Frontiers | Early Dissemination of Circulating Tumor Cells
文章推薦指數: 80 %
Circulating tumor cells (CTCs) play a causal role in the development of metastasis, the major cause of cancer-associated mortality worldwide ... ThisarticleispartoftheResearchTopic RevisitingSeedandSoil:ANewApproachtoTargetHibernatingDormantTumorCells Viewall 10 Articles Articles AnnF.Chambers WesternUniversity(Canada),Canada RobertoPiñeiro HealthResearchInstituteofSantiagodeCompostela(IDIS),Spain EVILIANIDOU NationalandKapodistrianUniversityofAthens,Greece Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. AbstractIntroductionIdentificationandCharacterizationofCTCsCTCsasPrecursorsofMetastasisCTCs,DTCsandTumorDormancyClinicalImplicationofEarlyDisseminationConclusionsAuthorContributionsFundingConflictofInterestReferences SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData MINIREVIEWarticle Front.Oncol.,07May2021 |https://doi.org/10.3389/fonc.2021.672195 EarlyDisseminationofCirculatingTumorCells:BiologicalandClinicalInsightsFrancescaChemi*,SumitraMohan,TatianaGuevara,AlexandraClipson,DominicG.RothwellandCarolineDive*CancerResearchUKManchesterInstituteCancerBiomarkerCentre,UniversityofManchester,Macclesfield,United KingdomCirculatingtumorcells(CTCs)playacausalroleinthedevelopmentofmetastasis,themajorcauseofcancer-associatedmortalityworldwide.Inthepastdecade,thedevelopmentofpowerfulcellularandmoleculartechnologieshasledtoabetterunderstandingofthemolecularcharacteristicsandtimingofdisseminationofCTCsduringcancerprogression.Forinstance,genotypicandphenotypiccharacterizationofCTCs,atthesinglecelllevel,hasshownthatCTCsareheterogenous,disseminateearlyandcouldrepresentonlyaminorsubpopulationoftheprimarytumorresponsiblefordiseaserelapse.WhiletheimpactofmolecularprofilingofCTCshasnotyetbeentranslatedtotheclinic,CTCenumerationhasbeenwidelyusedasaprognosticbiomarkertomonitortreatmentresponseandtopredictdiseaserelapse.However,previousstudieshaverevealedamajorchallenge:thelowabundanceofCTCsinthebloodstreamofpatientswithcancer,especiallyinearlystagediseasewheretheidentificationandcharacterizationofsubsequently“lethal”cellshaspotentiallythegreatestclinicalrelevance.TheCTCfieldisrapidlyevolvingwithdevelopmentofnewtechnologiestoimprovethesensitivityofCTCdetection,enumeration,isolation,andmolecularprofiling.HereweexaminethetechnicalandanalyticalvalidityofCTCtechnologies,wesummarizecurrentdataonthebiologyofCTCsthatdisseminateearlyandreviewCTC-basedclinicalapplications.IntroductionThemajorcauseofcancerrelatedmortalityismetastasis(1,2)whichisattributedtodisseminationofcancercells,referredtoascirculatingtumorcells(CTCs),fromtheprimarysiteviathebloodstreamorthelymphaticsystemtosubsequentlyformsecondarytumorsindistantsites.TheburdenofCTCsisstronglyassociatedwithcancerprognosisinseveralcancertypes(3).Metastasiswaslongthoughttooccurinthelaterstagesofcancerprogressioninpatientswithadvanceddisease.However,agrowingbodyofevidencereportsthepresenceofCTCsatearlierstagesoftumorgrowth,evenbeforethedetectionofprimarytumor(4,5).CTCsmayseedactivemetastatictumorsorremaininalatentstatecalledtumorcelldormancythat,atsomepointintimeandviamechanismsincompletelydefined,exitdormancytoformmetastases(6,7).ComprehensiveanalysisofCTCsiscentraltounderstandingmechanism(s)ofcancermetastasis.MolecularprofilingofCTCs,andparticularlyearlydisseminatingCTCscouldalsoleadtodiscoveryofnewprognosticandpredictivebiomarkerstoinformpatientmanagement.ThemajorchallengeforCTCdetectionandanalysisistheirrarityinatypicallysampledbloodvolume(10-50ml),andthisisobservedinmostpatientswithadvancedcancerwithsomenotableexceptionssuchasSmallCellLungCancer(8,9).ThischallengeoflowCTCprevalenceisfurthermagnifiedinearlydiseasesettings.Inadditiontotheirrarity,CTCsarealsogeneticallyandphenotypicallyheterogeneous(includingthespectrumofepithelialtomesenchymalphenotypes).TechnologiesthatcanaccommodateCTCheterogeneityarecriticallyneeded.Thisminireviewwillfocusonearlydisseminatingtumorcells;inparticular,wewillsummarizemethodsforidentificationandcharacterizationofCTCsandgiveanoverviewofcurrentknowledgeonthebiologyandclinicalrelevanceofCTCearlydissemination.IdentificationandCharacterizationofCTCsCTCenumerationisawell-establishedbiomarkerforcancerdiagnosis,prognosis,diseaseprogressionandpredictionoftherapeuticresponse(10).CTCscanbeseparatedand/orenrichedfromotherbloodcellsbyusingdifferenttechnologiesthatexploiteithertheirphysicalproperties(e.g.,size,weight,density,deformability,electrical),ordifferentialexpressionofmolecularmarkers(commonlyintracellularandsurfaceproteinexpression)oracombinationofboth(11–15).CTCenrichmenttechniquesemployingaffinity-basedcapturemethodsuseantibodiesbindingtocellsurfacemarkersandarebasedontwostrategies;1)thenegativeenrichmentapproachthatemploysupstreamimmunomagneticdepletiontoremoveCD45-positiveWhiteBloodCells(WBCs),thoughthisisrarelyachievedtocompletion,and2)thepositiveenrichmentapproachthatcapturesCTCsandthensubsequentlyremovesWBCs(14,16).WhilepositiveenrichmentfailstocapturecellswithlowornegativeexpressionoftheCTCmarkers,negativeenrichmentstrategiestypicallyhavealowerstringencycomparedtopositiveenrichment.ThecommercialRosetteSep™CTCEnrichmentCocktail(StemCellTechnologies)integratesnegativeimmunoaffinity-basedenrichmentwithdensitycentrifugation.Thetechnologyutilizestetramericantibodycomplexesagainstcellsurfaceantigensfoundonhumanhematopoieticcells(CD2,CD16,CD19,CD36,CD38,CD45,andCD66b)andglycophorinAthatenablestheremovalofwhiteandredbloodcellsfromwholeblood,therebyenrichingfortheremainingCTCs(17).Amongthepositiveenrichmentapproaches,CellSearch®technologyisbasedonimmunomagneticenrichmentwhichusesanepithelialcelladhesionmolecule(EpCAM)coatedonferromagneticparticles,withsubsequentimmunomagneticseparation(18).AlternativeCTCisolationtechniquesarerequiredtocapturemesenchymalCTCsorCTCsinthedynamicprocessofEMT.AdditionalCTCplatformsusingenrichmenttechnologyincludethosebasedonimmunomagneticseparationsuchasamagneticcellseparationsystem(MACS)(19)andCTC-ChipwhichstillemploysanEpCAM-basedenrichmentapproachcombinedwithamicrofluidicdevice(16,20).ThemostcommonlyusedantibodiestoidentifyepithelialcellsareEpCAMandcytokeratins(CK-19).However,CTCsundergoingepithelial–mesenchymal-transition(EMT)cangraduallylosetheirepithelialcharacteristics,havingnoorverylowexpressionofEpCAMandconsequentiallyevadecaptureandincreasinglyCTCplatformsarecombiningepithelialmarkerswithothersmarkers,suchasmesenchymalmarkers(e.g.,N-cadherin,vimentinorTWIST1),stemcellmarkers(CD133,CD44,CD34,ALDH1)(21)earlyapoptosismarkers(M30,Bcl-2)orcancerspecificmarkers(e.g.,HER2,PSMA)(22,23).AnotherplatformforCTCdetectionisAdnaTest(AdnagenAG)thatenrichesCTCsusingacocktailofantibodies(e.g.,EpCAM,MUC-1,AR,Her2)specifictothecancertype(e.g.,breast,lung,prostate,ovarian)followedbyasubsequentanalysisoftumorassociatedgeneexpressionbyRT-qPCR(24).Morerecently,anapproachusinganinvivopositiveenrichmenttechnologynamedGILUPICellCollector®(GILUPINanomedizin)hasbeendescribed.ThistechnologyallowscaptureofCTCsdirectlyfromthecubitalveinofthepatientbyusingantibodiesagainstEpCAMwiththeadvantageofusingthetotalvolumeofbloodandincreasingthechanceofCTCsisolation(18).CTCscanbeenrichedwithoutlabellingbasedontheirphysicalproperties.Tumorcellsarenormally(butnotalways)largerthanmostbloodcellsandthischaracteristichasbeenexploitedtocaptureCTCsbysize-basedfiltrationusingofmicrofluidicdevice/cartridgesormicrochipstoseparatecells.Oneoptionfordensity-basedCTCenrichmentistheAccuCyteassaywhichusesadensity-gradientseparationtechnologythatintegratesaseparationtubeandacollectordevice(25).AnotherexampleofCTCenrichmenttechnologybasedonphysicalpropertiesistheParsortix™systemthattrapscellsbasedonbothdeformabilityandsizeindisposablecassetteswithchannelsthatgraduallydecreasesinsizetoapproximately<10μm(26).Acombinatorystrategyusingamicrofluidicplatformsandananotechnology-assistedseparationhasbeenalsodevelopedforCTCisolation(27).Alternativemethodsusingmicrofiltration-basedenrichmentwhichisolatetumorcellsbysizeincludeISET®(RarecellsDiagnostics)(17)andScreenCell®(28).TheelectricalpropertiesofCTCscanalsobeusedfortumor-cellisolationbyapplyinganon-uniformelectricfieldthroughthephenomenonofdielectrophoresis(DEP).Here,apositive(pDEP)ornegative(nDEP)forceisappliedtoacell,movingittowardsorawayfromtheelectricfieldsource,respectively.SomesystemshavebeendescribedwhichemployDEPenrichmenttechnologiesincludingApoStream®(29)andDEParray™automatedsystem.ThelattertrapsstainedcellsinDEPcagesandiscombinedwithahigh-resolutionimagingdevice.Singlecells,selectedviamarkerexpressioncanbemovedwithinthechipbyelectricalforcesandphysicallyisolatedforfurthergenomicanalysis(30).GiventhelikelylossofCTCswithanyenrichmentstep,CTCplatformshavebeendesignedtocaptureallnucleatedcellsinthebloodstream.Thehigh-definitionsingle-cellassay(HD-SCA)developedinPeterKuhn’slaboratory(31,32)andcommerciallyavailablethroughEpicSciences,isbasedonsucha‘nocellleftbehind’approach,wheretheentirepopulationofcellsinaliquidsampleareplatedasabiologicalmonolayerontoglassslidesandimmune-stainedforHD-CTCidentification.EachslidesubsequentlyundergoessophisticatedimageprocessingtodetectrarecellsthatcanbephysicallypickedforgenomicanalysisorsubjectedtosinglecellCYTOFtoassessupto40proteinsperCTC(12,31,33).ForsingleCTCimageanalysis,differenttoolshavebeendevelopedforautomatedprocessesofclassification,sorting,anddetectionofCTCsforsubsequentgeneticanalysis.ArecentstudyintroducedananalysisprogramcalledACCEPT,whichclassifiedfluorescentimagesofsinglecellsfromCellSearch®platformasCTCsornotCTCswithanaccuracyof96%(34).Incontrast,anautomatictoolforlabel-freeCTCdetectionisalsopossiblewherebyCTCsandWBCsareidentifieddirectlyfrombrightfieldmicroscopyimages(35).WecannotdescribeallthecurrentlyavailableCTCplatforms,butreferthereadertoacomprehensiverecentreview(36).NotallcellsdetectedthatareclassifiedphenotypicallyasCTCscarrygenomicaberrations(30,37,38)andincreasinglyphenotypicidentificationofCTCsisfollowedbymolecularprofilingtoconfirmwhethercirculatingcells,howeverenrichedandisolated,aretumorcells.MolecularprofilingofCTCscouldalsoprovideunprecedentedwindowsontothemetastaticprocess,underlyingtumorheterogeneityandinformationontreatmentresponseandresistance(17,29,39–44).Withtheevolvingfieldofsingle-celltechnologies,evaluationofDNA,RNAandproteinalterationsatthesinglecelllevelisnowfeasibleandisbeingappliedtoCTCs(Table1)andanalysisofpairedprimarytumorandCTCshasthepotentialtoshedlightontotumorevolution.Astudyperformedon23patientsshowedthatsheddingofCTCsfromtheprimarytumorisnotrandom;instead,acquisitionofcopynumberaberrations(CNA)isdrivenbyaconvergentprocessacrosstumortypesthatultimatelyleadstothereleaseofCTCswithcomplexgenomicrearrangements(56).Inanotherstudyinbreastcancer,CTCsresembledCNAofprimarytumorsandcontainedalterationsassociatedwithbrainmetastasiswithhighclonality,suggestingthatbrainmetastasiscompetentcellshadundergoneclonalselection(57).Singlecellanalysis,althoughexcitingcanbelimitedbyfailuresinthetechnicallychallengingstepswithintheworkflows.Forthisreason,expandingCTCsin2Dor3DculturesorviainvivomodelscouldovercomethetechnicallimitationsofsingleCTCanalysisandfacilitatefunctionalstudies.PrimaryculturesfromCTCshavebeensuccessfullyestablishedinpatientswithadvancedstagecancer(58)whichmaintainedmolecularandphenotypicpropertiesoftheunculturedprimaryCTCs,matchedgeneticalterationsofthecorrespondingprimarytumorandcouldbeusedtoassessmolecularchangesovertimewithserialblooddraws(59).Incontrast,lowsuccessofCTCcultureshasbeenreportedforpatientswithearlystagecancers,mostlikelyduetothelowerabundanceofCTCscomparedtopatientswithadvancedstagecancer.OptimizationofcultureconditionsanddevelopmentofeventuallyCTCcelllinesisthusaworthygoalthatwillimproveourunderstandingofthebiologicalpropertiesofearlydisseminatingtumorcells.TABLE1Table1SummaryofstudiesthatperformedCTCmolecularprofiling.CTCsasPrecursorsofMetastasisMetastasisisacomplex,multi-stepprocessviawhichcancercellsleavetheprimarytumor,intravasateandsurviveinthebloodstream,extravasate,invadeandcolonizeasecondaryorgansitebeforegrowingintoamacroscopicmetastaticlesion(Figure1)(60).Forepithelialtumors,anearlystepofthemetastaticcascadeisproposedtooccurviaadedifferentiationprogramknownasepithelial-to-mesenchymaltransition(EMT).DuringEMT,tumorcellsdownregulateepithelialmarkerssuchasE-cadherin,detachfromneighboringcellsandacquireamoreinvasivemesenchymalphenotype(61).EMTprogramcanbestimulatedbymultiplefactorsincludinganactivatedtumorassociatedstromaorunderhypoxicconditions(62).Inaddition,theinvasivetumorcellsupregulatemetalloproteinaseactivityleadingtodegradationofextracellularmatrixandenablingtumorcellmigrationtoreachthevasculature(63).However,recentstudiesinmousemodelshaveshownthatinvasionandmetastasiscanoccurindependentlyofEMT(64–66).Inparticular,E-cadherinmayenhancesurvivalduringtumorcelldetachment,disseminationandmetastaticseedingbylimitingreactiveoxygen-mediatedapoptosis(66).ThesefindingsmayatleastinpartexplaintheprognosticroleofepithelialCTCsdetectedbyCellSearch®technologyinseveralcancertypes(14)andthepresenceofhybridphenotypes(epithelial/mesenchymal)inpatientswithcancer(67,68).FIGURE1Figure1Overviewofthemetastaticcascade.Themetastaticprocessincludesinvasion,intravasation,circulation,extravasationandcolonization.CTCsdetachingfromtheprimarytumorcantravelaloneorasclusters.Enumeration,molecularprofilingandexpansionofCTCsinnon-metastatictumorscouldprovideabetterunderstandingonthesignificanceofCTCearlydissemination.FigurecreatedinBioRender.com.Aggressivetumorcellscanalsotransitiontowardsavascularphenotypebyexpressingendothelialmarkersandformingbloodvessels,aphenomenoncalledvasculogenicmimicry(VM)(69).AlthoughVMhasbeendescribedinbreast,ovary,lung,prostate,andbladdercancerandhasbeenassociatedwithdisseminationandmetastasis,itremainsacontroversialissue,withconcernsincludingalackofrobustdiscriminationbetweenVMandendothelialbloodvessels(70).However,asubpopulationofsmallcelllungcancerCTCsthatco-expressedVE-cadherin(amarkerofVM)andepithelialmarkershadacopynumberprofileconfirmingtumororigin,implyingthatinthisaggressivelungcancer,VMmaybecausallyinvolvedinCTCdissemination(71).CTCscantravelassinglecellsorascellaggregatescalledCTCclustersorcirculatingtumormicroemboliwhichhavebeenreportedforseveralcancertypesincludingbreast,prostate,lung,andcoloncancers(72).Althoughtheyaredetectedatalowerfrequencyandhavesignificantlyshorterhalf-lifeinthebloodthansingleCTCs(73),CTCclustersaremorelikelytoformmetastasisinmousemodels(73).CTCclusterscanincludenon-tumorcelltypesincludingpericytes,immunecells,plateletsandcancer-associatedfibroblasts(74)whichmaysupportthesurvivaloftheclusteredCTCs.ArecentstudyidentifiedneutrophilsaccompanyingCTCsinpatientswithadvanced-stagebreastcancerwhereinteractionsbetweenneutrophilsandCTCsmediatedbyVCAM1,promotedcellcycleprogressionandmetastaticseeding,openingupnewtherapeuticvulnerabilitiestopreventbreastcancerspread(44).PlateletscanalsointeractwithCTCs,providingasurrounding‘shield’thatpreventsrecognitionbytheimmunesystemandprotectsagainstshearstressforceswithinthebloodstream(60).RNA-seqperformedonsingleCTCsrevealedthatplateletmarkerswerehighlyexpressedinasubsetofpancreaticCTCs,supportingtheinteractionofthesetwocelltypesinthecirculation(75).CTCsurvivalwithinthebloodstreammayalsobeachievedbyup-regulationofβ-globin(asubunitofhemoglobingenenormallyexpressedbyredbloodcells),asobservedinbreast,prostate,andlungcancers,withaconsequentreductionofoxidativestresswithinCTCs(76).OnlyaminorfractionofCTCsarethoughttocompleteallthestepsofthemetastaticcascade(77,78).CTCextravasationissuggestedtooccurinasimilarmannerasleucocyteextravasation,aprocessinvolvingnumerousligandsandreceptorsexpressedbybothtumorcellsandendothelialcellsincludingselectins,integrins,cadherins,CD44andimmunoglobulin(Ig)superfamilyreceptors(79).ThefirststepsofdistantorgancolonizationmaybepartiallydrivenbygeneticandepigeneticprogramspresentinasubpopulationoftumorcellsatanyprecedingstepofthemetastaticcascadebeforeCTCsseedmetastasisandmolecularprofilingofsampledCTCshasthepotentialtouncovertheirsubsequentcompetenciesandperhapsunveiltheirtissuetropism.Pertinenttothishypothesis,aninvivogenome-wideCRISPRscreeningperformedinbreastcancer-derivedCTCsidentifiedanupregulationofribosomalproteinsandregulatorsofthetranslationmachineryinasubsetofCTCsthatassociatedwithhighmetastaticburdeninmousemodels(80).Supportingthenotionofpredictingtissuetropism,comparisonoftranscriptomicprofilesbetweenbreastcancerCTCsassociatedwithbrainmetastasisandCTCsassociatedwithmetastasistootherorgansrevealedadistinctgenesignatureassociatedwithbrain-homingCTCs(81).Inaddition,CTCswithalterationsinmetabolicpathwaysshowedastrongerlivertropismincolorectalcancer(82)andproteinubiquitylationwasidentifiedasanimportantmechanismofbonemarrowmetastaticseedinginmelanoma(51).CTCs,DTCsandTumorDormancyOnceCTCshavesurvivedwithinthebloodstreamandextravasatedintoadistantsitetheycanresideinadormantstate[oftenreferredtoasdisseminatedtumorcells(DTCs)]foryearsbefore‘awakening’toproliferateandcauseovertmetastasis(83).SeveralstudieshaveshownthatDTCscanbefoundinthebonemarrowofpatientswithoutovertmetastases,indicatingthatthesecellsdisseminateearlyduringtumorprogression(84).Insupportofthishypothesis,geneticanalysisofbonemarrowDTCsfrombreast,prostate,andoesophagealcancerrevealedfewerchromosomalabnormalitiesinDTCsthaninmatchedprimarytumorcells,indicativeofaparallelprogressionmodelofmetastaticgrowth(85–87).IdentificationofDTCs,togetherwithanincreasedunderstandingandthentargetingofthe‘awakening’stimuliandmechanism(s)holdspotentialinimprovingpatients’clinicaloutcomesalthoughfinding,isolatingandanalyzingDTCsistechnicallychallengingandinvasive.NeverthelessknowledgeoftumordormancyandDTCshasimprovedinrecentyears.Extrinsicfactorsincludingalackofangiogenesis,immunesurveillance,andthebalancebetweenproliferationandapoptosishaveallbeenshowntodrivetumordormancy(88).MolecularprofilingofDTCshasenabledabetterunderstandingofthecell-intrinsicsignalsthatinducedormancy,suchasinhibitionofpathwaysinvolvedincell-cycleregulation,metabolicsignalsandautophagy(89).However,onlyafewstudieshaveinvestigatedwhetherCTCsfromperipheralbloodexpressmarkersoftumordormancy(90–92).Inabreastcancerstudy,CTCsubsetswereselectedforEpCAMnegativity,positivityforstemcellmarkers(CD44+/CD24−)andcombinatorialexpressionofuPAR/intβ1becausedownregulationofthesetwomarkershasbeendirectlyimplicatedinbreastcancerdormancy(90).TheuPAR+/intβ1+subgroupofCTCswerefoundtobemoreproliferativecomparedtouPAR-/intβ1-CTCsininvitroassays,suggestingthatthesetwomarkerscouldbeusedtodistinguishCTCsthatsubsequentlyproliferatevsbecomedormantatdistantsites(90).AlaterstudyfromthesamegroupidentifiedmTORsignalingasacriticaldeterminantinpromotingCTCseedingandmaintainedlong-termbonemarrow-residentbreastcancercelldormancy(91).Thebalancebetweenproliferationandapoptosishasbeenshowntobeassociatedwithtumordormancy(88,93).Inlinewiththisfinding,proliferationandapoptosismarkers(Ki67,M30)weremeasuredonCTCsderivedfrompatientswithbreastcancerwhoweredisease-freeforatleast5yearsorwhorelapsedmorethan5yearsaftersurgery.ThestudyfoundthatapoptoticCTCsweredetectedmorefrequentlyinpatientswhoremaineddisease-freecomparedtothosewhoexperiencedlaterelapse,suggestingthattheexpressionofthesetwomarkerscouldbepotentiallyusedtopredictescapefromdormancy(92).Inanotherstudy,36%ofpatientshaddetectableCTCs8to22yearsaftermastectomywithoutevidenceofprogressivetumorgrowth.Theauthorsofthisstudysuggestthatthiscouldbeassociatedwithafailuretocompletethefinalstagesofmetastasis,whichcouldbepotentiallybeingkeptincheckbyaprevailingapoptosis/proliferationbalancethatmaintainsadormantstateindistantsites(94).However,theclinicalapplicationofCTCdetectioninthetumordormancycontextstillremainsunclear.FutureresearchinthisfieldshouldfocusontheidentificationofCTCmolecularfeaturesthatcoulddistinguishbetweencancersthatarebehavingmoreaggressivelyfromthosethatwillenteradormantstate.ClinicalImplicationofEarlyDisseminationAnalysisofCTCshaveenhancedourunderstandingofcancerbiology(61)aswellasthepotentialvulnerabilitiesofthemetastaticcascade.TheapplicationofCTCbasedassaysinaclinicalsetting,especiallyinearlystagediseasehasbeenchallenging,primarilyduetothelowfrequencyofCTCs.QuestionsoftendebatedinthefieldofCTCresearcharewhetherthelownumberofsinglecellsanalyzed(typicallylessthan10)aresufficienttocapturetumorheterogeneityandifthisheterogeneityisbettercapturedinatumorbiopsy(95).However,mosttumorbiopsyproceduressampleasingleregionorlimitednumberofregionsofatumoranditisoftendifficulttoassesswhethertheaggressivetumorcloneshavebeencaptured(96).Incomparison,CTCsarecellsthathaveundergonetheselectionprocessandhavealreadyenteredthemetastaticcascade,thoughasmentionedpreviously,onlyaminorfractioncompleteit.WhethertheseCTCsareindeedabetterrepresentationoftheaggressivetumorclonesthantumorbiopsyisyettobedetermined,especiallyinearlystagecancers.Tothisend,inthepastdecadeseveralstudieshaveexploredthepotentialofCTCsinclinicalresearchandtheimplicationsofearlydisseminationofCTCsinpatientdiagnosisaswellasprognosis.Althoughtechnologiesforprofilingtheseraresinglecellshaveevolvedintherecentyears,singlecellmanipulationandanalysis(capture,enumeration,molecularprofiling,andbioinformaticworkflows)willlikelyneedtobesimplified