Altered Tumor-Cell Glycosylation Promotes Metastasis
文章推薦指數: 80 %
Finally, glycan changes associated with cancer progression profoundly define the phenotype of cancer cells depending on interactions with ... ThisarticleispartoftheResearchTopic GLYCOBIOLOGYOFCANCER:CURRENTSTATUSANDFUTUREDIRECTIONS Viewall 10 Articles Articles Abstract Introduction TheProcessofMetastasis GeneralMechanismsforAlteredGlycosylationinCancer AlterationsofCancer-AssociatedO-LinkedGlycans FormationofT,Tn,andsTnAntigensduringCancerProgression Siglecs TheRoleofSiglecsinCancerProgression SiglecsasTargetofCancerTherapy Galectins Galectin-1 Galectin-3 Selectins SelectinLigandExpressionCorrelateswithCancerProgression P-Selectin L-Selectin E-Selectin CarcinomaMucinsasInitiatorsofCancer-RelatedProthromboticActivity SelectinsShapetheMetastaticMicroenvironment ConclusionandPerspectives ConflictofInterestStatement Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.Oncol.,13February2014 |https://doi.org/10.3389/fonc.2014.00028 Alteredtumor-cellglycosylationpromotesmetastasis IrinaHäuselmannandLuborBorsig* ZürichCenterforIntegrativeHumanPhysiology,InstituteofPhysiology,UniversityofZürich,Zürich,Switzerland Malignanttransformationofcellsisassociatedwithaberrantglycosylationpresentedonthecell-surface.Commonlyobservedchangesinglycanstructuresduringmalignancyencompassaberrantexpressionandglycosylationofmucins;abnormalbranchingofN-glycans;andincreasedpresenceofsialicacidonproteinsandglycolipids.Accumulatingevidencesupportsthenotionthatthepresenceofcertainglycanstructurescorrelateswithcancerprogressionbyaffectingtumor-cellinvasiveness,abilitytodisseminatethroughthebloodcirculationandtometastasizeindistantorgans.Duringmetastasistumor-cell-derivedglycansenablebindingtocellsintheirmicroenvironmentincludingendotheliumandbloodconstituentsthroughglycan-bindingreceptors–lectins.Inthisreview,wewilldiscusscurrentconceptshowtumor-cell-derivedglycanscontributetometastasiswiththefocusonthreetypesoflectins:siglecs,galectins,andselectins.Siglecsarepresentonvirtuallyallhematopoieticcellsandusuallynegativelyregulateimmuneresponses.Galectinsaremostlyexpressedbytumorcellsandsupporttumor-cellsurvival.Selectinsarevascularadhesionreceptorsthatpromotetumor-celldissemination.Alllectinsfacilitateinteractionswithinthetumormicroenvironmentandtherebypromotecancerprogression.Theidentificationofmechanismshowtumorglycanscontributetometastasismayhelptoimprovediagnosis,prognosis,andaidtodevelopclinicalstrategiestopreventmetastasis. Introduction Themajorityofcancerdeathsareattributedtothemetastaticspreadofcancercellstovitalorgansratherthantotheprimarytumoroutgrowth.Duringmalignanttransformation,thegeneticalterationinthecellsresultsinmutationsofproto-oncogenesandtumorsuppressorgenes,whichasaresultgiverisetotumorcloneswithdifferentproperties(1).Malignantcellstherebyacquirecharacteristicsenablingthemdissociationfromtumors,degradationoftheextracellularmatrix,invasion,adhesion,andmetastasistodistantorgans.Alterationoftumor-cell-surfaceglycosylationisoneofthecharacteristictraitsassociatedwithenhancedmalignancy(2–4).Glycansareoligosaccharidestructuresthatarecovalentlyboundtoproteins,lipids,orpresentinafreeformintissuesortumors.GlycansareboundtotheproteineitherthroughAsn(N-linkedglycan)orthroughSerorThr(O-linkedglycan).Lectinsareafamilyofcarbohydrate-bindingproteinsthatspecificallyrecognizeglycans.Fundamentalprocessessuchascell–cellrecognition,celladhesion,mobility,andpathogen–hostinteractionarefacilitatedbylectinsinhealthyorganisms.Thecommonexpressionoflectinsonendothelialcells,immunecells,intheextracellularmatrixorassolubleadhesionmoleculesenablesthemtobindtotumor-cellglycansandtherebyaffecttumor-cellprogression(5).Subsequently,accumulatingevidencesupportstheinvolvementoftumor-cell-surfaceglycansintumor-cellmigration,adhesion,andmetastasis.Thisreviewaddressestheroleofcancer-associatedglycansduringmetastasiswiththefocusonendogenouslectininteractionswithinthetumormicroenvironment. TheProcessofMetastasis Hematogenousmetastasisisamultistepprocessduringwhichmalignantcellsdetachfromtheprimarytumors,degradetheextracellularmatrix,invadethesurroundingtissue,enterthebloodorlymphaticvessels,andextravasatetoformmetastaticlesions.Tumorcellsthroughthecell-surfaceglycanscanengagewithavarietyofendogenouslectinsbothattheprimarysiteofatumorandinthecirculation.Tumorcelluponreachingthebloodcirculationinducesmicrothrombi,theformationofwhichisfacilitatedbyplateletP-selectinbindingtotumor-cell-surfaceglycans(6,7).Tumor-cellemboliformationcontributestomechanicallodginginthemicrovasculatureand/oradhesiontotheendotheliumtherebypromotingtumor-cellextravasationandmetastasis(8).Thereisaccumulatingevidencethatvascularlectins–selectinsfacilitatetumor-cellinteractionswithallbloodconstituents,platelets,leukocytes,andendothelialcells,andtherebycontributetometastasis(3,9,10).Inaddition,recruitmentofimmunecellstothemetastaticmicroenvironmentisdependentonselectins(11–13). Specificglycanstructuresoncolonicepitheliumprovideimmune-modulatoryactivitytotissuemacrophagesthroughsialicacid-bindinglectins–siglecs(14,15).Inaddition,galactose-bindinglectins–galectinswereshowntobeinvolvedinimmune-suppressionandmetastasis(16).Consequently,alteredglycosylationmaybothinduceinflammatoryreactionsandpromoteimmune-suppression,however;itisdependentonthecellularcontextwithinthetissue.Finally,glycanchangesassociatedwithcancerprogressionprofoundlydefinethephenotypeofcancercellsdependingoninteractionswithendogenouslectinsbothintumorandmetastaticenvironments. GeneralMechanismsforAlteredGlycosylationinCancer Cancerprogressionrequiresarangeofalterationsinextracellularandintercellularsignalingthatpromotescellproliferation,emergenceofinvasivesubsets,dissociationfromthetumor,intravasation,andadhesiveinteractionswithinthecirculationthatfinallyfacilitatemetastasis.Withinthetumorenvironmentchangesinglycosylationallowmalignantcellstopromotecellmobility,celladhesion,andevenreceptoractivation,andtherebycontributingtotheinvasivephenotype(3–5).Malignanttransformationleadstoexpressionofoncofetalantigens,epitopesthatarepresentonembryonictissuesandtumorcells,butaregenerallyabsentinhealthyadultcells.Neo-synthesisandincompletesynthesisarethetwomajormechanismsforgenerationofcancer-specificglycans(2). AlteredglycosylationofN-linkedglycansincanceristypicallyassociatedwithenhancedβ1,6-branching(Table1)thatisfacilitatedbyβ1,6-N-acetylglucosaminyltransferase-5(GnT5)(17,18).IncreasedactivityofGnT5isassociatedwithincreasedpolylactosaminicsequences,andtheinhibitionofGnT5resultedinattenuationofmetastasis(19,20).GnT5deficiency(Mgat5-deficientmice)resultedinreducedtumorgrowthandmetastasis(21).However,thefunctionalroleofbranchedN-glycosylationincancerwaslatershowntobedependentongalectinbindingandtherebyalteringthephenotypeofthecell(22). TABLE1 