The Reason Why rTMS and tDCS Are Efficient in Treatments ...

文章推薦指數: 80 %
投票人數:10人

The hypothesis here is that both non-invasive electromagnetic modalities of brain stimulation, rTMS and tDCS, are efficient in depression ... ThisarticleispartoftheResearchTopic PainandDepression Viewall 11 Articles Articles QingZhao InstituteofPsychology,ChineseAcademyofSciences(CAS),China RaquelC.Martinez HospitalSirioLibanes,Brazil Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Opinion Introduction Conclusion AuthorContributions ConflictofInterest Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData OPINIONarticle Front.Psychol.,13January2020 |https://doi.org/10.3389/fpsyg.2019.02923 TheReasonWhyrTMSandtDCSAreEfficientinTreatmentsofDepression MilenaČukić1,2* 1DepartmentforGeneralPhysiologyandBiophysics,UniversityofBelgrade,Belgrade,Serbia 2InstitutodeTecnologíadelConocimiento,ComplutenseUniversityofMadrid,Madrid,Spain Introduction Theexactneurophysiologicalmechanismsofrepetitivetranscranialmagneticstimulation(rTMS)andtranscranialdirectcurrentstimulation(tDCS)fortreatingpatientsdiagnosedwithdepressionarestillnotclear.ResultsofpreviousstructuralandfunctionalMRIstudiesshowedanaberatedfunctionalconnectivityinmajordepressivedisorder(MDD)(Vederineetal.,2011;deKwaastenietetal.,2013).Those,aswellasseveralconnectivitystudies(Bluhmetal.,2009;Bermanetal.,2011;Zhangetal.,2011;Kimetal.,2013;Chenetal.,2015)seemtosupportthehypothesisthataberrantfunctionalconnectivitywithinfronto-limbicsystemunderliesthepathophysiologyofdepression.ItshouldbenotedthatantidepressantapplicationofbothrTMSandtDCSisbasedonpreviousfindingsthatthesetwomethodshelpinthecaseofhypoactivityoftheleftdorsolateralprefrontalcortex(DLPFC)(Grimmetal.,2006).Thosestructuralandfunctionaldifferencesprobablyintroduceabnormalphysiologicalcomplexitydemonstratedinelectroencephalographic(EEG)(Ahmadlouetal.,2012;Bachmannetal.,2013;Hosseinifardetal.,2014;DelaTorre-LuqueandBornas,2017;Jaworskaetal.,2018;Lebieckaetal.,2018)aswellasinelectrocardiographic(ECG)signalsindepression(Migliorinnietal.,2012;Rossietal.,2016;Isegeretal.,2019). TDCSislow-intensitymodalityoftranscranialelectricalstimulation(TES)whichinducesverymildsensationsintheskin(StaggandNitsche,2011).MuchlaterdevelopedTMSprimarilyusesastrongmagneticfieldtoinduceanelectricfieldinthecortexpainlessly,initiatingoptimallyfocusedactivationofneuralstructures(Barkeretal.,1985).SomeofitsmodalitiesusedinpsychiatryarerepetitiveTMS(rTMS)andintermittentthetaburstTMS(iTBS).InthepresentabundantliteratureaboutbothrTMSandtDCS,thereisscarceevidenceofwhythesetwotechniquesarecapableofamelioratingdepressivesymptoms.Westilldon'tknowwhatprecisemechanismsbehindthemare.Onlyafractionofpublishedresearch(Amassianetal.,1989;Maccabeeetal.,1990;WassermannandGrafman,2005;Mirandaetal.,2009;IlmoniemiandKičić,2010;Alametal.,2016)describethetheoreticalbackgroundofthosemechanismsfromelectromagnetics/physicspointofview.Themajorityofpublishedstudiesarebasedonmulti-centriccomparisonsofclinicalefficiency(Brunonietal.,2016;Antaletal.,2017;Mutzetal.,2018)andcomputationalmethods-orsimulations(Mirandaetal.,2001,2006;Wagneretal.,2007;Huangetal.,2017).Recently,ateamofleadingresearchersinlowintensityelectricaltranscranialstimulationreviewedclinicaloutcomesfor8,000people(Antaletal.,2017)confirmingitssafetyandeffectiveness,anddefinedtheregulatoryandapplicationguidelinesforfutureresearch. Aterm“non-invasive”(attachedtobothrTMSandtDCS)stemsfromobsoletemedicalpointofviewthatthestimulatingelectrodesdonotenterthecrania(andthestimulationisperformedeitherviasmallelectricalchargesincaseoftDCSorviaFaraday'sinduction).Therealeffectof“non-invasive”electromagneticstimulation(rTMSandtDCS)cannotbemeasureddirectlyduetotheirnon-