,automatedandlessexpensivetobecomeroutinelyfeasibleandtakenupintheclinic.ThelowprevalenceofCTCsinearlydisease(97–100)clearlyhindersextensivestudies.Inpatientswithearlybreastcancer,theTREAT-CTCtrialwasthefirsttodemonstratetheclinicalutilityofCTCsusingtheCellSearch®platform.ThistrialaddressedtherequirementofadditionaltreatmenttoeliminateCTCspostadjuvantchemotherapyandCTCscreeningwasperformedattheendofadjuvantchemotherapyin1317patientswithHER2negativebreastcancer.Ofthe95CTCpositivepatients,63wererandomlyassignedtoobservationortrastuzumabadministration.ThetrialdemonstratedthefeasibilityofCTCbasedscreeninginanadjuvantsettingaswellasthehigherrateofrelapseamongstCTCpositivepatients(101).Morerecently,inacohortof75patients’withlimitedstageSCLC(LS-SCLC,definedastumorconfinedwithinonlyonelungand/orinthelymphnodesinthemediastinum)theCONVERTtrialdeterminedthat≥15CTCswasasanindependentprognosticmarkerwith60%ofpatientshaddetectableCTCsatpre-treatmentsampling(102).InlocalizedprostatecancertherewasadefinitetrendtowardsapositivecorrelationofCTCswithpathologicalstageaswellasatrendtowardsprognosticandpredictiveimpactofdetectingCTCswithseveralstudiesreportingcorrelationswithpatientsurvivaland/ordiseaserecurrenceposttreatment(103–107).Astudyin2014ofpatientswithchronicobstructivepulmonarydisease(COPD),founddetectableCTCsinsomepatients,withthesepatientsdevelopinglungnodules1–4yearslaterandwithfourpatientsdiagnosedwithinvasiveadenocarcinomaandafifthdiagnosedwithsquamouscellcarcinoma,demonstratingthepredictivevalueofCTCsinearlyNSCLC(4).However,thestudyalsoreportedfalsepositivesinthreepatientswhodidnotdevelopovertcancersuggestingtheneedforfurthervalidationusingbroaderCTCdetectionsystemsinlargenationwidescreeningprograms.Furthermore,instageI-IIINSCLCCTCscollectedatsurgerypriortotumorresectionfromthedrainingpulmonaryveinwerehigherincountcomparedtosamplingoftheperipheralblood(1–3,093vs.0–4CTCsintheperipheralblood)andalthoughalargerstudywillberequiredtovalidatethisfinding,CTCcountwasassociatedwithriskofrelapse(30,108,109).Strikingly,inacasestudywithinthiscohort,genomiccomparisonofindividualpulmonaryveinCTCstotheresectedprimarytumorandasecondarytumorwhichdeveloped10monthslater,revealedthatCTCshadmoregenomicvariantsincommonwiththemetastasisthantheprimarytumorimplicatingearlydisseminatingCTCsasresponsiblefordiseaserelapse(29).Furtherstudiesusingthisapproachtoconfirmthesefindingsarewarranted.AfurtherpotentialutilityofCTCs,giventhedataemergingonearlydissemination,isasbiomarkersofminimalresidualdisease(MRD)followingtreatmentwithcurativeintentwheretumorphenotypeandgenotypecanbeassessedasindicatorsof(aggressiveversusindolent)relapsetime-courseasacomplementaryapproachtoctDNAmonitoring(110).TheincompleteprimarytumoreradicationwithconsequentpersistenceofresidualcellsintheformofCTCsorDTCsremainsamajorchallengeintheclinicalmanagementofpatientswithcancer.ThedetectionofMRDafterprimarycurativetreatmenthasthepotentialtoidentifyhigh-riskpatientswhocanbenefitfromadditionaltreatmentsandmonitoring.TheroleofCTCsinMRDmonitoringhasbeeninvestigatedinseveralcancertypesincludingbreast,colorectal,lung,andprostatecancers(111).Inthesestudies,detectionofCTCsatafollow-uptimepoint(rangingfrom3monthsto5yearspostchemotherapy,accordinglytothetumortypes)wassignificantlyassociatedwithunfavorableoutcomes.Inparticular,studiesfromourgroupshowedthatthepresenceofCTCs(measuredbyCellSearch®)afteronecycleofchemotherapywasassociatedwithworseoverallsurvivalinbothpatientswithNSCLCandSCLC(9,112).GiventheprovenclinicalrelevanceofCTCsintheMRDsetting,ultrasensitiveassaysarenowrequiredinordertodetectsmallnumberofcellsandtocaptureabroadrangeofCTCphenotypes(epithelial,mesenchymalorboth).Morerecently,adistinguishingrolebetweenCTCsandDTCshasbeenreported:patientswithdetectableCTCsintheMRDsettingrelapsedearliercomparedtothosewithdetectableDTCsonly,whoshowedalaterrelapse(113,114).ConclusionsIntheclinic,analysisofCTCshasbeenusedforprognosticstratificationofmanysolidcancerssuchasbreast,smallcelllung,non-smallcelllung,colorectal,andprostatecancersaswellastomonitordiseaseprogression.However,CTCsasaliquidbiopsyhavenotyetfulfilledtheirundisputablepotentialtoinformofpersonalizedmanagementofpatientswithcancerwhichmayevenextendtothehighbarofearlierdetectionofcancers.ThelownumberofCTCsinthecirculationandthesensitivityoftheCTCassayscurrentlyinuseremainachallenge.Tothisend,intenseeffortshavebeenmadearoundtheworldtostandardizeCTCbasedassaystoovercomethetechnicalchallengesofenrichment,detection,enumeration,isolation,andNGSanalysesandtoincreaseassaysensitivity.DevelopmentsinthefieldofCTCenrichmentinstrumentsandNGSanalyseshaveelevatedCTCstudies,bringingexcitinginsightsintobiology,heterogeneityandevolutionoftumorsandbegintoilluminatethepathwaysthatunderlietumordisseminationandsubsequentstepsofthemetastaticcascade.ThesestudiesincludedataonCTCheterogeneity,interactionsinthebloodstreamwithothercelltypes,immuneevasion,metastaticpotentialandorgantropism.However,severalunansweredbiologicalquestionsremain,suchaswhatcausesthedisseminationofcellsintothecirculation,whatdeterminesthetropismoftheseCTCsatametastaticsiteandfurtherhowandwhichpathwaysneedtobetargetedtocurbthemetastaticpotentialofthesesinglecells.Theanswerstothesequestionscouldbeverydifferentdependingontheprimarytumorinquestionandmoreresearchmustbedonetoanswerthem.Furthermore,morestudiesinlargepatientcohortswillneedtobedesignedtoaddresstheclinicalutilityofCTCsbeyondsingleCTCandCTCclusterenumerationsothatCTCdatacanbeusedforindividualizedtestsfordrugsusceptibilityandinvestigatepredictivebiomarkersofresponsetotreatmentsaswellasforearlierdetectionofdiseaseprogression.Although,wehavecomealongwayinCTCresearchthequestionremainsifCTCsarereadyforprimetimeintheclinic.Inouropinion,thestandardizationofCTCassaysalongwiththecombiningoutputsfromotherliquidbiopsyreadoutssuchascellfreeDNA,cellfreeRNAandcirculatingproteinswillhelprealizetheirtruepotential.AuthorContributionsFC,SM,andTGdraftedthemanuscriptandAC,DR,andCDevolvedthemanuscripttothefinaldraft.Allauthorscontributedtothearticleandapprovedthesubmittedversion.FundingThisworkwassupportedthroughCorefundingtoCancerResearchUK(CRUK)ManchesterInstitute(A27412),theCRUKManchesterMajorCentreAward(A25254),theCRUKLungCancerCentreofExcellence(A20465)andaR01grantfromUSNationalCancerInstitute(R01CA197936).SupportwasreceivedfromtheManchesterNIHRBiomedicalResearchCentre,andtheManchesterExperimentalCancerMedicineCentre.ConflictofInterestTheauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest.References1.WeissL.MetastasisofCancer:AConceptualHistoryFromAntiquitytothe1990s.CancerMetastasisRev(2000)19(3-4):193–383.doi:10.1023/A:1010623111204CrossRefFullText|GoogleScholar2.WittekindC,NeidM.CancerInvasionandMetastasis.Oncology(2005)1:14–6.doi:10.1159/000086626CrossRefFullText|GoogleScholar3.VasseurA,KiavueN,BidardFC,PiergaJY,CabelL.ClinicalUtilityofCirculatingTumorCells:AnUpdate.MolOncol(2020).doi: 10.1002/1878-0261.12869PubMedAbstract|CrossRefFullText|GoogleScholar4.IlieM,HofmanV,Long-MiraE,SelvaE,VignaudJ-M,PadovaniB,etal.