Table1.Commonglycanalterationsoncarcinomacellsandtheireffectonlectinrecognition. Virtuallyineverycancertypeupregulationofglycosyltransferaseshasbeendetected,leadingtoexpressionofcommontumor-cellepitopessuchassialyl-Lewisxandsialyl-Lewisa(sLex/sLea),Thomsen-nouvelleantigen(Tn),andsialyl-Tn(sTn)(3–5,23,24).Hypoxiahasbeenidentifiedasoneofthefactorsleadingtoincreasedexpressionofglycosyltransferases(25,26).Forinstance,increasedexpressionofα1,3-fucosyltransferase-7(FUT7)andα2,3-sialyltransferaseST3Gal1,enzymesinvolvedinsynthesisofsLex/ahasbeendetected(27).Thegeneralincreaseinsialylationhasbeendetectedbothinclinicalsettingsandexperimentalmodelsthatisassociatedwithametastaticcellphenotype(25,28,29).Anincreaseinα2,6-sialylationintumorsisusuallyattributedtotheupregulationofST6Gal1sialyltransferasethatisprimarilyactiveonN-linkedglycans(30–32),orST6GalNAcfamilyofsialyltransferases,whichareactiveonO-linkedglycansorglycolipids(33).Accordingly,overexpressionofNeu1sialidaseincoloncancercellsledtoreducedlivermetastasisinmiceduetoincreaseddesialylationofβ4integrinwhereassilencingofNeu1sialidaseincreasedcellmigration,invasion,andadhesioninvitro(34). SynthesisofshorterglycanstructureslikeThomsen–Friedenreich(TForT),Tn,andsTnepitopeshasbeenobservedinanumberofcarcinomas(35–39).OneofthefactorsaffectingthesynthesisofincompleteglycanstructuresisthefrequentmutationoftheCosmcchaperonethatisrequiredforthegalactosyltransferaseactivitythatmodifiesO-linkedglycans(40).Anotherexampleofshortenedglycansynthesisisthereducedexpressionofdisialyl-Lewisa(di-sLea)andsialyl6-sulfoLewisxstructuresinepithelialcancer.Disialyl-Lewisx(di-sLex)structureissynthesizedwiththeα2,6-sialyltransferaseST6GalNAc6,anditsexpressionisdownregulatedbyepigeneticsilencinginmalignantepithelium(41,42).Similarly,repressedexpressionofsulfotransferaseresponsiblefor6-sulfoLexwasdetectedincancercellsbutnotinnormalepithelialcells(26). Gangliosidesaresialicacid-containingglycolipids,whichexpressionisoftendysregulatedduringmalignanttransformation(2).Apartfromglycolipidspecificglycanstructurescontainingdisialicacidinaα2,8-linkage(e.g.,GD3),changesinglycosyltransferasespromoteexpressionofsLexepitopes(43).OverexpressionofsialidaseNeu2ledtoreducedmetastasis,whileNeu2wasfoundtobedownregulatedinhighlymetastaticvariantsofcoloncarcinoma(44). Despitemanypossibilitiesfortheformationofglycans(linkageandsequenceofmonosaccharideunits)thereisarathersmallnumberofstructurescommonlydetectedincancer.Furthermore,terminalglycanstructuresexposedonthecellsurfacesoftumorcellscanberecognizedthroughendogenouslectinsandtherebymodulatecancerprogression. AlterationsofCancer-AssociatedO-LinkedGlycans MucinsarehighmolecularweightglycoproteinsexhibitingarodlikeconformationduetoheavyglycosylationwithO-linkedglycans(3,45).O-linkedglycosylation,whichisbasedonGalNAcboundtotheSer/Throfaprotein,isfurthermodifiedbygalactose(core1structure)orGlcNAc(core3structure)innormalmucins(Figure1).Duringmalignanttransformationmucinsofintestine,colon,liver,andpancreashavereducedcore1andcore3structuresthatcorrelatewithenhancedsialylationofTnandTantigens(24,46,47).Core3-derivedglycansareamajortypeexpressedbynormalepithelialcellsofthegastrointestinaltract,whicharedownregulatedduringmalignancyduetolossoffunctionalβ3-N-acetylglucosaminyltransferase-6(core3synthase)expression(48,49).Consequently,overexpressionofcore3synthaseinpancreaticcellswasassociatedwithdecreasedpresenceofTnantigensandresultedinareducedtumorigenicityandmetastasisuponorthotopicinjection.Inaddition,enhancedexpressionofthecore2β1,6-N-acetylglucosaminyltransferase(C2GnT1)responsibleforthecore2synthesiswasdetectedincolorectalandlungcarcinomas,whichcorrelatedwithhighlevelsofsLexonO-glycansandthereforestrongbindingtoE-selectinandmetastasiscomparedtonormaltissues(50–52).MucinsofnormalmammaryepithelialcellscontainamixtureofO-glycansandthemajorityiscore2-basedstructures(53,54).ReducedexpressionofC2GnT1inmammarycancerisassociatedwithenhancedpresenceofTnandsTn(53–56).However,despitereducedcore2structuresonbreastcancercells,increasedpresenceofsLexepitopeshasbeenobserved,whichlikelyisaresultofincreasedfucosylation(57). FIGURE1 Figure1.BiosynthesisofO-glycans.O-glycansynthesisisinitiatedbylinkingofGalNActotheproteinatSerorThrresidue.ThesimplestO-glycanTnantigencanbefurtherconvertedtocore1structure(Tantigen)byβ1,3galactoseextension;core3structurebyadditionofβ1,3-GlcNAc.Duringcancerincreasedexpression(greenarrow)ofsialyltransferaseswithconcomitantreducedexpression(redarrow)ofcore1GalTandcore3GlcNAcTleadstoincreasedformationofsialyl-Tnandsialyl-Tantigens.Core1structureisfurtherbranchedbyC2GnT1toformcore2thatcanbefurthermodifiedtopoly-N-acetyllactosaminestructurescarryingsialyl-Lewisx/a[modifiedfromRef.(23)]. FormationofT,Tn,andsTnAntigensduringCancerProgression Inhealthytissues,core1-basedTandTnepitopesarealmostabsenthowever;inabout90%ofallhumancarcinomastheseprecursorstructuresaredetected(36,39).UnsubstitutedTnepitopesoccurinhumancancersofcolon,breast,bladder,prostate,liver,ovary,andstomach;andtheirpresencecorrelatewithcancerprogressionandmetastasis(35–37,58–63).Similarly,sialylatedTandTnantigenscorrelatewithprogressionofepithelialcancerandpoorclinicalprognosisofmanycarcinomas(25,28,39,64–66).ST6GalNAc1-mediatedα2,6-linkedsialylationofGalNAcoftheprecursorTnantigenresultsinformationofthesTnantigen(25,67–69).ThesialylationsteppreventsfurtherglycanextensionandthereforeleadstotruncationofO-linkedglycans(47,70). SeveralmechanismshavebeendescribedtoenableincreasedTn,sTn,orTexpressionincancer(Table1)(33,46).(1)Decreasedactivityofcore2C2GnT1enzymeleadstoaccumulationofTantigen(describedabove)thatisfurthersialylatedbyST6GalNAc1andST6GalNAc2enzymes(71,72).(2)EnhancedavailabilityofthenucleotidesugarsubstrateUDP-galactoseappearstopromoteincreasedTantigenbiosynthesisthroughcore1β1,3-galactosyltransferase(73).ColoncancertissuesexpressedincreasedlevelsoftheUDP-Galactosetransporter,whichbringsthesugardonorintotheGolgiapparatuscomparedtonon-malignantmucosa.(3)Activityofβ1,3-galactosyltransferase(Tsynthase)requiresthepresenceofthemolecularchaperonproteinCosmc,whichisresponsibleforfoldingandstabilityoftheenzyme(40,74).TheabsenceofCosmcleadstoβ1,3-galactosyltransferasedegradation.MutationinCosmcchaperoneisassociatedwithincreasedTnexpressionincoloncarcinomaandmelanomacelllinesandalsoincreasedsTnexpression(40,75).Accordingly,down-regulationofT-synthaseresultedinamarkedincreaseofT,Tn,andparticularlysTnincoloncarcinomacells(76).