invasivenature.Opitzstatedinrecentresearch,thattheimportantpointisininterpretabilityofstimulationeffects(Opitzetal.,2015):“ifelectricfieldsaredeliveredinconsistently,buteffectsareobservednevertheless,theresultsaremoredifficulttointerpretbecauseeffectcouldbedrivenbyotherincidentallyaffectedbrainregions.”BothtDCSandTMSareshowntoinitiatethese“unintended”effects:BestmannshowedusingMRIthatTMSofmotorcortexbelowthethresholdpowercanactivatesomeotherdeeperstructures,contrarytopreviousbeliefandLishowedsimilarphenomenainthecaseoftDCS(Bestmannetal.,2003,2004;Lietal.,2018). Thehypothesishereisthatbothnon-invasiveelectromagneticmodalitiesofbrainstimulation,rTMSandtDCS,areefficientindepressiontreatmentsbecauseoftheirprovenabilitytodecreasethephysiologicalcomplexity(Čukićetal.,2013,2019a;Lebieckaetal.,2018;Zuchowiczetal.,2019).ThehallmarkofMDDiselevatedphysiologicalcomplexityofEEGmeasuredbyvariousentropymeasures,fractaldimension,symbolicdynamicapproachmeasures,geometrictechniqueslikerecurrenceplotsandothermeasuresstemmingfromcomplexsystemsdynamicstheory(DelaTorre-LuqueandBornas,2017).Therearealsofindingsthatlinkchangesinheartrhythmcomplexitywithdepression(Migliorinnietal.,2012)andtheoutcomesofrTMStreatment(Roysteretal.,2012;Lebieckaetal.,2018;Isegeretal.,2019). Theevidencesupportingthecloserelationshipbetweentheelectrophysiologicalcomplexity,depressivesymptoms,andrTMSandtDCStreatmentissufficientbutveiled.First,inour2011studyweshowedthatevenasinglepulsetranscranialmagneticstimulation(spTMS)candecreasethecomplexityofelectrophysiologicalsignal(Čukićetal.,2012,2013).Second,Mutanenetal.(2013)usedGlobalRecurrenceanalysisonconcurrentlyrecordedEEGtoshowthatTMSiscapableofinducinga“brain-shift”afterthestimulation.,thatismovingthesystemofbrainnetworkstohigher-energyless-probablestateinhealthycontrols.BasedonthisworkweappliedthesamemethodbutwithtDCS(Čukićetal.,2018b,2019a,b).Čukićetal.(2018b)showedforthefirsttimethegraphicalrepresentationsoftDCS-induced“brain-shift”obtainedbyprincipalcomponentanalysis(PCA)appliedonrawEEGsignalsamples.PCAwasusedinourdataminingprojectstocheckforseparabilityofdataforlaterclassification.Thisstudyre-usedEEGsignalsfrom16healthycontrolsrecordedduringcathodalandanodaltDCSstimulationprotocolsfromPelliciarietal.(2013)(whichisalsoelaboratingonthedifferencebetweencathodalandanodalstimulation).ObtainedPCAplotsareshowingthatmorethanahalfanhourpoststimulationthesystemisstillinhigher-energylower-probablestate“brain-shift”duetothetDCSstimulation.ThefirstthreeprincipalcomponentsofrawEEGsamplesbeforeandaftertDCSstimulationareillustratingthattheybelongtoseparatepartsofthephasespace.OneofparticipantsPCAplotaftercathodalstimulationisshowninFigure1. FIGURE1 Figure1.TheredvoltagesamplesaretakenfromtheEEGrecordingbeforethestimulation,andpinkonesfrom32minafterthetDCSstimulation.ThefirstthreeprincipalcomponentsofrawEEGsamplesbeforeandaftertDCSstimulationareillustratingthattheybelongtoseparatepartsofthephasespace.HereisaPCAplotforpersonnumber8,withcathodal(C)stimulation.ThisfigureispartofresultspublishedinChapter3inbook(ČukićRadenković,2019),butthisparticularPCAplotisnotdisplayedbefore(duetolimitedspaceinpreviouspublication). Severalresearcherswhousedvariousnon-linearmeasuresofcomplexityofEEGconfirmedthatphysiologicalcomplexityiselevatedinMDD(Ahmadlouetal.,2012;Bachmannetal.,2013,2015,2018;Faustetal.,2014;Hosseinifardetal.,2014;Akaretal.,2015;Čukićetal.,2018a,2019a;Lebieckaetal.,2018).Oneofthemostinclusivereviewstudiesonvariousspectral,fractalandothernon-linearmeasuresofrelationshipbetweenphysiologicalcomplexityandMDD,concludedthatEEGsignalsinMDDare“probablymorerandomthanmorecomplex”comparedtothoseofhealthypersons(DelaTorre-LuqueandBornas,2017).Thismightbeduetoimpairedintrinsicfeedbackmechanismsimportantformanyregulatoryfunctions(Goldbergeretal.,2002).Thiskindofabnormalfunctionalconnectivityisreportedinseveralresearchpapersfromseeminglyunrelateddisciplines,likegraphtheoryapplicationinEEGconnectomics(Leeetal.,2011;VanEssenetal.,2012;Castellanosetal.,2013;Kimetal.,2013),andGrangercausalityappliedonfMRIsignals(Hamiltonetal.,2011).ThefMRIandFractionalanisotropy(FA)researchalsofoundthatwithinfronto-lymbicsystemthereisabnormalfunctionalconnectivityinMDD(Vederineetal.,2011;deKwaastenietetal.,2013).DeKwaastenietfoundthatuncinatefasciculus,importantforconnectingprefrontalwithlimbicsystem,isnotfullyfunctionalinMDDpatients(deKwaastenietetal.,2013).Moreover,severalstudiesexaminingconnectivityinMDDfoundadifferentdynamicalfeatures,andseveraldifferentregions(anteriorcingulatecortex,insula,cingulateandhippocampalnetwork)wereconfirmedascandidatesforthesedifferences(Mayberg,1997;Maybergetal.,1997,1999;Bluhmetal.,2009;Bermanetal.,2011;Geetal.,2019).Itischallengingtocomparethesefindingssincetheirmethodologicalapproachesaredifferentinsomanyaspects.Also,Mendezetal.(2012)detectedahigherfocusonlocalconnectionsthanonglobalonesinMDD.Thiscanalsobeseeninpersonswithdepressioninremission:previouslydetectedabnormalfunctionalconnectivitydecreases(Mendezetal.,2012).Lebieckaetal.(2018)showedthatelevatedphysiologicalcomplexitiesdiminishedaftertreatmentinthoseMDDpatientsthatreactedwellonrTMS(asmeasuredbythedecreaseincomplexitycorrespondingtoremissionscoresafterthetreatmentwasmeasured)(seealsoJaworskaetal.,2018).Isegeretal.(2019)alsorevealedtheconnectionbetweensuccessfuliTBSappliedtotheDLPFCandmodulationofautonomicnervoussystem(Isegeretal.,2019). Bestmannetal.(2004)demonstratedthatwithTMSapplicationbelowthemotorthresholdpower,MRIcandetectaresponsefromareasthatwerenotintendedtobestimulated(Bestmannetal.,2004).Lietal.(2018)werethefirstresearchgrouptodemonstratethattDCScanactivatesomestructureswithinDMN.Opitzetal.(2015)concludeintheirworkthateventheconductivityconstants(dielectricconstantsfortissuetypes)usedforcalculatingtheeffectofstimulation,orsimulation,arenotadequatefordescribingthemuchmoredemandingreality.Opitz'steamdetectedbothhigherandloweractualvaluesmeasureddirectly(withthearrayofimplantedelectrodesinpatientsthatwerecandidatesforsurgicalinterventiononepilepticfoci)thanthosepredictedwithstandardsimulationproceduresforTES(Opitzetal.,2015,2018).Theeffectofastimulationcandependonthegeometricalshapeofthesurfaceofsulci,whichcannotbemonitoredduringtheuseofanon-invasiveprocedure,andthatalsocanleadtomajormiss-predictions(Čukić,2006;Čukićetal.,2009;Saturninoetal.,2015;Alekseichuketal.,2018;Opitzetal.,2018). Althoughitcanseemimpossibletocomparethetwonon-invasivebrainstimulationtechniquesthataresodifferentinthesenseoftheirelectromagneticpropertiesandthelevelofpowertheycaninduceinthelivingtissue,wecanstillrecognizethesamefunctionalpattern.InmanyreviewpapersexploringtheefficiencyofbothrTMSandtDCSinclinicalapplications(Brunonietal.,2016;Antaletal.,2017;Mutzetal.,2018),theconclusionsareinline:theyareeffective,andtDCScanbeappliedeveninprimarycare,butalsoasamaintenancetreatmentforalreadysuccessfulrTMS(Mutzetal.,2018).Inastudyexaminingtheeffectofelectroconvulsivetherapy,itisdemonstratedthatmultiscaleentropyischangedafterthetreatment(Okazakietal.,2013),pointingagainatthelinkbetweencomplexitychangesandtheeffectivetreatmentfordepression.Zuchowiczetal.