“Sentinel”CirculatingTumorCellsAllowEarlyDiagnosisofLungCancerinPatientsWithChronicObstructivePulmonaryDisease.PloSOne(2014)9(10):e111597.doi: 10.1371/journal.pone.0111597PubMedAbstract|CrossRefFullText|GoogleScholar5.RiedK,EngP,SaliA.ScreeningforCirculatingTumourCellsAllowsEarlyDetectionofCancerandMonitoringofTreatmentEffectiveness:AnObservationalStudy.AsianPacJCancerPrev(2017)18(8):2275–85.doi: 10.22034/apjcp.2017.18.8.2275PubMedAbstract|CrossRefFullText|GoogleScholar6.Recasens,A,MunozL.TargetingCancerCellDormancy.TrendsPharmacolSci(2019)40(2):128–41.doi: 10.1016/j.tips.2018.12.004PubMedAbstract|CrossRefFullText|GoogleScholar7.ValletteFM,OlivierC,LézotF,OliverL,CochonneauD,LalierL,etal.Dormant,Quiescent,TolerantandPersisterCells:FourSynonymsfortheSameTargetinCancer.BiochemPharmacol(2019)162:169–76.doi: 10.1016/j.bcp.2018.11.004PubMedAbstract|CrossRefFullText|GoogleScholar8.ChenL,BodeAM,DongZ.CirculatingTumorCells:MovingBiologicalInsightsIntoDetection.Theranostics(2017)7(10):2606–19.doi: 10.7150/thno.18588PubMedAbstract|CrossRefFullText|GoogleScholar9.HouJM,KrebsMG,LancashireL,SloaneR,BackenA,SwainRK,etal.ClinicalSignificanceandMolecularCharacteristicsofCirculatingTumorCellsandCirculatingTumorMicroemboliinPatientsWithSmall-CellLungCancer.JClinOncol(2012)30(5):525–32.doi:10.1200/JCO.2010.33.3716PubMedAbstract|CrossRefFullText|GoogleScholar10.ThieleJA,BethelK,KrálíčkováM,KuhnP.CirculatingTumorCells:FluidSurrogatesofSolidTumors.AnnuRevPathol:MechDis(2017)12:419–47.doi: 10.1146/annurev-pathol-052016-100256CrossRefFullText|GoogleScholar11.ShenZ,WuA,ChenX.CurrentDetectionTechnologiesforCirculatingTumorCells.ChemSocRev(2017)46(8):2038–56.doi: 10.1039/c6cs00803hPubMedAbstract|CrossRefFullText|GoogleScholar12.ThieleJA,PituleP,HicksJ,KuhnP.Single-CellAnalysisofCirculatingTumorCells.MethodsMolBiol(2019)1908:243–64.doi: 10.1007/978-1-4939-9004-7_17PubMedAbstract|CrossRefFullText|GoogleScholar13.VaidyanathanR,SoonRH,ZhangP,JiangK,LimCT.CancerDiagnosis:FromTumortoLiquidBiopsyandBeyond.LabChip(2019)19(1):11–34.doi: 10.1039/c8lc00684aCrossRefFullText|GoogleScholar14.MohanS,ChemiF,BradyG.ChallengesandUnansweredQuestionsfortheNextDecadeofCirculatingTumourCellResearchinLungCancer.TransLungCancerRes(2017)6(4):454–72.doi: 10.21037/tlcr.2017.06.04CrossRefFullText|GoogleScholar15.FerreiraMM,RamaniVC,JeffreySS.SciencedirectCirculatingTumorCellTechnologies5.MolOncol(2016)10(3):374–94.doi: 10.1016/j.molonc.2016.01.007PubMedAbstract|CrossRefFullText|GoogleScholar16.RawalS,YangY-P,.CoteR,AgarwalA.IdentificationandQuantitationofCirculatingTumorCells.AnnuRevAnalChem(2017)10(1):321–43.doi:10.1146/annurev-anchem-061516-045405CrossRefFullText|GoogleScholar17.PaillerE,FaugerouxV,OulhenM,MezquitaL,LaporteM,HonoreA,etal.AcquiredResistanceMutationstoALKInhibitorsIdentifiedbySingleCirculatingTumorCellSequencinginALK-rearrangednon–Small-CellLungCancer.ClinCancerRes(2019)25(22):6671–82.doi: 10.1158/1078-0432.CCR-19-1176PubMedAbstract|CrossRefFullText|GoogleScholar18.Saucedo-ZeniN,MewesS,NiestrojR,GasiorowskiL,MurawaD,NowaczykP,etal.ANovelMethodfortheInVivoIsolationofCirculatingTumorCellsFromPeripheralBloodofCancerPatientsUsingaFunctionalizedandStructuredMedicalWire.IntJOncol(2012)41(4):1241–50.doi: 10.3892/ijo.2012.1557PubMedAbstract|CrossRefFullText|GoogleScholar19.WoestemeierA,Harms-EffenbergerK,KarstensKF,KonczallaL,GhadbanT,UzunogluFG,etal.ClinicalRelevanceofCirculatingTumorCellsinEsophagealCancerDetectedbyaCombinedMacsEnrichmentMethod.Cancers(Basel)(2020)12(3):718.doi: 10.3390/cancers12030718CrossRefFullText|GoogleScholar20.NagrathS,SequistLV,MaheswaranS,BellDW,IrimiaD,UlkusL,etal.IsolationofRareCirculatingTumourCellsinCancerPatientsbyMicrochipTechnology.Nature(2007)450(7173):1235–9.doi: 10.1038/nature06385PubMedAbstract|CrossRefFullText|GoogleScholar21.VarillasJI,ZhangJ,ChenK,BarnesII,LiuC,GeorgeTJ,etal.MicrofluidicIsolationofCirculatingTumorCellsandCancerStem-LikeCellsFromPatientsWithPancreaticDuctalAdenocarcinoma.Theranostics(2019)9(5):1417–25.doi: 10.7150/thno.28745PubMedAbstract|CrossRefFullText|GoogleScholar22.PoudinehM,SargentEH,PantelK,KelleySO.ProfilingCirculatingTumourCellsandOtherBiomarkersofInvasiveCancers.NatBiomedEng(2018)2(2):72–84.doi: 10.1038/s41551-018-0190-5PubMedAbstract|CrossRefFullText|GoogleScholar23.Alix-panabièresC,PantelK.ClinicalApplicationsofCirculatingTumorCellsandCirculatingTumorDNAasLiquidBiopsy.CancerDiscov(2016)6(5):479–92.doi: 10.1158/2159-8290.CD-15-1483PubMedAbstract|CrossRefFullText|GoogleScholar24.RussoGI,BierS,HennenlotterJ,BegerG,PavlencoL,vandeFlierdtJ,etal.ExpressionofTumourProgression-AssociatedGenesinCirculatingTumourCellsofPatientsAtDifferentStagesofProstateCancer.BJUInt(2018)122(1):152–9.doi: 10.1111/bju.14200PubMedAbstract|CrossRefFullText|GoogleScholar25.DongL,ZhangZ,SmithK,KuczlerMD,ReyesD,AmendSR,etal.TheCombinationofSize-BasedSeparationandSelection-FreeTechnologyProvidesHigherCirculatingTumourCellsDetectionSensitivityThanEitherMethodAloneinPatientsWithMetastaticProstateCancer.BJUInt(2020)126(1):191–201.doi: 10.1111/bju.15041PubMedAbstract|CrossRefFullText|GoogleScholar26.ChudziakJ,BurtDJ,MohanS,RothwellDG,MesquitaB,AntonelloJ,etal.ClinicalEvaluationofaNovelMicrofluidicDeviceforEpitope-IndependentEnrichmentofCirculatingTumourCellsinPatientsWithSmallCellLungCancer.Analyst(2016)141(2):669–78.doi: 10.1039/c5an02156aPubMedAbstract|CrossRefFullText|GoogleScholar27.ChengJ,LiuY,ZhaoY,ZhangL,MaoH,HuangC.Nanotechnology-AssistedIsolationandAnalysisofCirculatingTumorCellsonMicrofluidicDevices.Micromachines(Basel)(2020)11(8):774.doi: 10.3390/mi11080774CrossRefFullText|GoogleScholar28.BarrJ,ChudasamaD,RiceA,KarterisE,AnikinV.LackofAssociationBetweenScreencell-detectedCirculatingTumourCellsandLong−TermSurvivalofPatientsUndergoingSurgeryfornon−SmallCellLungCancer:APilotClinicalStudy.MolClinOncol(2020)15(10):191–5.doi: 10.3892/mco.2020.1981CrossRefFullText|GoogleScholar29.GuptaV,JafferjiI,GarzaM,MelnikovaVO,HasegawaDK,PethigR,etal.ApoStream™,aNewDielectrophoreticDeviceforAntibodyIndependentIsolationandRecoveryofViableCancerCellsFromBlood.Biomicrofluidics(2012)6(2):1–14.doi: 10.1063/1.4731647CrossRefFullText|GoogleScholar30.ChemiF,RothwellDG,McGranahanN,GulatiS,AbboshC,PearceSP,etal.PulmonaryVenousCirculatingTumorCellDisseminationBeforeTumorResectionandDiseaseRelapse.NatMed(2019)25(10):1534–9.doi: 10.1038/s41591-019-0593-1PubMedAbstract|CrossRefFullText|GoogleScholar31.MarrinucciD,BethelK,KolatkarA,LuttgenMS,MalchiodiM,BaehringF,etal.FluidBiopsyinPatientsWithMetastaticProstate,PancreaticandBreastCancers.PhysBiol(2012)9(1):16003.doi: 10.1088/1478-3975/9/1/016003CrossRefFullText|GoogleScholar32.DiveC,ShishidoSN,KuhnP.CancerMoonshotConnectingInternationalLiquidBiopsyEffortsThroughAcademicPartnership.ClinPharmacolTher(2017)101(5):622–4.doi: 10.1002/cpt.657PubMedAbstract|CrossRefFullText|GoogleScholar33.GerdtssonE,PoreM,ThieleJA,GerdtssonAS,MalihiPD,NevarezR,etal.MultiplexProteinDetectiononCirculatingTumorCellsFromLiquidBiopsiesUsingImagingMassCytometry.ConvergSciPhysOncol(2018)4(1):015002.doi: 