabolismiswellrecognized,thenormalandpathogenicrolesofresidentmicrobiotainthesediverselocationsisstillemerging.Thereareevidentlyorgan/tissue-specificdifferencesintheconstitutionoftheassociatedmicrobiomesinhomeostasis,aging,andcancer,withbothoverlappinganddistinctivespeciesandabundanciestothatofthecolon(104,105).Moreover,associationstudiesareprovidingincreasingevidencethatlocaltumor-antagonizing/protectiveversustumor-promotingtissuemicrobiomes,similarlytothegutmicrobiome,canmodulatesusceptibilityandpathogenesistohumancancersarisingintheirassociatedorgans(106–109). ImpactofIntratumoralMicrobiota? Finally,pathologistshavelongrecognizedthatbacteriacanbedetectedwithinsolidtumors,anobservationthathasnowbeensubstantiatedwithsophisticatedprofilingtechnologies.Forexample,inasurveyof1,526tumorsencompassingsevenhumancancertypes(bone,brain,breast,lung,melanoma,ovary,andpancreas),eachtypewascharacterizedbyadistinctivemicrobiomethatwaslargelylocalizedinsidecancercellsandimmunecells,andwithineachtumortype,variationsinthetumormicrobiomecouldbedetectedandinferredtobeassociatedwithclinicopathologicfeatures(110).Microbiotahavebeensimilarlydetectedingeneticallyengineereddenovomousemodelsoflungandpancreascancer,andtheirabsenceingerm-freemiceand/ortheirabrogationwithantibioticscandemonstrablyimpairtumorigenesis,functionallyimplicatingthetumormicrobiomeasanenableroftumor-promotinginflammationandmalignantprogression(111,112).Associationstudiesinhumanpancreaticductaladenocarcinomaandfunctionaltestsviafecaltransplantsintotumor-bearingmicehaveestablishedthatvariationsinthetumormicrobiome—andtheassociatedgutmicrobiome—modulateimmunephenotypesandsurvival(113).Animportantchallengeforthefuturewillbetoextendtheseimplicationstoothertumortypes,andtodelineatethepotentiallyseparablecontributionsofconstitutionandvariationinthetumormicrobiometothatofthegut(andlocaltissueoforigin)microbiome,potentiallybyidentifyingspecificmicrobialspeciesthatarefunctionallyinfluentialinonelocationortheother. Synopsis Amongthefascinatingquestionsforthefutureiswhethermicrobiotaresidentindifferenttissuesorpopulatingincipientneoplasiashavethecapabilitytocontributetoorinterferewiththeacquisitionofotherhallmarkcapabilitiesbeyondimmunomodulationandgenomemutation,therebyinfluencingtumordevelopmentandprogression.Therearecluesthatparticularbacterialspeciescandirectlystimulatethehallmarkofproliferativesignaling,forexample,incolonicepithelium(88),andmodulategrowthsuppressionbyalteringtumorsuppressoractivityindifferentcompartmentsoftheintestine(114),whereasdirecteffectsonotherhallmarkcapabilities,suchasavoidingcelldeath,inducingangiogenesis,andstimulatinginvasionandmetastasis,remainobscure,asdoesthegeneralizabilityoftheseobservationstomultipleformsofhumancancer.Irrespective,thereisanincreasinglycompellingcasetobemadethatpolymorphicvariationinmicrobiomesoftheintestineandotherorgansconstitutesadistinctiveenablingcharacteristicfortheacquisitionofhallmarkcapabilities(Fig.4),albeitintersectingwithandcomplementingthoseofgenomeinstabilityandmutation,andtumor-promotinginflammation. SenescentCells Cellularsenescenceisatypicallyirreversibleformofproliferativearrest,likelyevolvedasaprotectivemechanismformaintainingtissuehomeostasis,ostensiblyasacomplementarymechanismtoprogrammedcelldeaththatservestoinactivateandinduecourseremovediseased,dysfunctional,orotherwiseunnecessarycells.Inadditiontoshuttingdownthecelldivisioncycle,thesenescenceprogramevokeschangesincellmorphologyandmetabolismand,mostprofoundly,theactivationofasenescence-associatedsecretoryphenotype(SASP)involvingthereleaseofaplethoraofbioactiveproteins,includingchemokines,cytokines,andproteaseswhoseidentityisdependentonthecellandtissuetypefromwhichasenescentcellarises(115–117).Senescencecanbeinducedincellsbyavarietyofconditions,includingmicroenvironmentalstressessuchasnutrientdeprivationandDNAdamage,aswellasdamagetoorganellesandcellularinfrastructure,andimbalancesincellularsignalingnetworks(115,117),allofwhichhavebeenassociatedwiththeobservedincreaseintheabundanceofsenescentcellsinvariousorgansduringaging(118,119). Cellularsenescencehaslongbeenviewedasaprotectivemechanismagainstneoplasia,wherebycancerouscellsareinducedtoundergosenescence(120).Mostoftheafore-mentionedinstigatorsofthesenescentprogramareassociatedwithmalignancy,inparticularDNAdamageasaconsequenceofaberranthyperproliferation,so-calledoncogene-inducedsenescenceduetohyperactivatedsignaling,andtherapy-inducedsenescenceconsequenttocellularandgenomicdamagecausedbychemotherapyandradiotherapy.Indeed,therearewell-establishedexamplesoftheprotectivebenefitsofsenescenceinlimitingmalignantprogression(118,119).Tothecontrary,however,anincreasingbodyofevidencerevealsquitetheopposite:incertaincontexts,senescentcellsvariouslystimulatetumordevelopmentandmalignantprogression(119,121).Inoneilluminatingcasestudy,senescentcellswerepharmacologicallyablatedinagingmice,inparticulardepletingsenescentcellscharacteristicallyexpressingthecell-cycleinhibitorp16−INK4a:inadditiontodelayingmultipleage-relatedsymptoms,thedepletionofsenescentcellsinagingmiceresultedinreducedincidencesofspontaneoustumorigenesisandcancer-associateddeath(122). TheprincipalmechanismbywhichsenescentcellspromotetumorphenotypesisthoughttobetheSASP,whichisdemonstrablycapableofconveying,inparacrinefashiontoviablecancercellsinproximity,aswellastoothercellsintheTME,signalingmolecules(andproteasesthatactivateand/ordesequesterthem)soastoconveyhallmarkcapabilities.Thus,indifferentexperimentalsystems,senescentcancercellshavebeenshowntovariouslycontributetoproliferativesignaling,avoidingapoptosis,inducingangiogenesis,stimulatinginvasionandmetastasis,andsuppressingtumorimmunity(116,118,120,121). Yetanotherfacettotheeffectsofsenescentcancercellsoncancerphenotypesinvolvestransitory,reversiblesenescentcellstates,wherebysenescentcancercellscanescapefromtheirSASP-expressing,nonproliferativecondition,andresumecellproliferationandmanifestationoftheassociatedcapabilitiesoffullyviableoncogeniccells(44).Suchtransitorysenescenceismostwelldocumentedincasesoftherapyresistance(44),representingaformofdormancythatcircumventstherapeutictargetingofproliferatingcancercells,butmaywellprovetobemorebroadlyoperativeinotherstagesoftumordevelopment,malignantprogression,andmetastasis. Moreover,thehallmark-promotingcapabilitiesofsenescentcellsarenotlimitedtosenescentcancercells.Cancer-associatedfibroblasts(CAF)intumorshavebeenshowntoundergosenescence,creatingsenescentCAFsthataredemonstrablytumor-promotingbyvirtueofconveyinghallmarkcapabilitiestocancercellsintheTME(115,116,121).More-over,senescentfibroblastsinnormaltissuesproducedinpartbynaturalagingorenvironmentalinsultshavesimilarlybeenimplicatedinremodelingtissuemicroenvironmentsviatheirSASPsoastoprovideparacrinesupportforlocalinvasion(so-called“fieldeffects”)anddistantmetastasis(116)ofneoplasiasdevelopinginproximity.Additionally,senescentfibroblastsinagingskinhavebeenshowntorecruit—viatheirSASP—innateimmunecellsthatarebothimmunosuppressiveofadaptiveantitumoralimmuneresponsesanchoredbyCD8Tcells,andstimulatoryofskintumorgrowth(123),withthelattereffectpotentiallyreflectingparacrinecontributionsofsuchinnateimmunecells(myeloidcells,neutrophils,andmacrophages)tootherhallmarkcapabilities. Whilelesswellestablished,itseemslikelythatotherabundantstromalcellspopulatingparticulartumormicroenvironmentswillprovetoundergosenescence,andtherebymodulatecancerhallmarksandconsequenttumorphenotypes.Forexample,therapy-inducedsenescenttumorendothelialcellscanenhanceproliferation,invasion,andmetastasisinbreastcancermodels(124,125). Certainly,suchclueswarrantinvestigationinothertumortypestoassessgeneralityoffibroblastic,endothelial,andotherstromalcellsenescenceasadrivingforceintumorevolution.AlsocurrentlyunresolvedaretheregulatorymechanismsandfunctionaldeterminantsthroughwhichaparticularsenescentcelltypeinagivenTMEevokesatumor-promotingversusatumor-antagonizingSASP,whichcanseemingbealternativelyinducedinthesamesenescingcelltype,perhapsbydifferentinstigatorswhenimmersedindistinctivephysiologicandneoplasticmicroenvironments. Synopsis Theconceptthattumorsarecomposedofgeneticallytransformedcancercellsinteractingwithandbenefitingfromrecruitedandepigenetically/phenotypicallycorruptedaccessory(stromal)cellsiswellestablishedasinstrumentaltothepathogenesisofcancer.Theconsiderationsdiscussedaboveanddescribedinthereviewsandreportscitedherein(andelsewhere)makeapersuasivecaseforthepropositionthatsenescentcells(ofwhatevercellularorigin)shouldbeconsideredforadditiontotherosteroffunctionallysignificantcellsinthetumormicroenvironment(Fig.5).Assuch,senescentcellswarrantbeingfactoredintothequestfordeepknowledgeofcancermechanisms.Furthermore,therealizationoftheirimportancemotivatestheancillarygoaltotherapeuticallytargettumor-promotingsenescentcellsofallconstitutions,beitbypharmacologicorimmunologicablation,orbyreprogrammingtheSASPintotumor-antagonizingvariants(115,121,126). Figure5.ViewlargeDownloadslideSenescentcells.Heterogeneouscancercellsubtypesaswellasstromalcelltypesandsubtypesarefunctionallyintegratedintothemanifestationsoftumorsasoutlaworgans.CluesareincreasinglyimplicatingsenescentcellderivativesofmanyofthesecellularconstituentsoftheTME,andtheirvariableSASPs,inmodulatinghallmarkcapabilitiesandconsequenttumorphenotypes.