(2019)reportedondetectedsynchronizationofEEGasafeatureofsuccessfulrTMSwhichispointingatreductionofcomplexity,too. Forallelectromagneticstimulationtreatments,theeffectisoftemporarynature.Therationaleisthattheycanatleastamelioratethesymptomsforalimitedtime;afterwhichtheyneedtoberepeated.Thecommonadvantageofnon-invasivebrainstimulationtechniquesovermedicationsisthattherearenoforeseeableharmfulside-effects(Antaletal.,2017). Althoughstudyofphysiologicalcomplexitychangesisstillintherealmofresearchandmainlynotinuseinclinicalsetting,itisexpectedthatsoonclinicianswouldstartusingvaryingelectromagneticmodalitiesofstimulationwithbetterunderstandingofhowtheywork—asmeanstodecreasecomplexitycharacteristicofdepression.Furtherresearchbasedonempiricaldataisnecessarybeforemakingthefinalconclusionthatnon-invasivebrainstimulationtreatmentsmayworkthroughchangingphysiologicalcomplexity. Conclusion Toconclude,afterallabovementionedresultsofvariouslinesofresearchthattriedtobringusclosertounderstandingvariousaberrationsofdepression,bothrTMSandtDCSmightbeefficientbecauseoftheirabilitytodecreasecharacteristicallyelevatedlevelsofphysiologicalcomplexityindepression. AuthorContributions MČconceivedtheideaaboutthearticle,performedaliteratureresearchandwroteentiretext. ConflictofInterest Theauthordeclaresthattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments MČthankfultocolleaguesProf.CarloMiniussi,DeboraBrignaniPh.D.,andMariaConccetaPelliciariPh.D.forsharingtheirdatawithmeandforvaluablediscussions,andalsotoProf.DankaSavićforvaluableadviceonimrpovingthetextofthismanuscript.PartofthisworkissupportedbyRISEWISE(H2020-MSCA-RISE-2015-690874). References Ahmadlou,M.,Adeli,H.,andAdeli,A.(2012).Fractalityanalysisoffrontalbraininmajordepressivedisorder.Int.J.Psychophysiol.85,206–211.doi:10.1016/j.ijpsycho.2012.05.001 PubMedAbstract|CrossRefFullText|GoogleScholar Akar,S.A.,Kara,S.,Agambayev,S.,andBilgic,V.(2015).“NonlinearanalysisofEEGinmajordepressionwithfractaldimensions,”in201537thAnnualInternationalConferenceoftheIEEEEngineeringinMedicineandBiologySociety(EMBC)(IEEE). GoogleScholar Alam,M.,Truong,D.Q.,Khadka,N.,andBikson,M.(2016).Spatialandpolarityprecisionofconcentrichigh-definitiontranscranialdirectcurrentstimulation(HD-tDCS).Phys.Med.Biol.61,4506–4521.doi:10.1088/0031-9155/61/12/4506 PubMedAbstract|CrossRefFullText|GoogleScholar Alekseichuk,I.,Mantell,K.,Shirinpour,S.,andOpitz,A.(2018).Comparativemodelingoftranscranialmagneticandelectricstimulationinmouse,monkey,andhuman.bioRxiv.[Preprint].doi:10.1101/442426 PubMedAbstract|CrossRefFullText|GoogleScholar Amassian,V.E.,Cracco,R.Q.,andMaccabee,P.J.(1989).Focalstimulationofhumancerebralcortexwiththemagneticcoil:acomparisonwithelectricalstimulation.Electroencephalogr.ClinNeurophysiol.74,401–416.doi:10.1016/0168-5597(89)90029-4 PubMedAbstract|CrossRefFullText|GoogleScholar Antal,A.,Alekseichuk,I.,Bikson,M.,Brockmöller,J.,Brunoni,A.R.,Chen,R.,etal.(2017).Lowintensitytranscranialelectricstimulation:safety,ethical,legalregulatoryandapplicationguidelines.Clin.Neurophysiol.128,1774–1809.doi:10.1016/j.clinph.2017.06.001 PubMedAbstract|CrossRefFullText|GoogleScholar Bachmann,M.,Kalev,K.,Suhhova,A,Lass,J,andHinrikus,H.(2015).“LempelZivcomplexityofEEGindepression,”inIFMBEProceedings.doi:10.1007/978-3-319-11128-5_15 CrossRefFullText|GoogleScholar Bachmann,M.,Lass,J.,Suhhova,A.,andHinrikus,H.(2013).SpectralasymmetryandHiguchi'sfractaldimensionmeasuresofdepressionelectroencephalogram.Comput.Math.MethodsMed.2013,1–8.doi:10.1155/2013/251638 PubMedAbstract|CrossRefFullText|GoogleScholar Bachmann,M.,Päeske,L.,Kalev,K.,Aarma,K.,Lehtmets,A.,Ööpik,P.,etal.(2018).MethodsforclassifyingdepressioninsinglechannelEEGusinglinearandnonlinearsignalanalysis.Comput.MethodsProg.Biomed.155,11–17. PubMedAbstract|GoogleScholar Barker,A.T.,Jalinous,R.,andFreeston,I.L.(1985).Non-invasivemagneticstimulationofhumanmotorcortex.Lancet325,1106–1107.doi:10.1016/S0140-6736(85)92413-4 CrossRefFullText|GoogleScholar Berman,M.G.,Peltier,S.,Nee,D.E.,Kross,E.,Deldin,P.J.,andJonides,J.