10.1088/2057-1739/aaa013PubMedAbstract|CrossRefFullText|GoogleScholar34.ZeuneLL,BoinkYE,vanDalumG,NanouA,deWitS,AndreeKC,etal.DeepLearningofCirculatingTumourCells.NatMachIntell(2020)2(2):124–33.doi: 10.1038/s42256-020-0153-xCrossRefFullText|GoogleScholar35.WangS,ZhouY,QinX,NairS,HuangX,LiuY.Label-freeDetectionofRareCirculatingTumorCellsbyImageAnalysisandMachineLearning.SciRep(2020)10(1):12226.doi: 10.1038/s41598-020-69056-1PubMedAbstract|CrossRefFullText|GoogleScholar36.HabliZ,AlChamaaW,SaabR,KadaraH,KhraicheML.CirculatingTumorCellDetectionTechnologiesandClinicalUtility:ChallengesandOpportunities.Cancers(Basel)(2020)12(7):1930.doi: 10.3390/cancers12071930CrossRefFullText|GoogleScholar37.TammingaM,deWitS,vandeWauwerC,vandenBosH,SwennenhuisJF,KlinkenbergTJ,etal.AnalysisofReleasedCirculatingTumorCellsDuringSurgeryforNon-SmallCellLungCancer.ClinCancerRes(2020)26(7):1656–66.doi: 10.1158/1078-0432.Ccr-19-2541PubMedAbstract|CrossRefFullText|GoogleScholar38.DemeulemeesterJ,KumarP,MøllerEK,NordS,WedgeDC,PetersonA,etal.TracingtheOriginofDisseminatedTumorCellsinBreastCancerUsingSingle-CellSequencing.GenomeBiol(2016)17(1):250.doi: 10.1186/s13059-016-1109-7PubMedAbstract|CrossRefFullText|GoogleScholar39.CarterL,RothwellDG,MesquitaB,SmowtonC,LeongHS,Fernandez-GutierrezF,etal.MolecularAnalysisofCirculatingTumorCellsIdentifiesDistinctCopy-NumberProfilesinPatientsWithChemosensitiveandChemorefractorySmall-CellLungCancer.NatMed(2016)23(1):114–9.doi: 10.1038/nm.4239PubMedAbstract|CrossRefFullText|GoogleScholar40.YuM,BardiaA,WittnerBS,StottSL,SmasME,TingDT,etal.CirculatingBreastTumorCellsExhibitDynamicChangesinEpithelialandMesenchymalComposition.Science(2013)339(6119):580–4.doi:10.1126/science.1228522PubMedAbstract|CrossRefFullText|GoogleScholar41.MiyamotoDT,ZhengY,WittnerBS,LeeRJ,ZhuH,BroderickKT,etal.Rna-SeqofSingleProstateCTCsImplicatesNoncanonicalWntSignalinginAntiandrogenResistance.Science(2015)349(6254):1351–6.doi:10.1126/science.aab0917PubMedAbstract|CrossRefFullText|GoogleScholar42.KlotzR,ThomasA,TengT,HanSM,IriondoO,LiL,etal.CirculatingTumorCellsExhibitMetastaticTropismandRevealBrainMetastasisDrivers.CancerDiscovery(2020)10(1):86–103.doi: 10.1158/2159-8290.Cd-19-0384PubMedAbstract|CrossRefFullText|GoogleScholar43.GkountelaS,Castro-GinerF,SzczerbaBM,VetterM,LandinJ,ScherrerR,etal.CirculatingTumorCellClusteringShapesDNAMethylationtoEnableMetastasisSeeding.Cell(2019)176(1):98–112.e114.doi: 10.1016/j.cell.2018.11.046PubMedAbstract|CrossRefFullText|GoogleScholar44.SzczerbaBM,Castro-GinerF,VetterM,KrolI,GkountelaS,LandinJ,etal.NeutrophilsEscortCirculatingTumourCellstoEnableCellCycleProgression.Nature(2019)566(7745):553–7.doi: 10.1038/s41586-019-0915-yPubMedAbstract|CrossRefFullText|GoogleScholar45.HeitzerE,AuerM,GaschC,PichlerM,UlzP,HoffmannEM,etal.ComplexTumorGenomesInferredFromSingleCirculatingTumorCellsbyArray-CGHandNext-GenerationSequencing.CancerRes(2013)73(10):2965.doi:10.1158/0008-5472.CAN-12-4140PubMedAbstract|CrossRefFullText|GoogleScholar46.NiX,ZhuoM,SuZ,DuanJ,GaoY,WangZ,etal.ReproducibleCopyNumberVariationPatternsAmongSingleCirculatingTumorCellsofLungCancerPatients.ProcNatlAcadSci(2013)110(52):21083–8.doi: 10.1073/pnas.1320659110PubMedAbstract|CrossRefFullText|GoogleScholar47.LohrJG,AdalsteinssonVA,CibulskisK,ChoudhuryAD,RosenbergM,Cruz-GordilloP,etal.Whole-exomeSequencingofCirculatingTumorCellsProvidesaWindowIntoMetastaticProstateCancer.NatBiotech(2014)32(5):479–84.doi: 10.1038/nbt.2892CrossRefFullText|GoogleScholar48.ShawJA,GutteryDS,HillsA,Fernandez-GarciaD,PageK,RosalesBM,etal.MutationAnalysisofCell-FreeDNAandSingleCirculatingTumorCellsinMetastaticBreastCancerPatientsWithHighCTCCounts.AmAssocCancerRes(2016)23(1):88–96.doi: 10.1158/1078-0432.ccr-16-0825CrossRefFullText|GoogleScholar49.KwanTT,BardiaA,SpringLM,Giobbie-HurderA,KalinichM,DubashT,etal.ADigitalRnaSignatureofCirculatingTumorCellsPredictingEarlyTherapeuticResponseinLocalizedandMetastaticBreastCancer.CancerDiscovery(2018)8(10):1286–99.doi: 10.1158/2159-8290.Cd-18-0432PubMedAbstract|CrossRefFullText|GoogleScholar50.El-HeliebiA,HilleC,LaxmanN,SvedlundJ,HaudumC,ErcanE,etal.InSituDetectionandQuantificationofAR-V7,Ar-Fl,PSA,andKRASPointMutationsinCirculatingTumorCells.ClinChem(2018)64(3):536–46.doi: 10.1373/clinchem.2017.281295PubMedAbstract|CrossRefFullText|GoogleScholar51.VishnoiM,BoralD,LiuH,SprouseML,YinW,Goswami-SewellD,etal.TargetingUSP7IdentifiesaMetastasis-CompetentStateWithinBoneMarrow-ResidentMelanomaCtcs.CancerRes(2018)78(18):5349–62.doi: 10.1158/0008-5472.Can-18-0644PubMedAbstract|CrossRefFullText|GoogleScholar52.ChimonidouM,KallergiG,GeorgouliasV,WelchDR,LianidouES.BreastCancerMetastasisSuppressor-1PromoterMethylationinPrimaryBreastTumorsandCorrespondingCirculatingTumorCells.MolCancerRes(2013)11(10):1248–57.doi:10.1158/1541-7786.MCR-13-0096PubMedAbstract|CrossRefFullText|GoogleScholar53.PixbergCF,RabaK,MullerF,BehrensB,HonischE,NiederacherD,etal.AnalysisofDNAMethylationinSingleCirculatingTumorCells.Oncogene(2017)36(23):3223–31.doi: 10.1038/onc.2016.480PubMedAbstract|CrossRefFullText|GoogleScholar54.ZhangY,TangY,SunS,WangZ,WuW,ZhaoX,etal.Single-cellCodetectionofMetabolicActivity,IntracellularFunctionalProteins,andGeneticMutationsFromRareCirculatingTumorCells.AnalChem(2015)87(19):9761–8.doi: 10.1021/acs.analchem.5b01901PubMedAbstract|CrossRefFullText|GoogleScholar55.SinkalaE,Sollier-ChristenE,RenierC,Rosàs-CanyellesE,CheJ,HeirichK,etal.ProfilingProteinExpressioninCirculatingTumourCellsUsingMicrofluidicWesternBlotting.NatCommun(2017)8:14622.doi: 10.1038/ncomms14622PubMedAbstract|CrossRefFullText|GoogleScholar56.GaoY,NiX,GuoH,SuZ,BaY,TongZ,etal.Single-cellSequencingDeciphersaConvergentEvolutionofCopyNumberAlterationsFromPrimarytoCirculatingTumorCells.GenomeRes(2017)27(8):1312–22.doi: 10.1101/gr.216788.116PubMedAbstract|CrossRefFullText|GoogleScholar57.RiebensahmC,JoosseSA,MohmeM,HanssenA,MatschkeJ,GoyY,etal.ClonalityofCirculatingTumorCellsinBreastCancerBrainMetastasisPatients.BreastCancerRes(2019)21(1):101.doi: 10.1186/s13058-019-1184-2PubMedAbstract|CrossRefFullText|GoogleScholar58.LalloA,SchenkMW,FreseKK,BlackhallF,DiveC.CirculatingTumorCellsandCDXModelsasaToolforPreclinicalDrugDevelopment.TranslLungCancerRes(2017)6(4):397–408.doi: 10.21037/tlcr.2017.08.01PubMedAbstract|CrossRefFullText|GoogleScholar59.PraharajPP,BhutiaSK,NagrathS,BittingRL,DeepG.CirculatingTumorCell-DerivedOrganoids:CurrentChallengesandPromisesinMedicalResearchandPrecisionMedicine.BiochimBiophysActaRevCancer(2018)1869(2):117–27.doi: 10.1016/j.bbcan.2017.12.005PubMedAbstract|CrossRefFullText|GoogleScholar60.MicalizziDS,MaheswaranS,HaberDA.AConduittoMetastasis:CirculatingTumorCellBiology.GenesDev(2017)31(18):1827–40.doi: 10.1101/gad.305805.117PubMedAbstract|CrossRefFullText|GoogleScholar61.PantelK,SpeicherMR.TheBiologyofCirculatingTumorCells.Oncogene(2016)35(10):1216–24.doi:10.1038/onc.2015.192PubMedAbstract|CrossRefFullText|GoogleScholar62.CraeneBD,BerxG.RegulatoryNetworksDefiningEMTDuringCancerInitiationandProgression.NatRevCancer(2013)13(2):97–110.doi: 10.1038/nrc3447PubMedAbstract|CrossRefFullText|GoogleScholar63.WinklerJ,Abisoye-OgunniyanA,MetcalfKJ,WerbZ.ConceptsofExtracellularMatrixRemodellinginTumourProgressionandMetastasis.NatCommun(2020)11(1):5120.doi: 