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure5.ViewlargeDownloadslideSenescentcells.Heterogeneouscancercellsubtypesaswellasstromalcelltypesandsubtypesarefunctionallyintegratedintothemanifestationsoftumorsasoutlaworgans.CluesareincreasinglyimplicatingsenescentcellderivativesofmanyofthesecellularconstituentsoftheTME,andtheirvariableSASPs,inmodulatinghallmarkcapabilitiesandconsequenttumorphenotypes.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal ConcludingRemarks Whiletheeighthallmarksofcancerandtheirtwoenablingcharacteristicshaveprovedofenduringheuristicvalueintheconceptualizationofcancer,theconsiderationspresentedabovesuggestthattheremaybenewfacetsofsomegeneralityandhenceofrelevancetomorefullyunderstandingthecomplexities,mechanisms,andmanifestationsofthedisease.Byapplyingthemetricofdiscernableifnotcompleteindependencefromthe10coreattributes,itisarguablethatthesefourparametersmaywell—pursuanttofurthervalidationandgeneralizationbeyondthecasestudiespresented—becomeintegratedintothehallmarksofcancerschematic(Fig.6).Thus,cellularplasticitymaycometobeaddedtotherosterofhallmarkcapabilities.Notably,whiletheeightcoreandthisnouveaucapabilityareeach,bytheirdefinitionasahallmark,conceptuallydistinguishable,aspectsoftheirregulationareatleastpartiallyinterconnectedinsomeandperhapsmanycancers.Forexample,multiplehallmarksarecoordinatelymodulatedinsometumortypesbycanonicaloncogenicdrivers,including(i) KRAS(https://cancer.sanger.ac.uk/cosmic/census-page/KRAS),(ii) MYC(https://cancer.sanger.ac.uk/cosmic/census-page/MYC),(iii) NOTCH(https://cancer.sanger.ac.uk/cosmic/census-page/NOTCH1;ref.127),and(iv) TP53(https://cancer.sanger.ac.uk/cosmic/census-page/TP53), Figure6.ViewlargeDownloadslideHallmarksofCancer—newadditions.Depictedarethecanonicalandprospectivenewadditionstothe“HallmarksofCancer.”Thistreatiseraisesthepossibility,aimingtostimulatedebate,discussion,andexperimentalelaboration,thatsomeorallofthefournewparameterswillcometobeappreciatedasgenerictomultipleformsofhumancancerandhenceappropriatetoincorporateintothecoreconceptualizationofthehallmarksofcancer.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Figure6.ViewlargeDownloadslideHallmarksofCancer—newadditions.Depictedarethecanonicalandprospectivenewadditionstothe“HallmarksofCancer.”Thistreatiseraisesthepossibility,aimingtostimulatedebate,discussion,andexperimentalelaboration,thatsomeorallofthefournewparameterswillcometobeappreciatedasgenerictomultipleformsofhumancancerandhenceappropriatetoincorporateintothecoreconceptualizationofthehallmarksofcancer.ThehallmarksofcancergraphichasbeenadaptedfromHanahanandWeinberg(2).Closemodal highlightingtheimportantchallengetomorefullyelucidatetheregulatorynetworksgoverningtheseacquiredcapabilities. Inadditiontoaddingcellularplasticitytotheroster,nonmutationalepigeneticreprogrammingandpolymorphicvariationsinorgan/tissuemicrobiomesmaycometobeincorporatedasmechanisticdeterminants—enablingcharacteristics—bywhichhallmarkcapabilitiesareacquired,alongwithtumor-promotinginflammation(itselfpartiallyinterconnectedtothemicrobiome),aboveandbeyondthemutationsandotheraberrationsthatmanifesttheafore-mentionedoncogenicdrivers. Finally,senescentcellsofdifferentorigins—includingcancercellsandvariousstromalcells—thatfunctionallycontributetothedevelopmentandmalignantprogressionofcancer,albeitinmarkedlydistinctivewaystothoseoftheirnonsenescentbrethren,maybecomeincorporatedasgenericcomponentsoftheTME.Inconclusion,itisenvisagedthatraisingtheseprovisional“trialballoons”willstimulatedebate,discussion,andcontinuingexperimentalinvestigationinthecancerresearchcommunityaboutthedefiningconceptualparametersofcancerbiology,genetics,andpathogenesis. Author'sDisclosures Nodisclosureswerereported. Acknowledgments Firstandforemost,IprofoundlythankBobWeinbergforanexceptionaltraditionofinsightfulandformativediscussions,andforexcellentcommentsandsuggestionstothefirstvignetteofthismanuscript.Additionally,Iwishtothank:BenStanger;BradleyBernstein,GiovanniCiriello,andWilliamFlavahan;JenniferWargo;andSheilaStewartfortheirvaluablecommentsandsuggestionsonthefourvignettes,respectively,andSayoStudioforassistanceincraftingthefigures. References 1. Hanahan D , Weinberg RA .Thehallmarksofcancer.Cell 2000;100:57–70.GoogleScholarCrossrefSearchADS 2. Hanahan D , Weinberg RA .Hallmarksofcancer:thenextgeneration.Cell 2011;144:646–74.GoogleScholarCrossrefSearchADS 3. Yuan S , Norgard RJ , Stanger BZ .Cellularplasticityincancer.CancerDiscov 2019;9:837–51.GoogleScholarCrossrefSearchADS 4. Barker N , Ridgway RA , vanEs JH , vandeWetering M , Begthel H , vandenBorn M etal . Cryptstemcellsasthecells-of-originofintestinalcancer.Nature 2009;457:608–11.GoogleScholarCrossrefSearchADS 5. Perekatt AO , Shah PP , Cheung S , Jariwala N , Wu A , Gandhi V etal . SMAD4suppressesWNT-drivendedifferentiationandoncogenesisinthedifferentiatedgutepithelium.CancerRes 2018;78:4878–90.GoogleScholarCrossrefSearchADS 