(2011).Depression,ruminationandthedefaultnetwork.SCAN6,548–555.doi:10.1093/scan/nsq080 PubMedAbstract|CrossRefFullText|GoogleScholar Bestmann,S.,Baudewig,J.,Siebner,H.R.,Rothwell,J.C.,andFrahm,J.(2003).Subthresholdhigh-frequencyTMSofhumanprimarymotorcortexmodulatesinterconnectedfrontalmotorareasasdetectedbyinterleavedfMRI-TMS.Neuroimage20,1685–1696.doi:10.1016/j.neuroimage.2003.07.028 PubMedAbstract|CrossRefFullText|GoogleScholar Bestmann,S.,Baudewig,J.,Siebner,H.R.,Rothwell,J.C.,andFrahm,J.(2004).FunctionalMRIoftheimmediateimpactoftranscranialmagneticstimulationoncorticalandsubcorticalmotorcircuits.Eur.J.Neurosci.19,1950–1962.doi:10.1111/j.1460-9568.2004.03277.x PubMedAbstract|CrossRefFullText|GoogleScholar Bluhm,R.,Williamson,P.,Lanius,R.,Théberge,J.,Densmore,M.,Bartha,R.,etal.(2009).Restingstatedefault-modenetworkconnectivityinearlydepressionusingaseedregion-of-interestanalysis:decreasedconnectivitywithcaudatenucleus.Psychiatr.Clin.Neurosci.63,754–761.doi:10.1111/j.1440-1819.2009.02030.x PubMedAbstract|CrossRefFullText|GoogleScholar Brunoni,A.R.,Moffa,A.H.,Fregni,F.,Palm,U.,Padberg,F.,Blumberger,D.M.,etal.(2016).Transcranialdirectcurrentstimulationforacutemajordepressiveepisodes:meta-analysisofindividualpatientdata.Br.J.Psychiatr.208,1–10.doi:10.1192/bjp.bp.115.164715 PubMedAbstract|CrossRefFullText|GoogleScholar Castellanos,F.X.,DiMartino,A.,Craddock,R.C.,Mehta,A.D.,andMilham,M.P.(2013).Clinicalapplicationsofthefunctionalconnectome.Neuroimage80,527–540.doi:10.1016/j.neuroimage.2013.04.083 PubMedAbstract|CrossRefFullText|GoogleScholar Chen,C.,Takahashi,T.,Nakagawa,S.,Inouea,T.,andKusumia,I.(2015).Reinforcementlearningindepression:areviewofcomputationalresearch.Neurosci.Biobehav.Rev.55,247–267doi:10.1016/j.neubiorev.2015.05.005 PubMedAbstract|CrossRefFullText|GoogleScholar ČukićRadenković,M.(2019).NovelApproachesinTreatingMajorDepressiveDisorder(Depression).NewYork,NY:NOVAScientificPublishersLtd. GoogleScholar Čukić,M.(2006).TheInfluenceofconfigurationandgeometriccharacteristicsofinducedelectricalfieldinducedbytranscranialmagneticstimulationonbasicphysiologicalparametersofexcitabilityofmotorcortexofman(Magisteriumthesis).DepartmentforPhysiologyandBiophysics,UniversityofBelgrade,SchoolofBiology,Belgrade,Serbia. GoogleScholar Čukić,M.,Kalauzi,A.,Ilić,T.,Mišković,M.,andLjubisavljević,M.(2009).Theinfluenceofcoil-skulldistanceontranscranialmagneticstimulationmotorevokedresponses.Exp.BrainRes.192,53–60.doi:10.1007/s00221-008-1552-0 PubMedAbstract|CrossRefFullText|GoogleScholar Čukić,M.,Oommen,J.,Mutavdzić,D.,Jorgovanović,V.,andLjubisavljevic,M.(2013).Theeffectofsingle-pulsetranscranialmagneticstimulationandperipheralnervestimulationoncomplexityofEMGsignal:fractalanalysis.Exp.BrainRes.228,97–104.doi:10.1007/s00221-013-3541-1 PubMedAbstract|CrossRefFullText|GoogleScholar Čukić,M.,Platiša,M.,Ljubisavljević,M.,andKostić,V.(2012).“ComplexitychangesinTMSinducedsurfaceEMG.CCS2012,”in4thInternationalInterdisciplinaryChaosSymposiumonChaosandComplexSystems,April29-May02,2012(Antalya). GoogleScholar Čukić,M.,Pokrajac,D.,Stokić,M.,Simić,S.,Radivojević,V.,andLjubisavljević,M.(2018a).EEGMachineLearningWithHiguchiFractalDimensionandSampleEntropyasFeaturesforSuccessfulDetectionofDepression.Arxive.org/CornellrepositoryforStatistics/Machinelearning.Availableonlineat:https://arxiv.org/abs/1803.05985(accessedMarch15,2018). GoogleScholar Čukić,M.,Stokić,M,Radenković,S.,Ljubisavljević,M.,andPokrajac,D.(2019a).TheShiftinBrain-StateInducedbytDCS:anEEGStudy(AChapter3inBookNOVELApproachesinTreatingMajorDepressiveDisorder.NewYork,NY:NOVAScientificPublishersLtd. GoogleScholar Čukić,M.,Stokić,M.,Radenković,S.,Ljubisavljević,M.,andPokrajac,D.