10.1038/s41467-020-18794-xPubMedAbstract|CrossRefFullText|GoogleScholar64.FischerKR,DurransA,LeeS,ShengJ,LiF,WongST,etal.Epithelial-to-mesenchymalTransitionisNotRequiredforLungMetastasisButContributestoChemoresistance.Nature(2015)527(7579):472–6.doi: 10.1038/nature15748PubMedAbstract|CrossRefFullText|GoogleScholar65.ZhengX,CarstensJL,KimJ,ScheibleM,KayeJ,SugimotoH,etal.Epithelial-to-mesenchymalTransitionisDispensableforMetastasisButInducesChemoresistanceinPancreaticCancer.Nature(2015)527(7579):525–30.doi: 10.1038/nature16064PubMedAbstract|CrossRefFullText|GoogleScholar66.PadmanabanV,KrolI,SuhailY,SzczerbaBM,AcetoN,BaderJS,etal.E-cadherinisRequiredforMetastasisinMultipleModelsofBreastCancer.Nature(2019)573(7774):439–44.doi: 10.1038/s41586-019-1526-3PubMedAbstract|CrossRefFullText|GoogleScholar67.LecharpentierA,VielhP,Perez-MorenoP,PlanchardD,SoriaJC,FaraceF.DetectionofCirculatingTumourCellsWithaHybrid(Epithelial/Mesenchymal)PhenotypeinPatientsWithMetastaticnon-SmallCellLungCancer.BrJCancer(2011)105(9):1338–41.doi:10.1038/bjc.2011.405PubMedAbstract|CrossRefFullText|GoogleScholar68.JollyMK,SomarelliJA,ShethM,BiddleA,TripathiSC,ArmstrongAJ,etal.HybridEpithelial/MesenchymalPhenotypesPromoteMetastasisandTherapyResistanceAcrossCarcinomas.PharmacolTher(2019)194:161–84.doi: 10.1016/j.pharmthera.2018.09.007PubMedAbstract|CrossRefFullText|GoogleScholar69.HendrixMJ,SeftorEA,HessAR,SeftorRE.VasculogenicMimicryandTumour-CellPlasticity:LessonsFromMelanoma.NatRevCancer(2003)3(6):411–21.doi:10.1038/nrc1092PubMedAbstract|CrossRefFullText|GoogleScholar70.LuoQ,WangJ,ZhaoW,PengZ,LiuX,LiB,etal.VasculogenicMimicryinCarcinogenesisandClinicalApplications.JHematolOncol(2020)13(1):19.doi: 10.1186/s13045-020-00858-6PubMedAbstract|CrossRefFullText|GoogleScholar71.WilliamsonSC,MetcalfRL,TrapaniF,MohanS,AntonelloJ,AbbottB,etal.VasculogenicMimicryinSmallCellLungCancer.NatCommun(2016)7:13322.doi: 10.1038/ncomms13322PubMedAbstract|CrossRefFullText|GoogleScholar72.HongY,FangF,ZhangQ.CirculatingTumorCellClusters:WhatWeKnowandWhatWeExpect(Review).IntJOncol(2016)49(6):2206–16.doi: 10.3892/ijo.2016.3747PubMedAbstract|CrossRefFullText|GoogleScholar73.AcetoN,BardiaA,MiyamotoDT,DonaldsonMC,WittnerBS,SpencerJA,etal.CirculatingTumorCellClustersareOligoclonalPrecursorsofBreastCancerMetastasis.Cell(2014)158(5):1110–22.doi:10.1016/j.cell.2014.07.013PubMedAbstract|CrossRefFullText|GoogleScholar74.AcetoN.BringAlongYourFriends:HomotypicandHeterotypicCirculatingTumorCellClusteringtoAccelerateMetastasis.BioMedJ(2020)43(1):18–23.doi: 10.1016/j.bj.2019.11.002PubMedAbstract|CrossRefFullText|GoogleScholar75.TingDT,WittnerBS,LigorioM,VincentJordanN,ShahAM,MiyamotoDT,etal.Single-CellRNASequencingIdentifiesExtracellularMatrixGeneExpressionbyPancreaticCirculatingTumorCells.CellRep(2014)8(6):1905–18.doi: 10.1016/j.celrep.2014.08.029PubMedAbstract|CrossRefFullText|GoogleScholar76.ZhengY,MiyamotoDT,WittnerBS,SullivanJP,AcetoN,JordanNV,etal.Expressionofβ-GlobinbyCancerCellsPromotesCellSurvivalDuringBlood-BorneDissemination.NatCommun(2017)8:14344.doi: 10.1038/ncomms14344PubMedAbstract|CrossRefFullText|GoogleScholar77.ZhangL,RidgwayLD,WetzelMD,NgoJ,YinW,KumarD,etal.TheIdentificationandCharacterizationofBreastCancerCTCsCompetentforBrainMetastasis.SciTranslMed(2013)5(180):180ra148.doi: 10.1126/scitranslmed.3005109CrossRefFullText|GoogleScholar78.BaccelliI,SchneeweissA,RiethdorfS,StenzingerA,SchillertA,VogelV,etal.IdentificationofaPopulationofBloodCirculatingTumorCellsFromBreastCancerPatientsThatInitiatesMetastasisinaXenograftAssay.NatBiotechnol(2013)31(6):539–44.doi:10.1038/nbt.2576PubMedAbstract|CrossRefFullText|GoogleScholar79.ReymondN,d’ÁguaBB,RidleyAJ.CrossingtheEndothelialBarrierDuringMetastasis.NatRevCancer(2013)13(12):858–70.doi: 10.1038/nrc3628PubMedAbstract|CrossRefFullText|GoogleScholar80.EbrightRY,LeeS,WittnerBS,NiederhofferKL,NicholsonBT,BardiaA,etal.DeregulationofRibosomalProteinExpressionandTranslationPromotesBreastCancerMetastasis.Science(2020)367(6485):1468–73.doi: 10.1126/science.aay0939PubMedAbstract|CrossRefFullText|GoogleScholar81.BoralD,VishnoiM,LiuHN,YinW,SprouseML,ScamardoA,etal.MolecularCharacterizationofBreastCancerCTCsAssociatedWithBrainMetastasis.NatCommun(2017)8(1):196.doi: 10.1038/s41467-017-00196-1PubMedAbstract|CrossRefFullText|GoogleScholar82.WuZ,WeiD,GaoW,XuY,HuZ,MaZ,etal.Tpo-InducedMetabolicReprogrammingDrivesLiverMetastasisofColorectalCancerCD110+Tumor-InitiatingCells.CellStemCell(2015)17(1):47–59.doi: 10.1016/j.stem.2015.05.016PubMedAbstract|CrossRefFullText|GoogleScholar83.Aguirre-GhisoJA.Models,MechanismsandClinicalEvidenceforCancerDormancy.NatRevCancer(2007)7(11):834–46.doi: 10.1038/nrc2256PubMedAbstract|CrossRefFullText|GoogleScholar84.RöckenM.EarlyTumorDissemination,ButLateMetastasis:InsightsIntoTumorDormancy.JClinInvest(2010)120(6):1800–3.doi: 10.1172/jci43424PubMedAbstract|CrossRefFullText|GoogleScholar85.StoeckleinNH,HoschSB,BezlerM,SternF,HartmannCH,VayC,etal.DirectGeneticAnalysisofSingleDisseminatedCancerCellsforPredictionofOutcomeandTherapySelectioninEsophagealCancer.CancerCell(2008)13(5):441–53.doi: 10.1016/j.ccr.2008.04.005PubMedAbstract|CrossRefFullText|GoogleScholar86.Schmidt-KittlerO,RaggT,DaskalakisA,GranzowM,AhrA,BlankensteinTJ,etal.FromLatentDisseminatedCellstoOvertMetastasis:GeneticAnalysisofSystemicBreastCancerProgression.ProcNatlAcadSciUSA(2003)100(13):7737–42.doi: 10.1073/pnas.1331931100PubMedAbstract|CrossRefFullText|GoogleScholar87.WeckermannD,PolzerB,RaggT,BlanaA,SchlimokG,ArnholdtH,etal.PerioperativeActivationofDisseminatedTumorCellsinBoneMarrowofPatientsWithProstateCancer.JClinOncol(2009)27(10):1549–56.doi: 10.1200/jco.2008.17.0563PubMedAbstract|CrossRefFullText|GoogleScholar88.RissonE,NobreAR,Maguer-SattaV,Aguirre-GhisoJA.TheCurrentParadigmandChallengesAheadfortheDormancyofDisseminatedTumorCells.NatCancer(2020)1(7):672–80.doi: 10.1038/s43018-020-0088-5PubMedAbstract|CrossRefFullText|GoogleScholar89.DamenMPF,vanRheenenJ,ScheeleC.TargetingDormantTumorCellstoPreventCancerRecurrence.FEBSJ(2020).doi: 10.1111/febs.15626PubMedAbstract|CrossRefFullText|GoogleScholar90.VishnoiM,PeddibhotlaS,YinW,ScamardoA,T,GeorgeGC,HongDS,etal.TheIsolationandCharacterizationofCTCSubsetsRelatedtoBreastCancerDormancy.SciRep(2015)5:17533.doi: 10.1038/srep17533PubMedAbstract|CrossRefFullText|GoogleScholar91.BoralD,LiuHN,KenneySR,MarchettiD.MolecularInterplayBetweenDormantBoneMarrow-ResidentCells(Bmrcs)andCTCsinBreastCancer.Cancers(Basel)(2020)12(6):1626.doi: 10.3390/cancers12061626CrossRefFullText|GoogleScholar92.SpiliotakiM,MavroudisD,KapranouK,MarkomanolakiH,KallergiG,KoinisF,etal.EvaluationofProliferationandApoptosisMarkersinCirculatingTumorCellsofWomenWithEarlyBreastCancerWhoareCandidatesforTumorDormancy.BreastCancerRes(2014)16(6):485.doi: 10.1186/s13058-014-0485-8PubMedAbstract|CrossRefFullText|GoogleScholar93.HolmgrenL,O’ReillyMS,FolkmanJ.DormancyofMicrometastases:BalancedProliferationandApoptosisinthePresenceofAngiogenesisSuppression.NatMed(1995)1(2):149–53.doi: 