6. Shih IM , Wang TL , Traverso G , Romans K , Hamilton SR , Ben-Sasson S etal . Top-downmorphogenesisofcolorectaltumors.ProcNatlAcadSciUSA 2001;98:2640–5.GoogleScholarCrossrefSearchADS 7. Ordóñez-Morán P , Dafflon C , Imajo M , Nishida E , Huelsken J .HOXA5counteractsstemcelltraitsbyinhibitingWntsignalingincolorectalcancer.CancerCell 2015;28:815–29.GoogleScholarCrossrefSearchADS 8. Tan SH , Barker N .Stemmingcolorectalcancergrowthandmetastasis:HOXA5forcescancerstemcellstodifferentiate.CancerCell 2015;28:683–5.GoogleScholarCrossrefSearchADS 9. Köhler C , Nittner D , Rambow F , Radaelli E , Stanchi F , Vandamme N etal . MousecutaneousmelanomainducedbymutantBRafarisesfromexpansionanddedifferentiationofmaturepigmentedmelanocytes.CellStemCell 2017;21:679–93.GoogleScholarCrossrefSearchADS 10. Shah M , Bhoumik A , Goel V , Dewing A , Breitwieser W , Kluger H etal . AroleforATF2inregulatingMITFandmelanomadevelopment.PLoSGenet 2010;6:e1001258.GoogleScholarCrossrefSearchADS 11. Claps G , Cheli Y , Zhang T , Scortegagna M , Lau E , Kim H etal . AtranscriptionallyinactiveATF2variantdrivesmelanomagenesis.CellRep 2016;15:1884–92.GoogleScholarCrossrefSearchADS 12. Saghafinia S , Homicsko K , DiDomenico A , Wullschleger S , Perren A , Marinoni I etal . Cancercellsretraceastepwisedifferentiationprogramduringmalignantprogression.CancerDiscov 2021;11:2638–57.GoogleScholarCrossrefSearchADS 13. Yu X-X , Qiu W-L , Yang L , Zhang Y , He M-Y , Li L-C etal . Definingmultistepcellfatedecisionpathwaysduringpancreaticdevelopmentatsingle-cellresolution.EMBOJ 2019;38:e100164.GoogleScholar 14. deThé H .Differentiationtherapyrevisited.NatRevCancer 2018;18:117–27.GoogleScholarCrossrefSearchADS 15. He LZ , Merghoub T , Pandolfi PP .Invivoanalysisofthemolecularpathogenesisofacutepromyelocyticleukemiainthemouseanditstherapeuticimplications.Oncogene 1999;18:5278–92.GoogleScholarCrossrefSearchADS 16. Warrell RP , deThé H , Wang ZY , Degos L .Acutepromyelocyticleukemia.NEnglJMed 1993;329:177–89.GoogleScholarCrossrefSearchADS 17. Bots M , Verbrugge I , Martin BP , Salmon JM , Ghisi M , Baker A etal . Differentiationtherapyforthetreatmentoft(8;21)acutemyeloidleukemiausinghistonedeacetylaseinhibitors.Blood 2014;123:1341–52.GoogleScholarCrossrefSearchADS 18. Ferrara FF , Fazi F , Bianchini A , Padula F , Gelmetti V , Minucci S etal . Histonedeacetylase-targetedtreatmentrestoresretinoicacidsignalinganddifferentiationinacutemyeloidleukemia.CancerRes 2001;61:2–7.GoogleScholar 19. Kaufman CK , Mosimann C , Fan ZP , Yang S , Thomas AJ , Ablain J etal . Azebrafishmelanomamodelrevealsemergenceofneuralcrestidentityduringmelanomainitiation.Science 2016;351:aad2197.GoogleScholarCrossrefSearchADS 20. Morris JP , Yashinskie JJ , Koche R , Chandwani R , Tian S , Chen C-C etal . α-Ketoglutaratelinksp53tocellfateduringtumoursuppression.Nature 2019;573:595–9.GoogleScholarCrossrefSearchADS 21. Saha SK , Parachoniak CA , Ghanta KS , Fitamant J , Ross KN , Najem MS etal . MutantIDHinhibitsHNF-4αtoblockhepatocytedifferentiationandpromotebiliarycancer.Nature 2014;513:110–4.GoogleScholarCrossrefSearchADS 22. Dang L , Su S-SM .Isocitratedehydrogenasemutationand(R)-2-hydroxyglutarate:frombasicdiscoverytotherapeuticsdevelopment.AnnuRevBiochem 2017;86:305–31.GoogleScholarCrossrefSearchADS 23. Waitkus MS , Diplas BH , Yan H .BiologicalroleandtherapeuticpotentialofIDHmutationsincancer.CancerCell 2018;34:186–95.GoogleScholarCrossrefSearchADS 24. Phan TG , Croucher PI .Thedormantcancercelllifecycle.NatRevCancer 2020;20:398–411.GoogleScholarCrossrefSearchADS 25. Jiang M , Azevedo-Pouly AC , Deering TG , Hoang CQ , DiRenzo D , Hess DA etal . MIST1andPTF1collaborateinfeed-forwardregulatoryloopsthatmaintainthepancreaticacinarphenotypeinadultmice.MolCellBiol 2016;36:2945–55.GoogleScholarCrossrefSearchADS 26. Krah NM , Narayanan SM , Yugawa DE , Straley JA , Wright CVE , MacDonald RJ etal . Preventionandreversionofpancreatictumorigenesisthroughadifferentiation-basedmechanism.DevCell 2019;50:744–54.GoogleScholarCrossrefSearchADS 27. Krah NM , DeLaO J-P , Swift GH , Hoang CQ , Willet SG , ChenPan F etal . TheacinardifferentiationdeterminantPTF1Ainhibitsinitiationofpancreaticductaladenocarcinoma.eLife 2015;4:e07125.GoogleScholarCrossrefSearchADS 28. Shi G , DiRenzo D , Qu C , Barney D , Miley D , Konieczny SF .MaintenanceofacinarcellorganizationiscriticaltopreventingKras-inducedacinar-ductalmetaplasia.Oncogene 2013;32:1950–8.GoogleScholarCrossrefSearchADS 29. Kopp JL , vonFigura G , Mayes E , Liu F-F , Dubois CL , Morris JP etal . IdentificationofSox9-dependentacinar-to-ductalreprogrammingastheprincipalmechanismforinitiationofpancreaticductaladenocarcinoma.CancerCell 2012;22:737–50.GoogleScholarCrossrefSearchADS 30. Julian LM , McDonald AC , Stanford WL .DirectreprogrammingwithSOXfactors:mastersofcellfate.CurrOpinGenetDev 2017;46:24–36.GoogleScholarCrossrefSearchADS 31. Grimm D , Bauer J , Wise P , Krüger M , Simonsen U , Wehland M etal . TheroleofSOXfamilymembersinsolidtumoursandmetastasis.SeminCancerBiol 2020;67:122–53.GoogleScholarCrossrefSearchADS 32. Mu P , Zhang Z , Benelli M , Karthaus WR , Hoover E , Chen C-C etal . SOX2promoteslineageplasticityandantiandrogenresistanceinTP53-andRB1-deficientprostatecancer.Science 2017;355:84–8.GoogleScholarCrossrefSearchADS 33. VonHoff DD , LoRusso PM , Rudin CM , Reddy JC , Yauch RL , Tibes R etal . Inhibitionofthehedgehogpathwayinadvancedbasal-cellcarcinoma.NEnglJMed 2009;361:1164–72.GoogleScholarCrossrefSearchADS 34. Biehs B , Dijkgraaf GJP , Piskol R , Alicke B , Boumahdi S , Peale F etal . AcellidentityswitchallowsresidualBCCtosurviveHedgehogpathwayinhibition.Nature 2018;562:429–33.GoogleScholarCrossrefSearchADS 35. Boumahdi S , deSauvage FJ .Thegreatescape:tumourcellplasticityinresistancetotargetedtherapy.NatRevDrugDiscov 2020;19:39–56.GoogleScholarCrossrefSearchADS 36. Groves SM , Ireland A , Liu Q , Simmons AJ , Lau K , Iams WT etal . CancerHallmarksDefineaContinuumofPlasticCellStatesbetweenSmallCellLungCancerArchetypes[Internet].SystemsBiology;2021Jan.Availablefrom:http://biorxiv.org/lookup/doi/10.1101/2021.01.22.427865.GoogleScholar 37. LaFave LM , Kartha VK , Ma S , Meli K , DelPriore I , Lareau C etal . Epigenomicstatetransitionscharacterizetumorprogressioninmouselungadenocarcinoma.CancerCell 2020;38:212–28.GoogleScholarCrossrefSearchADS 38. Marjanovic ND , Hofree M , Chan JE , Canner D , Wu K , Trakala M etal . Emergenceofahigh-plasticitycellstateduringlungcancerevolution.CancerCell 2020;38:229–46.GoogleScholarCrossrefSearchADS 39. Drapkin BJ , Minna JD .Studyinglineageplasticityonecellatatime.CancerCell 2020;38:150–2.GoogleScholarCrossrefSearchADS 40. Inoue Y , Nikolic A , Farnsworth D , Liu A , Ladanyi M , Somwar R etal . Extracellularsignal-regulatedkinasemediateschromatinrewiringandlineagetransformationinlungcancer[Internet].CancerBiology; 2020Nov.Availablefrom:http://biorxiv.org/lookup/doi/10.1101/2020.11.12.368522.GoogleScholar 41. Dravis C , Chung C-Y , Lytle NK , Herrera-Valdez J , Luna G , Trejo CL etal . Epigeneticandtranscriptomicprofilingofmammaryglanddevelopmentandtumormodelsdiscloseregulatorsofcellstateplasticity.CancerCell 2018;34:466–82.GoogleScholarCrossrefSearchADS 42. Malta TM , Sokolov A , Gentles AJ , Burzykowski T , Poisson L , Weinstein JN etal . Machinelearningidentifiesstemnessfeaturesassociatedwithoncogenicdedifferentiation.Cell 2018;173:338–54.GoogleScholarCrossrefSearchADS 43. Miao Z-F , Lewis MA , Cho CJ , Adkins-Threats M , Park D , Brown JW etal . Adedicatedevolutionarilyconservedmolecularnetworklicensesdifferentiatedcellstoreturntothecellcycle.DevCell 2020;55:178–94.GoogleScholarCrossrefSearchADS 44. DeBlander H , Morel A-P , Senaratne AP , Ouzounova M , Puisieux A .Cellularplasticity:aroutetosenescenceexitandtumorigenesis.Cancers 2021;13:4561.GoogleScholarCrossrefSearchADS 45. Merrell AJ , Stanger BZ .Adultcellplasticityinvivo:de-differentiationandtransdifferentiationarebackinstyle.NatRevMolCellBiol 2016;17:413–25.GoogleScholarCrossrefSearchADS 46. Baylin SB , Jones PA .Epigeneticdeterminantsofcancer.ColdSpringHarbPerspectBiol 2016;8:a019505.GoogleScholarCrossrefSearchADS 47. Flavahan WA , Gaskell E , Bernstein BE .Epigeneticplasticityandthehallmarksofcancer.Science 2017;357:eaal2380.GoogleScholarCrossrefSearchADS 48. Jones PA , Issa J-PJ , Baylin S .Targetingthecancerepigenomefortherapy.NatRevGenet 2016;17:630–41.GoogleScholarCrossrefSearchADS 49. Huang S .Tumorprogression:ChanceandnecessityinDarwinianandLamarckiansomatic(mutationless)evolution.ProgBiophysMolBiol 2012;110:69–86.GoogleScholarCrossrefSearchADS 50. Darwiche N .Epigeneticmechanismsandthehallmarksofcancer:anintimateaffair.AmJCancerRes 2020;10:1954–78.GoogleScholar 51. Feng Y , Liu X , Pauklin S .3Dchromatinarchitectureandepigeneticregulationincancerstemcells.ProteinCell 2021;12:440–54.GoogleScholarCrossrefSearchADS 52. Nam AS , Chaligne R , Landau DA .Integratinggeneticandnon-geneticdeterminantsofcancerevolutionbysingle-cellmulti-omics.NatRevGenet 2021;22:3–18.GoogleScholarCrossrefSearchADS 53. Bitman-Lotan E , Orian A .Nuclearorganizationandregulationofthedifferentiatedstate.CellMolLifeSciCMLS 2021;78:3141–58.GoogleScholarCrossrefSearchADS 54. Goldberg AD , Allis CD , Bernstein E .Epigenetics:alandscapetakesshape.Cell 2007;128:635–8.GoogleScholarCrossrefSearchADS 55. Zeng Y , Chen T .DNAmethylationreprogrammingduringmammaliandevelopment.Genes 2019;10:257.GoogleScholarCrossrefSearchADS 56. Hegde AN , Smith SG .Recentdevelopmentsintranscriptionalandtranslationalregulationunderlyinglong-termsynapticplasticityandmemory.LearnMem 2019;26:307–17.GoogleScholarCrossrefSearchADS 57. Kim S , Kaang B-K .Epigeneticregulationandchromatinremodelinginlearningandmemory.ExpMolMed 2017;49:e281.GoogleScholarCrossrefSearchADS 58. Thienpont B , VanDyck L , Lambrechts D .Tumorssmothertheirepigenome.MolCellOncol 2016;3:e1240549.GoogleScholarCrossrefSearchADS 59. Gameiro PA , Struhl K .Nutrientdeprivationelicitsatranscriptionalandtranslationalinflammatoryresponsecoupledtodecreasedproteinsynthesis.CellRep 2018;24:1415–24.GoogleScholarCrossrefSearchADS 60. Lin GL , Monje M .UnderstandingthedeadlysilenceofposteriorfossaAependymoma.MolCell 2020;78:999–1001.GoogleScholarCrossrefSearchADS 61. Michealraj KA , Kumar SA , Kim LJY , Cavalli FMG , Przelicki D , Wojcik JB etal . Metabolicregulationoftheepigenomedriveslethalinfantileependymoma.Cell 2020;181:1329–45.GoogleScholarCrossrefSearchADS 62. Bakir B , Chiarella AM , Pitarresi JR , Rustgi AK .EMT,MET,plasticity,andtumormetastasis.TrendsCellBiol 2020;30:764–76.GoogleScholarCrossrefSearchADS 63. Gupta PB , Pastushenko I , Skibinski A , Blanpain C , Kuperwasser C .Phenotypicplasticity:driverofcancerinitiation,progression,andtherapyresistance.CellStemCell 2019;24:65–78.GoogleScholarCrossrefSearchADS 64. Lambert AW , Weinberg RA .LinkingEMTprogrammestonormalandneoplasticepithelialstemcells.NatRevCancer 2021;21:325–38.GoogleScholarCrossrefSearchADS 65. Lindner P , Paul S , Eckstein M , Hampel C , Muenzner JK , Erlenbach-Wuensch K etal . EMTtranscriptionfactorZEB1alterstheepigeneticlandscapeofcolorectalcancercells.CellDeathDis 2020;11:147.GoogleScholarCrossrefSearchADS 66. Javaid S , Zhang J , Anderssen E , Black JC , Wittner BS , Tajima K etal . Dynamicchromatinmodificationsustainsepithelial-mesenchymaltransitionfollowinginducibleexpressionofSnail-1.CellRep 2013;5:1679–89.GoogleScholarCrossrefSearchADS 67. Serrano-Gomez SJ , Maziveyi M , Alahari SK .Regulationofepithelial-mesenchymaltransitionthroughepigeneticandpost-translationalmodifications.MolCancer 2016;15:18.GoogleScholarCrossrefSearchADS 68. Skrypek N , Goossens S , DeSmedt E , Vandamme N , Berx G .Epithelial-to-mesenchymaltransition:epigeneticreprogrammingdrivingcellularplasticity.TrendsGenetTIG 2017;33:943–59.GoogleScholarCrossrefSearchADS 69. Li L , Hanahan D .HijackingtheneuronalNMDARsignalingcircuittopromotetumorgrowthandinvasion.Cell 2013;153:86–100.GoogleScholarCrossrefSearchADS 70. Li L , Zeng Q , Bhutkar A , Galván JA , Karamitopoulou E , Noordermeer D etal . GKAPactsasageneticmodulatorofNMDARsignalingtogoverninvasivetumorgrowth.CancerCell 2018;33:736–51.GoogleScholarCrossrefSearchADS 71. Mohammadi H , Sahai E .Mechanismsandimpactofalteredtumourmechanics.NatCellBiol 2018;20:766–74.GoogleScholarCrossrefSearchADS 72. Odenthal J , Takes R , Friedl P .Plasticityoftumorcellinvasion:governancebygrowthfactorsandcytokines.Carcinogenesis 2016;37:1117–28.GoogleScholar 73. Torres CM , Biran A , Burney MJ , Patel H , Henser-Brownhill T , Cohen A-HS etal . ThelinkerhistoneH1.0generatesepigeneticandfunctionalintratumorheterogeneity.Science 2016;353:aaf1644.GoogleScholarCrossrefSearchADS 74. Puram SV , Tirosh I , Parikh AS , Patel AP , Yizhak K , Gillespie S etal . Single-celltranscriptomicanalysisofprimaryandmetastatictumorecosystemsinheadandneckcancer.Cell 2017;171:1611–24.GoogleScholarCrossrefSearchADS 75. Kinker GS , Greenwald AC , Tal R , Orlova Z , Cuoco MS , McFarland JM etal . Pan-cancersingle-cellRNA-seqidentifiesrecurringprogramsofcellularheterogeneity.NatGenet 2020;52:1208–18.GoogleScholarCrossrefSearchADS 76. Murtha M , Esteller M .Extraordinarycancerepigenomics:thinkingoutsidetheclassicalcodingandpromoterbox.TrendsCancer 2016;2:572–84.GoogleScholarCrossrefSearchADS 77. Nebbioso A , Tambaro FP , Dell'Aversana C , Altucci L .Cancerepigenetics:movingforward.PLoSGenet 2018;14:e1007362.GoogleScholarCrossrefSearchADS 78. Tavernari D , Battistello E , Dheilly E , Petruzzella AS , Mina M , Sordet-Dessimoz J etal . Non-geneticevolutiondriveslungadenocarcinomaspatialheterogeneityandprogression.CancerDiscov 2021;11:1490–507.GoogleScholarCrossrefSearchADS 79. Heyn H , Vidal E , Ferreira HJ , Vizoso M , Sayols S , Gomez A etal . Epigenomicanalysisdetectsaberrantsuper-enhancerDNAmethylationinhumancancer.GenomeBiol 2016;17:11.GoogleScholarCrossrefSearchADS 80. Saghafinia S , Mina M , Riggi N , Hanahan D , Ciriello G .Pan-cancerlandscapeofaberrantDNAmethylationacrosshumantumors.CellRep 2018;25:1066–80.GoogleScholarCrossrefSearchADS 81. Audia JE , Campbell RM .Histonemodificationsandcancer.ColdSpringHarbPerspectBiol 2016;8:a019521.GoogleScholarCrossrefSearchADS 82. Corces