(2018b).TheShiftinBrain-StateInducedbytDCS:AnEEGStudy.CornellRepository,Arxiv.org.Availableonlineat:https://arxiv.org/abs/1812.01342(accessedDecember4,2018).[Epubaheadofprint]. GoogleScholar Čukić,M.,Stokić,M.,Radenković,S.,Ljubisavljević,M.,Simić,S.,andSavić,D.(2019b).NonlinearanalysisofEEGcomplexityinepisodeandremissionphaseofrecurrentdepression.Int.J.MethodsPsychiatr.Res.doi:10.1002/mpr.1816.[Epubaheadofprint]. PubMedAbstract|CrossRefFullText|GoogleScholar deKwaasteniet,B.,Ruhe,E.,Caan,M.,Rive,M.,Olabarriaga,S.,Groefsema,M.,etal.(2013).Relationbetweenstructuralandfunctionalconnectivityinmajordepressivedisorder.Biol.Psychiatr.74,40–47.doi:10.1016/j.biopsych.2012.12.024 PubMedAbstract|CrossRefFullText|GoogleScholar DelaTorre-Luque,A.,andBornas,X.(2017).Complexityandirregularityinthebrainoscillationsofdepressivepatients:asystematicreview.Neuropsychiatry5,466–477.doi:10.4172/Neuropsychiatry.1000238 CrossRefFullText|GoogleScholar Faust,O.,Chuan,P.,Ang,A.,Puthankattil,S.D.,andJoseph,P.K.(2014).DepressiondiagnosissupportsystembasedonEEGsignalentropies.J.Mech.Med.Biol.14:1450035.doi:10.1142/S0219519414500353 CrossRefFullText|GoogleScholar Ge,R.,Torres,I.,Brown,J.J.,Gregory,E.,McLellan,E.,Downar,J.H.,etal.(2019).Functionaldisconnectivityofthehippocampalnetworkandneuralcorrelatesofmemoryimpairmentintreatment-resistantdepression.JAffectDisord.253,248–256.doi:10.1016/j.jad.2019.04.096 PubMedAbstract|CrossRefFullText|GoogleScholar Goldberger,A.L.,Peng,C.-K.,andLipsitz,L.A.(2002).Whatisphysiologiccomplexityandhowdoesitchangewithaginganddisease?Neurobiol.Aging23,23–26.doi:10.1016/S0197-4580(01)00266-4 PubMedAbstract|CrossRefFullText|GoogleScholar Grimm,S.,Schmidt,C.F.,Bermpohl,F.,Heinzel,A.,Dahlem,Y,Wyss,M.,etal.(2006).Segregatedneuralrepresentationofdistincemotiondimensionsintheprefrontalcortex-andfMRIstudy.Neuroimage30,325–340.doi:10.1016/j.neuroimage.2005.09.006 CrossRefFullText|GoogleScholar Hamilton,J.P.,Chen,G.,Thomason,M.E.,Schwartz,M.E.,andGotlib,I.H.(2011).Investigatingneuralprimacyinmajordepressivedisorder:multivariategrangercausalityanalysisofresting-statefMRItime-seriesdata.Mol.Psychiatr.16,763–772.doi:10.1038/mp.2010.46 PubMedAbstract|CrossRefFullText|GoogleScholar Hosseinifard,B.,Moradi,M.H.,andRostami,R.(2014).ClassifyingdepressionpatientsandnormalsubjectsusingmachinelearningtechniquesandnonlinearfeaturesfromEEGsignal.Comput.MethodsProg.Biomed.109,339–345.doi:10.1016/j.cmpb.2012.10.008 PubMedAbstract|CrossRefFullText|GoogleScholar Huang,Y.,Liu,A.A.,Lafon,B.,Friedman,D.,Dayan,M.,Wang,X.,etal.(2017).Measurementsandmodelsofelectrocfieldsintheinvivohumanbrainduringtranscranialelectricstimulation.eLife6:e18834.doi:10.7554/eLife.18834 PubMedAbstract|CrossRefFullText|GoogleScholar Ilmoniemi,R.,andKičić,D.(2010).MethodologyforcombinedTMSandEEG.BrainTopogr.22,233–248.doi:10.1007/s10548-009-0123-4 PubMedAbstract|CrossRefFullText|GoogleScholar Iseger,T.,Arns,M.,Downar,J.,Blumberger,D.M.,Daskalakis,Z.J.,andVila-Rodriguez,F.(2019).CardiovasculardifferencesbetweenshamandactiveiTBSrelatedtotreatmentresponseinMDD.BrainStimul.13,167–174.doi:10.1016/j.brs.2019.09.016 PubMedAbstract|CrossRefFullText|GoogleScholar Jaworska,N.,Wangb,H.,Smithc,D.M.,Bliera,P.,Knotta,V.,andProtznerb,A.B.(2018).Pre-treatmentEEGsignalvariabilityisassociatedwithtreatmentsuccessindepression.NeuroImage17,368−377.doi:10.1016/j.nicl.2017.10.035 PubMedAbstract|CrossRefFullText|GoogleScholar Kim,D.,Bolbecker,A.R.,Howell,J.,Rass,O.,Sporns,O.,Hetrick,W.P.,etal.(2013).DisturbedrestingstateEEGsynchronizationinbipolardisorder:agraph-theoreticanalysis.NeuroImageClin.2,414–423.doi:10.1016/j.nicl.2013.03.007 PubMedAbstract|CrossRefFullText|GoogleScholar Lebiecka,K.,Zuchowicz,U.,Wozniak-Kwasniewska,A.,Szekely,D.,Olejarczyk,E.,andDavid,O.