(4)GenerationofsTnisfacilitatedbythesialyltransferaseST6GalNAc1andST6GalNAc2(71,72).HumangastriccancercellswithenhancedST6GalNAc1expressionshowedhigherintraperitonealmetastasiscomparedtosTn-negativetumorcells.Similarly,overexpressionofST6GalNAc1,therebysTnepitope,inhumanbreastcancercellsledtoincreasedtumorgrowthinimmunodeficientmice(68,77).Inaddition,enhancedsialylationofTantigeninbreastcancercorrelatedwithhigherlevelsofα2,3-sialyltransferase(ST3Gal1)(72,78).OverexpressionofST3Gal1underthehumanMUC1promoterinaspontaneousmurinebreastcancermodelresultedinsignificantlydecreasedtumorlatencycomparedtomicewithoutST3Gal1overexpression(79).Furthermore,thesialyltransferaseexpressionalonewasresponsibleforenhancedtumorigenesisindicatingthatthisenzymeperseactsasatumorpromoter(79). OnlyfewglycoproteinsareknowntopresentTn,T,orsTnandsialyl-T(sT)antigensinmalignanttissues(66).MucinMUC1andCD44v6displaysTnandsTantigensincolon,gastric,andbreastcancers(80–83).MUC2isamajorcarrierofshortenedglycansingastriccancer(84).EnhancedsTnexpressioninbreastandgastriccancerisassociatedwithoverexpressionofMUC1,CD44,andST6GalNAc1(68,77).AlthoughCD44v6isexpressedinsometypesofhealthyepithelia,higherexpressionisobservedinsquamouscellcarcinomasandadenocarcinomasincludingbreast,lung,colon,andpancreaticcarcinomas(85–87).Interestingly,serumlevelsofosteopontin,aCD44ligand,thatitselfisasTncarrier,havebeendetectedincancerpatientsandcorrelatewithpoorprognosis(87). TheenhancedexpressionofTn,sTn,andTantigensonMUC1,osteopontin,andCD44isassociatedwithhighmetastaticpotentialandpoorprognosis(84,88,89).However,thereislittleevidenceforthefunctionalconsequenceofthisaberrantglycosylationduringcancerprogression.Inhumanbreastcancercells,expressionofsTnonMUC1wasassociatedwithreducedcelladhesionandincreasedcellmigration(77).Inaddition,β1integrinscarryaberrantformsofO-glycansthatisassociatedwithmetastasis(90).EnhancedexpressionofST6GalNAc1inmurinecarcinomacellsledtoanincreaseinsTnexpressiononβ1integrinsubunitassociatedwithmorphologicalchangesincludinglossofepithelialappearance,disorganizationofactinstressfibers,andreducedabilitytomigrateonfibronectin.ArecentstudyshowedthathighexpressionoftheppGalNAcT13,whichinitiatesO-glycansynthesisbyaddingthefirstGalNActoSer/Thr,inducedhighmetastaticpotentialofLewislungcarcinomabygeneratingtrimericTnantigens(GalNAc1-Ser/Thr)3onsyndecan1(91).ThecomplexformationoftrimericTnantigensonSyndecan1togetherwithα5β1integrinandMMP-9resultedinenhancedinvasionandmetastasis.Recentfindingsprovideevidencethatcell-surfacemucinsareinvolvedinsignaltransductionevents[reviewedinRef.(24,45)].DecreasedsTnexpressiononneuroblastomaachievedbyextensionofcore1structurewithB3GNT3expressionreducedactivationoffocaladhesionkinaseandtherebypartiallysuppressedmalignantphenotype(92).Aberrantglycosylationincancerdoesnotaffectonlythetumor-cellphenotypebehavior(e.g.,proliferation,differentiation,andadhesion),butalsocontributetothecontrolofthelocalmicroenvironment,immuneresponses,andmetastasis.Therefore,theseglycansserveasligandsforcellsinthetumormicroenvironmentthroughendogenouslectins. Siglecs