MR , Granja JM , Shams S , Louie BH , Seoane JA , Zhou W etal . Thechromatinaccessibilitylandscapeofprimaryhumancancers.Science 2018;362:eaav1898.GoogleScholarCrossrefSearchADS 83. Esteve-Puig R , Bueno-Costa A , Esteller M .Writers,readersanderasersofRNAmodificationsincancer.CancerLett 2020;474:127–37.GoogleScholarCrossrefSearchADS 84. Janin M , Coll-SanMartin L , Esteller M .DisruptionoftheRNAmodificationsthattargettheribosometranslationmachineryinhumancancer.MolCancer 2020;19:70.GoogleScholarCrossrefSearchADS 85. Hanahan D , Coussens LM .Accessoriestothecrime:functionsofcellsrecruitedtothetumormicroenvironment.CancerCell 2012;21:309–22.GoogleScholarCrossrefSearchADS 86. Lu Z , Zou J , Li S , Topper MJ , Tao Y , Zhang H etal . Epigenetictherapyinhibitsmetastasesbydisruptingpremetastaticniches.Nature 2020;579:284–90.GoogleScholarCrossrefSearchADS 87. Thomas S , Izard J , Walsh E , Batich K , Chongsathidkiet P , Clarke G etal . Thehostmicrobiomeregulatesandmaintainshumanhealth:aprimerandperspectivefornon-microbiologists.CancerRes 2017;77:1783–812.GoogleScholarCrossrefSearchADS 88. Dzutsev A , Badger JH , Perez-Chanona E , Roy S , Salcedo R , Smith CK etal . Microbesandcancer.AnnuRevImmunol 2017;35:199–228.GoogleScholarCrossrefSearchADS 89. Helmink BA , Khan MAW , Hermann A , Gopalakrishnan V , Wargo JA .Themicrobiome,cancer,andcancertherapy.NatMed 2019;25:377–88.GoogleScholarCrossrefSearchADS 90. Sears CL , Garrett WS .Microbes,microbiota,andcoloncancer.CellHostMicrobe 2014;15:317–28.GoogleScholarCrossrefSearchADS 91. Pleguezuelos-Manzano C , Puschhof J , RosendahlHuber A , vanHoeck A , Wood HM , Nomburg J etal . Mutationalsignatureincolorectalcancercausedbygenotoxicpks+E.coli.Nature 2020;580:269–73.GoogleScholarCrossrefSearchADS 92. Okumura S , Konishi Y , Narukawa M , Sugiura Y , Yoshimoto S , Arai Y etal . Gutbacteriaidentifiedincolorectalcancerpatientspromotetumourigenesisviabutyratesecretion.NatCommun 2021;12:5674.GoogleScholarCrossrefSearchADS 93. Salvi PS , Cowles RA .Butyrateandtheintestinalepithelium:modulationofproliferationandinflammationinhomeostasisanddisease.Cells 2021;10:1775.GoogleScholarCrossrefSearchADS 94. Fessler J , Matson V , Gajewski TF .Exploringtheemergingroleofthemicrobiomeincancerimmunotherapy.JImmunotherCancer 2019;7:108.GoogleScholarCrossrefSearchADS 95. Gopalakrishnan V , Helmink BA , Spencer CN , Reuben A , Wargo JA .Theinfluenceofthegutmicrobiomeoncancer,immunity,andcancerimmunotherapy.CancerCell 2018;33:570–80.GoogleScholarCrossrefSearchADS 96. Zitvogel L , Ma Y , Raoult D , Kroemer G , Gajewski TF .Themicrobiomeincancerimmunotherapy:diagnostictoolsandtherapeuticstrategies.Science 2018;359:1366–70.GoogleScholarCrossrefSearchADS 97. Baruch EN , Youngster I , Ben-Betzalel G , Ortenberg R , Lahat A , Katz L etal . Fecalmicrobiotatransplantpromotesresponseinimmunotherapy-refractorymelanomapatients.Science 2021;371:602–9.GoogleScholarCrossrefSearchADS 98. Davar D , Dzutsev AK , McCulloch JA , Rodrigues RR , Chauvin J-M , Morrison RM etal . Fecalmicrobiotatransplantovercomesresistancetoanti–PD-1therapyinmelanomapatients.Science 2021;371:595–602.GoogleScholarCrossrefSearchADS 99. Griffin ME , Espinosa J , Becker JL , Luo J-D , Carroll TS , Jha JK etal . Enterococcuspeptidoglycanremodelingpromotescheckpointinhibitorcancerimmunotherapy.Science 2021;373:1040–6.GoogleScholarCrossrefSearchADS 100. Mager LF , Burkhard R , Pett N , Cooke NCA , Brown K , Ramay H etal . Microbiome-derivedinosinemodulatesresponsetocheckpointinhibitorimmunotherapy.Science 2020;369:1481–9.GoogleScholarCrossrefSearchADS 101. Ansaldo E , Belkaid Y .Howmicrobiotaimproveimmunotherapy.Science 2021;373:966–7.GoogleScholarCrossrefSearchADS 102. Ansaldo E , Farley TK , Belkaid Y .Controlofimmunitybythemicrobiota.AnnuRevImmunol 2021;39:449–79.GoogleScholarCrossrefSearchADS 103. Zhang Q , Ma C , Duan Y , Heinrich B , Rosato U , Diggs LP etal . GutmicrobiomedirectshepatocytestorecruitMDSCsandpromotecholangiocarcinoma.CancerDiscov 2021;11:1248–67.GoogleScholarCrossrefSearchADS 104. Ding T , Schloss PD .Dynamicsandassociationsofmicrobialcommunitytypesacrossthehumanbody.Nature 2014;509:357–60.GoogleScholarCrossrefSearchADS 105. Byrd AL , Liu M , Fujimura KE , Lyalina S , Nagarkar DR , Charbit B etal . Gutmicrobiomestabilityanddynamicsinhealthydonorsandpatientswithnon-gastrointestinalcancers.JExpMed 2021;218:e20200606.GoogleScholarCrossrefSearchADS 106. Healy CM , Moran GP .Themicrobiomeandoralcancer:morequestionsthananswers.OralOncol 2019;89:30–3.GoogleScholarCrossrefSearchADS 107. Swaney MH , Kalan LR .Livinginyourskin:microbes,moleculesandmechanisms.InfectImmun 2021;89:e00695–20.GoogleScholarCrossrefSearchADS 108. Willis JR , Gabaldón T .Thehumanoralmicrobiomeinhealthanddisease:fromsequencestoecosystems.Microorganisms 2020;8:308.GoogleScholarCrossrefSearchADS 109. Xu J , Peng J-J , Yang W , Fu K , Zhang Y .Vaginalmicrobiomesandovariancancer:areview.AmJCancerRes 2020;10:743–56.GoogleScholar 110. Nejman D , Livyatan I , Fuks G , Gavert N , Zwang Y , Geller LT etal . Thehumantumormicrobiomeiscomposedoftumortype-specificintracellularbacteria.Science 2020;368:973–80.GoogleScholarCrossrefSearchADS 111. Jin C , Lagoudas GK , Zhao C , Bullman S , Bhutkar A , Hu B etal . CommensalmicrobiotapromotelungcancerdevelopmentviaγδTcells.Cell 2019;176:998–1013.GoogleScholarCrossrefSearchADS 112. Pushalkar S , Hundeyin M , Daley D , Zambirinis CP , Kurz E , Mishra A etal . Thepancreaticcancermicrobiomepromotesoncogenesisbyinductionofinnateandadaptiveimmunesuppression.CancerDiscov 2018;8:403–16.GoogleScholarCrossrefSearchADS 113. McAllister F , Khan MAW , Helmink B , Wargo JA .Thetumormicrobiomeinpancreaticcancer:bacteriaandbeyond.CancerCell 2019;36:577–9.GoogleScholarCrossrefSearchADS 114. Kadosh E , Snir-Alkalay I , Venkatachalam A , May S , Lasry A , Elyada E etal . Thegutmicrobiomeswitchesmutantp53fromtumour-suppressivetooncogenic.Nature 2020;586:133–8.GoogleScholarCrossrefSearchADS 115. Birch J , Gil J .SenescenceandtheSASP:manytherapeuticavenues.GenesDev 2020;34:1565–76.GoogleScholarCrossrefSearchADS 116. Faget DV , Ren Q , Stewart SA .Unmaskingsenescence:context-dependenteffectsofSASPincancer.NatRevCancer 2019;19:439–53.GoogleScholarCrossrefSearchADS 117. Gorgoulis V , Adams PD , Alimonti A , Bennett DC , Bischof O , Bishop C etal . Cellularsenescence:definingapathforward.Cell 2019;179:813–27.GoogleScholarCrossrefSearchADS 118. He S , Sharpless NE .Senescenceinhealthanddisease.Cell 2017;169:1000–11.GoogleScholarCrossrefSearchADS 119. Kowald A , Passos JF , Kirkwood TBL .Ontheevolutionofcellularsenescence.AgingCell 2020;19:e13270.GoogleScholarCrossrefSearchADS 120. Lee S , Schmitt CA .Thedynamicnatureofsenescenceincancer.NatCellBiol 2019;21:94–101.GoogleScholarCrossrefSearchADS 121. Wang B , Kohli J , Demaria M .Senescentcellsincancertherapy:friendsorfoes? TrendsCancer 2020;6:838–57.GoogleScholarCrossrefSearchADS 122. Baker DJ , Childs BG , Durik M , Wijers ME , Sieben CJ , Zhong J etal . Naturallyoccurringp16(Ink4a)-positivecellsshortenhealthylifespan.Nature 2016;530:184–9.GoogleScholarCrossrefSearchADS 123. Ruhland MK , Loza AJ , Capietto A-H , Luo X , Knolhoff BL , Flanagan KC etal . Stromalsenescenceestablishesanimmunosuppressivemicroenvironmentthatdrivestumorigenesis.NatCommun 2016;7:11762.GoogleScholarCrossrefSearchADS 124. Hwang HJ , Lee Y-R , Kang D , Lee HC , Seo HR , Ryu J-K etal . Endothelialcellsundertherapy-inducedsenescencesecreteCXCL11,whichincreasesaggressivenessofbreastcancercells.CancerLett 2020;490:100–10.GoogleScholarCrossrefSearchADS 125. Wang D , Xiao F , Feng Z , Li M , Kong L , Huang L etal . Sunitinibfacilitatesmetastaticbreastcancerspreadingbyinducingendothelialcellsenescence.BreastCancerRes 2020;22:103.GoogleScholarCrossrefSearchADS 126. Amor C , Feucht J , Leibold J , Ho Y-J , Zhu C , Alonso-Curbelo D etal . SenolyticCARTcellsreversesenescence-associatedpathologies.Nature 2020;583:127–32.GoogleScholarCrossrefSearchADS 127. Aster JC , Pear WS , Blacklow SC .Thevariedrolesofnotchincancer.AnnuRevPathol 2017;12:245–75.GoogleScholarCrossrefSearchADS 128. Kuczynski EA , Vermeulen PB , Pezzella F , Kerbel RS , Reynolds AR .Vesselco-optionincancer.NatRevClinOncol 2019;16:469–93.GoogleScholarCrossrefSearchADS  ©2022AmericanAssociationforCancerResearch2022AmericanAssociationforCancerResearch 59,363 Views 30 Citations ViewMetrics × Citingarticlesvia WebOfScience(30) GoogleScholar CrossRef Advertisement Emailalerts ArticleActivityAlert OnlineFirstAlert eTOCAlert CloseModal Latest MostRead MostCited BanningMentholinCigarettes ReverseTranscriptaseInhibitionDisruptsRepeatElementLifeCycleinColorectalCancer MechanismFoundforIDO1InhibitorEvasion CharacterizationofINCB086550:APotentandNovelSmall-MoleculePD-L1Inhibitor Issues OnlineFirst News Twitter OnlineISSN2159-8290 PrintISSN2159-8274 AACRJournals BloodCancerDiscovery CancerDiscovery CancerEpidemiology,Biomarkers,&Prevention CancerImmunologyResearch CancerPreventionResearch CancerResearch CancerResearchCommunications ClinicalCancerResearch MolecularCancerResearch MolecularCancerTherapeutics     InfoforAdvertisers InfoforLibrarians PrivacyPolicy Twitter LinkedIn Facebook Youtube Copyright©2022bytheAmericanAssociationforCancerResearch. CloseModal CloseModal ThisFeatureIsAvailableToSubscribersOnly SignInorCreateanAccount CloseModal CloseModal Thissiteusescookies.Bycontinuingtouseourwebsite,youareagreeingtoourprivacypolicy. Accept



請為這篇文章評分?