(2018).ComplexityanalysisofEEGdatainpersonswithdepressionsubjectedtotranscranialmagneticstimulation.FrontPhysiol.9:1385.doi:10.3389/fphys.2018.01385 PubMedAbstract|CrossRefFullText|GoogleScholar Lee,T.W.,Wu,Y.T.,Yu,Y.W.,Chen,M.C.,andChen,T.J.(2011).Theimplicationoffunctionalconnectivitystrengthinpredictingtreatmentresponseofmajordepressivedisorder:arestingEEGstudy.Psychiatr.Res.194,372–377doi:10.1016/j.pscychresns.2011.02.009 PubMedAbstract|CrossRefFullText|GoogleScholar Li,L.M.,Violante,I.R.,Leech,R.,Ross,E.,Hampshire,A.,Opitz,A.,etal.(2018).Brainstateandpolaritydependentmodulationofbrainnetworksbytranscranialcurrentstimulation.HumanBrainMapp.40,904–915.doi:10.1002/hbm.24420 PubMedAbstract|CrossRefFullText|GoogleScholar Maccabee,P.J.,Eberle,L.,Amassian,V.E.,Cracco,R.Q.,Rudell,A.,andJayachandra,M.(1990).Spatialdistributionoftheelectricfieldinducedinvolumebyroundandfigure‘8’magneticcoils:relevancetoactivationofsensorynervefibers.Electroencephalogr.Clin.Neurophysiol.76,131–141.doi:10.1016/0013-4694(90)90211-2 PubMedAbstract|CrossRefFullText|GoogleScholar Mayberg,H.S.(1997).Limbic-corticaldysregulation:aproposedmodelofdepression.J.Neuropsychiatr.Clin.Neurosci.9,471–481.doi:10.1176/jnp.9.3.471 PubMedAbstract|CrossRefFullText|GoogleScholar Mayberg,H.S.,Brannan,S.K.,Mahurin,R.K.,Jerabek,P.A.,Brickman,J.S.,Tekell,J.L.,etal.(1997).Cingulatefunctionindepression:apotentialpredictoroftreatmentresponse.Neuroreport8,1057–1061.doi:10.1097/00001756-199703030-00048 PubMedAbstract|CrossRefFullText|GoogleScholar Mayberg,H.S.,Liotti,M.,Brannan,S.K.,McGinnis,S.,Mahurin,R.K.,Jerabek,P.A.,etal.(1999).Reciprocallimbic-corticalfunctionandnegativemood:convergingPETfindingsindepressionandnormalsadness.Am.J.Psychiatr.156,675–682. PubMedAbstract|GoogleScholar Mendez,A.,Zuluaga,M.,Hornero,P.,Gomez,R.,Escudero,C.,Rodriguez-Palancas,J.,etal.(2012).Complexityanalysisofspontaneousbrainactivity:effectsofdepressionandantidepressanttreatment.J.Psychopharmacol.26,636–643.doi:10.1177/0269881111408966 PubMedAbstract|CrossRefFullText|GoogleScholar Migliorinni,M.,Mendez,M.O.,andBianchi,A.B.(2012).Studyofheartratevariabilityinbipolardisorder:linearandnon-linearparametersduringsleep.Front.Neuroeng.4:22.doi:10.3389/fneng.2011.00022 CrossRefFullText|GoogleScholar Miranda,P.C.,Faria,P.,andHallet,M.(2009).WhatdoestherationofinjectedcurrenttoelectrodeareatellusaboutcurrentdensityinthebrainduringtDCS?Clin.Neurophysiol.(2009)120,1183–1187.doi:10.1016/j.clinph.2009.03.023 PubMedAbstract|CrossRefFullText|GoogleScholar Miranda,P.C.,Lomarev,M.,andHallet,M.(2006).Modelingthecurrentdistributionduringtranscranialdirectcurrentstimulation.Clin.Neurophysiol.117,1623–1629.doi:10.1016/j.clinph.2006.04.009 PubMedAbstract|CrossRefFullText|GoogleScholar Miranda,P.C.,Pajevic,S.,Pierpaoli,C.,Hallett,M.,andBasser,P.J.(2001).Thedistributionofcurrentsinducedinthebrainbymagneticstimulation:afiniteelementanalysisincorporatingDT-MRI-derivedconductivitydata.Proc.Int.Soc.Magn.Reson.Med.9. GoogleScholar Mutanen,T.,Nieminen,J.O.,andIlmoniemi,R.(2013).TMS-evokedchangesinbrain-statedynamicsquantifiedbyusingEEGdata.Front.Hum.Neurosci.7:155.doi:10.3389/fnhum.2013.00155 PubMedAbstract|CrossRefFullText|GoogleScholar Mutz,J.,Edgcumble,D.R.,Brunoni,A.R.,andFu,C.H.Y.(2018).Efficacyandacceptabilityofnon-invasivebrainstimulationforthetreatmentofadultunipolarandbipolardepression:asystematicreviewandmeta-analysisofrandomizedsham-controlledtrials.Neurosci.Biobehav.Rev.92,291–303.doi:10.1016/j.neubiorev.2018.05.015 CrossRefFullText|GoogleScholar Okazaki,R.,Takahashi,T.,Ueno,K.,Takahashi,K.,Higashima,M.,andWada,Y.(2013).Effectsofelectroconvulsivetherapyonneuralcomplexityinpatientswithdepression:reportofthreecases.J.AffectDisord.150,389–392.doi:10.1016/j.jad.2013.04.029 PubMedAbstract|CrossRefFullText|GoogleScholar Opitz,A.,Paulus,W.,Will,S.,Antunes,A.,andThielscher,A.