10.1038/nm0295-149PubMedAbstract|CrossRefFullText|GoogleScholar94.MengS,TripathyD,FrenkelEP,SheteS,NaftalisEZ,HuthJF,etal.CirculatingTumorCellsinPatientsWithBreastCancerDormancy.ClinCancerRes(2004)10(24):8152–62.doi:10.1158/1078-0432.CCR-04-1110PubMedAbstract|CrossRefFullText|GoogleScholar95.BrownHK,Tellez-GabrielM,CartronPF,ValletteFM,HeymannMF,HeymannD.CharacterizationofCirculatingTumorCellsasaReflectionoftheTumorHeterogeneity:MythorReality?DrugDiscoveryToday(2019)24(3):763–72.doi: 10.1016/j.drudis.2018.11.017PubMedAbstract|CrossRefFullText|GoogleScholar96.BedardPL,HansenAR,RatainMJ,SiuLL.TumourHeterogeneityintheClinic.Nature(2013)501(7467):355–64.doi: 10.1038/nature12627PubMedAbstract|CrossRefFullText|GoogleScholar97.LucciA,HallCS,LodhiAK,BhattacharyyaA,AndersonAE,XiaoL,etal.CirculatingTumourCellsinnon-MetastaticBreastCancer:AProspectiveStudy.LancetOncol(2012)13(7):688–95.doi: 10.1016/s1470-2045(12)70209-7PubMedAbstract|CrossRefFullText|GoogleScholar98.TanakaF,YonedaK,KondoN,HashimotoM,TakuwaT,MatsumotoS,etal.CirculatingTumorCellasaDiagnosticMarkerinPrimaryLungCancer.ClinCancerRes(2009)15(22):6980–6.doi: 10.1158/1078-0432.Ccr-09-1095PubMedAbstract|CrossRefFullText|GoogleScholar99.MaestroLM,SastreJ,RafaelSB,VeganzonesSB,VidaurretaM,MartínM,etal.CirculatingTumorCellsinSolidTumorinMetastaticandLocalizedStages.AnticancerRes(2009)29(11):4839–43.PubMedAbstract|GoogleScholar100.SastreJ,MaestroML,PuenteJ,VeganzonesS,AlfonsoR,RafaelS,etal.CirculatingTumorCellsinColorectalCancer:CorrelationWithClinicalandPathologicalVariables.AnnOncol(2008)19(5):935–8.doi: 10.1093/annonc/mdm583PubMedAbstract|CrossRefFullText|GoogleScholar101.BauerECA,SchochterF,WidschwendterP,DeGregorioA,AndergassenU,FriedlTWP,etal.PrevalenceofCirculatingTumorCellsinEarlyBreastCancerPatients2and5 YearsAfterAdjuvantTreatment.BreastCancerResTreat(2018)171(3):571–80.doi: 10.1007/s10549-018-4856-1PubMedAbstract|CrossRefFullText|GoogleScholar102.TayRY,Fernández-GutiérrezF,FoyV,BurnsK,PierceJ,MorrisK,etal.PrognosticValueofCirculatingTumourCellsinLimited-StageSmall-CellLungCancer:AnalysisoftheConcurrentOnce-DailyVersusTwice-DailyRadiotherapy(CONVERT)RandomisedControlledTrial.AnnOncol(2019)30(7):1114–20.doi: 10.1093/annonc/mdz122PubMedAbstract|CrossRefFullText|GoogleScholar103.YatesDR,RouprêtM,DrouinSJ,ComperatE,RicciS,LacaveR,etal.QuantitativeRT-PCRAnalysisofPSAandProstate-SpecificMembraneAntigenmRNAtoDetectCirculatingTumorCellsImprovesRecurrence-FreeSurvivalNomogramPredictionAfterRadicalProstatectomy.Prostate(2012)72(12):1382–8.doi: 10.1002/pros.22488PubMedAbstract|CrossRefFullText|GoogleScholar104.BiancoFJJr,PowellIJ,CherML,WoodDPJr.PresenceofCirculatingProstateCancerCellsinAfricanAmericanMalesAdverselyAffectsSurvival.UrolOncol(2002)7(4):147–52.doi: 10.1016/s1078-1439(02)00179-5PubMedAbstract|CrossRefFullText|GoogleScholar105.MejeanA,VonaG,NalpasB,DamotteD,BrousseN,ChretienY,etal.DetectionofCirculatingProstateDerivedCellsinPatientsWithProstateAdenocarcinomaisanIndependentRiskFactorforTumorRecurrence.J Urol(2000)163(6):2022–9.doi:10.1016/S0022-5347(05)67621-5PubMedAbstract|CrossRefFullText|GoogleScholar106.EnnisRD,KatzAE,deVriesGM,HeitjanDF,O’TooleKM,RubinM,etal.DetectionofCirculatingProstateCarcinomaCellsViaanEnhancedReverseTranscriptase-PolymeraseChainReactionAssayinPatientsWithEarlyStageProstateCarcinoma.IndependenceOtherPretreatmentcharacterCancer(1997)79(12):2402–8.doi: 10.1002/(sici)1097-0142(19970615)79:12<2402::aid-cncr16>3.0.co;2-vCrossRefFullText|GoogleScholar107.OlssonCA,deVriesGM,RaffoAJ,BensonMC,O’TooleK,CaoY,etal.PreoperativeReverseTranscriptasePolymeraseChainReactionforProstateSpecificAntigenPredictsTreatmentFailureFollowingRadicalProstatectomy.JUrol(1996)155(5):1557–62.PubMedAbstract|GoogleScholar108.CrosbiePA,ShahR,KrysiakP,ZhouC,MorrisK,TugwoodJ,etal.CirculatingTumorCellsDetectedintheTumor-DrainingPulmonaryVeinareAssociatedWithDiseaseRecurrenceAfterSurgicalResectionofNSCLC.JThoracOncol(2016)11(10):1793–7.doi: 10.1016/j.jtho.2016.06.017PubMedAbstract|CrossRefFullText|GoogleScholar109.ReddyRM,MurlidharV,ZhaoL,GrabauskieneS,ZhangZ,RamnathN,etal.PulmonaryVenousBloodSamplingSignificantlyIncreasestheYieldofCirculatingTumorCellsinEarly-StageLungCancer.JThoracCardiovascSurg(2016)151(3):852–8.doi: 10.1016/j.jtcvs.2015.09.126PubMedAbstract|CrossRefFullText|GoogleScholar110.AbboshC,BirkbakNJ,WilsonGA,Jamal-HanjaniM,ConstantinT,SalariR,etal.PhylogeneticctDNAAnalysisDepictsEarly-StageLungCancerEvolution.Nature(2017)545(7655):446–51.doi: 10.1038/nature22364PubMedAbstract|CrossRefFullText|GoogleScholar111.PantelK,Alix-PanabièresC.LiquidBiopsyandMinimalResidualDisease-LatestAdvancesandImplicationsforCure.NatRevClinOncol(2019)16(7):409–24.doi: 10.1038/s41571-019-0187-3PubMedAbstract|CrossRefFullText|GoogleScholar112.KrebsMG,SloaneR,PriestL,LancashireL,HouJM,GreystokeA,etal.EvaluationandPrognosticSignificanceofCirculatingTumorCellsinPatientsWithnon-Small-CellLungCancer.JClinOncol(2011)29(12):1556–63.doi:10.1200/JCO.2010.28.7045PubMedAbstract|CrossRefFullText|GoogleScholar113.MurrayNP,AedoS,VillalonR,LópezMA,MinzerS,MuñozL,etal.EffectofFOLFOXonMinimalResidualDiseaseinStageIIIColonCancerandRiskofRelapse.Ecancermedicalscience(2019)13:935.doi: 10.3332/ecancer.2019.935PubMedAbstract|CrossRefFullText|GoogleScholar114.MurrayNP,AedoS,FuentealbaC,ReyesE,SalazarA,LopezMA,etal.SubtypesofMinimalResidualDisease,AssociationWithGleasonScore,RiskandTimetoBiochemicalFailureinpT2ProstateCancerTreatedWithRadicalProstatectomy.Ecancermedicalscience(2019)13:934.doi: 10.3332/ecancer.2019.934PubMedAbstract|CrossRefFullText|GoogleScholarKeywords:liquidbiopsy,CTCs,earlydissemination,metastasis,minimalresidualdiseaseCitation:ChemiF,MohanS,GuevaraT,ClipsonA,RothwellDGandDiveC(2021)EarlyDisseminationofCirculatingTumorCells:BiologicalandClinicalInsights.Front.Oncol.11:672195.doi:10.3389/fonc.2021.672195Received:25February2021;Accepted:07April2021;Published:07May2021.Editedby:AnnF.Chambers,WesternUniversity,CanadaReviewedby:RobertoPiñeiro,HealthResearchInstituteofSantiagodeCompostela,SpainEviLianidou,NationalandKapodistrianUniversityofAthens,GreeceCopyright©2021Chemi,Mohan,Guevara,Clipson,RothwellandDive.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)andthecopyrightowner(s)arecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.*Correspondence:FrancescaChemi,[email protected];CarolineDive,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1Frontiers | Early Dissemination of Circulating Tumor Cells
Circulating tumor cells (CTCs) play a causal role in the development of metastasis, the major cau...
- 2Cancer cell - Wikipedia
Cancer cells are cells that divide continually, forming solid tumors or flooding the blood with a...
- 3TUMOR CELL MORPHOLOGY - Comparative Oncology - NCBI
Morphological and functional characteristics of the malignant cell. Morphologically, the cancerou...
- 4Altered Tumor-Cell Glycosylation Promotes Metastasis
Finally, glycan changes associated with cancer progression profoundly define the phenotype of can...
- 5What Is Cancer? - NCI
Differences between Cancer Cells and Normal Cells