(2015).Determinantsoftheelectricfieldduringtranscranialdirectcurrentstimulation.Neuroimage109,140–150.doi:10.1016/j.neuroimage.2015.01.033 PubMedAbstract|CrossRefFullText|GoogleScholar Opitz,A.,Yeagle,E.,Thielscher,A.,Schroeder,C.,Mehta,A.D,andMilham,M.P.(2018).Ontheimportanceofpreciseelectrodeplacementfortargetedtranscranialelectricstimulation.Neuroimage181,560–567.doi:10.1016/j.neuroimage.2018.07.027 PubMedAbstract|CrossRefFullText|GoogleScholar Pelliciari,M.C.,Brignani,D.,andMiniussi,C.(2013).Excitabilitymodulationofthemotorsysteminducedbytranscranialdirectcurrentstimulation:amultimodalapproach.Neuroimage83,569–580.doi:10.1016/j.neuroimage.2013.06.076 CrossRefFullText|GoogleScholar Rossi,S.,Santarnecchi,E.,Valenya,G,andUlliveli,M.(2016).Theheartsideofbrainneuromodulation.Philos.Trans.AMath.Phys.Eng.Sci.384:20150187.doi:10.1098/rsta.2015.0187 CrossRefFullText|GoogleScholar Royster,E.B.,Trimble,L.M.,Cotsonis,G.,Schmotzer,B.,Manatunga,A.,Rushing,N.N.,etal.(2012).Changesinheartratevariabilityofdepressedpatientsafterelectroconvulsivetherapy.Cardiovasc.Psychiatr.Neurol.2012:794043.doi:10.1155/2012/794043 PubMedAbstract|CrossRefFullText|GoogleScholar Saturnino,G.B.,Antunes,A.,andThielscher,A.(2015).OntheimportanceofelectrodeparametersforshapingelectricfieldpatternsgeneratedbytDCS.Neuroimage120,25–35.doi:10.1016/j.neuroimage.2015.06.067 PubMedAbstract|CrossRefFullText|GoogleScholar Stagg,C.J.,andNitsche,M.A.(2011).Physiologicalbasisoftranscranialdirectcurrentstimulation.Neuroscientist17,37–53.doi:10.1177/1073858410386614 PubMedAbstract|CrossRefFullText|GoogleScholar VanEssen,D.C.,Ugurbil,K.,Auerbach,E.,Barch,D.,Behrens,T.E.,Bucholz,R.,etal.(2012).TheHumanConnectomeProject:adataacquisitionperspective.Neuroimage62,2222–2231.doi:10.1016/j.neuroimage.2012.02.018 PubMedAbstract|CrossRefFullText|GoogleScholar Vederine,F.E.,Wessa,M.,Leboyer,M.,andHouenou,J.A.(2011).meta-analysisofwhole-braindiffusiontensorimagingstudiesinbipolardisorder.Prog.Neuropsychopharmacol.Biol.Psychiatr.35,1820–1826.doi:10.1016/j.pnpbp.2011.05.009 PubMedAbstract|CrossRefFullText|GoogleScholar Wagner,T.,Fregni,F.,Fecteau,S.,Grodzinsky,A.,Zahn,M.,andPascueal-Leone,A.(2007).Transcranialdirectcurrentstimulation:acomputer-basedhumanmodelstudy.NeuroImage35,1113–1124.doi:10.1016/j.neuroimage.2007.01.027 PubMedAbstract|CrossRefFullText|GoogleScholar Wassermann,E.M.,andGrafman,J.(2005).RechargingthecognitionwithDCbrainpolarization.TrendsCogn.Sci.9,503–505.doi:10.1016/j.tics.2005.09.001 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,J.,Wang,J.,Wu,Q.,Kuang,W.,Huang,X.,He,Y.,etal.(2011).DisruptedBrainconnectivitynetworksindrug-naive,first-episodemajordepressivedisorder.Biol.Psychiatr.70,334–342.doi:10.1016/j.biopsych.2011.05.018 PubMedAbstract|CrossRefFullText|GoogleScholar Zuchowicz,U.,Wozniak-Kwasniewska,A.,Szekely,D.,Olejarczy,E.,andDavid,O.(2019).EEGphasesynchronizationinpersonswithdepressionsubjectedtotranscranialmagneticstimulation.Front.Neurosci.12:1037.doi:10.3389/fnins.2018.01037 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:physiologicalcomplexity,rTMS,tDCS,depression,efficiencyoftreatment,neuromodulation Citation:ČukićM(2020)TheReasonWhyrTMSandtDCSAreEfficientinTreatmentsofDepression.Front.Psychol.10:2923.doi:10.3389/fpsyg.2019.02923 Received:03October2019;Accepted:10December2019;Published:13January2020. Editedby:QingZhao,SecondAffiliatedHospitalofGuangzhouMedicalUniversity,China Reviewedby:RaquelChaconRuizMartinez,HospitalSírio-Libanês,Brazil Copyright©2020Čukić.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:MilenaČukić,[email protected];[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?