Sialicacid-bindingimmunoglobulinsuperfamilylectins(siglecs)arethelargestfamilyofsialic-acid-bindingmolecules(93–95).Siglecsareexpressedonspecificsubpopulationsofhematopoieticcellswheretheyexerttheirimmune-regulatoryfunction.Manysiglecscontainintracellulartyrosinemotifs,whichincludeoneormoremembrane-proximalimmunoreceptortyrosine-basedinhibitorymotif(ITIM)andamembrane-distalITIM-likemotif(93,94).Thesemotifsareinvolvedininhibitorysignaltransduction.Basedonbothsequencesimilarityandconservationbetweenmammalianspeciessiglecsaredividedintwomajorsubgroups.ThefirstgroupcomprisesSiglec-1(sialoadhesin,CD169),Siglec-2(CD22),Siglec-4(myeloid-associatedglycoprotein),andSiglec-15.ThesecondsubfamilyofCD33/Siglec-3relatedsiglecsconsistsof10humanmembers(Siglec-3,-5,-6,-7,-8,-9,-10,-11,-14,and-16)and5rodentmembers(Siglec-3,-E,-F,-G,and-H)(93,95).Thefirstsubgroupwithitsevolutionaryconservedmembershasrestrictedexpressionpatterns.ForinstanceSiglec-1isspecificallyexpressedonmacrophages,Siglec-2onB-cellsandSiglec-4onoligodendrocytesandSchwanncellsinthenervoussystem(96).Ontheotherhand,CD33-relatedsiglecsdisplayamoredivergentexpressionpatterndependentondevelopmentalstageofimmunecells(93,95).Thehighsialicacidconcentrationonthecell-surfaceofsiglec-expressingcellsoftenleadstobindingtothecellglycans(incis)oradjacentcells(intrans).Siglecscanbeaffectedbyvariousstimuliincludingcytokines,toll-likereceptoractivation,andviralandbacterialinfections,thebiologyofsiglecsisthereforerathercomplex(96).Thebindingspecificityofsiglecsdependsonthedistincttypes,linkages(α2,3,α2,6,andα2,8),arrangementsofsialicacids,theirwayofpresentationondifferentcells,organs,andorganisms.Siglecbindingtoligandsmodulatescell–cellinteractions,cellproliferation,celldeath,andendocytosis(96–99). TheRoleofSiglecsinCancerProgression Accumulatingevidenceindicatesthattheinteractionbetweentumor-specificglycansandlectinsonimmunecellsareinvolvedinmodulationofthetumormicroenvironment(100).Theinhibitorynatureofsiglecuponbindingofspecificglycanmayleadtodampeningofimmuneresponsesandtherebyescapeofimmunesurveillanceandclearance.Whethersiglecscontributetocancerprogressionthroughrecognitionofdistinctcancer-specificglycanstructuresiscurrentlyunderinvestigation.Non-malignantcolonepithelialcellsexpressdi-sLeaepitopesthatserveasligandsforbothSiglec-7and-9(15).Theexpressionofsiglecligandswasdecreaseduponmalignanttransformation,whichwasassociatedwithenhancedexpressionofsLexandsLeaepitopes(26).ExpressionofST6GalNAc6,whichsynthesizesdi-sLeainhumancoloncancercellsresultedinincreaseddi-sLea,lossofsLeaepitopes,andincreasedbindingtoSiglec-7(41).MainlyresidentmacrophageswerefoundtocarrySiglec-7and-9inacoloniclaminapropriaandSiglec-7/9ligationcouldsuppressmacrophage-mediatedcyclooxygenase-2(COX2)andprostaglandinE2expressionandtherebypreventinflammatorydamageofthecolonicmucosa(15).Siglec-15,whichpreferentiallyrecognizessTnantigen,isexpressedintumor-associatedmacrophages(TAMs)invarioushumancarcinomatissuesincludinglung,liver,andrectum(101).BindingofmyeloidcellsthroughSiglec-15tosTnontumorcellsresultedinincreasedTGF-βsecretionintothetumormicroenvironmentthatisassociatedwithcancerprogression.Interestingly,Siglec-15expressionwasinducedbyM-CSF,whichusuallypolarizesmacrophagestoM2phenotypecommonlydetectedinthetumormicroenvironment. Siglec-1isexpressedinasubsetofmacrophagesthatareinvolvedinthepathophysiologyofcancer(102).ClinicalobservationshowedthatincreasedSiglec-1ispresentinsplenicmarginalcelllymphomaaswellasinmacrophageinfiltratesofMUC1-positivebreastcancers(103,104).Siglec-1positivemacrophageswerefoundtoinfiltrateintoratxenografttumorsinaCCL2-dependentmanner(105).Oncontrary,recentstudydemonstratedthatSiglec-1positivemacrophagesinregionallymphnodesofcolorectalcarcinomapatientspromoteCD8+T-cellmediatedanti-tumorimmunityandareassociatedwithabetterprognosisforthesepatients(106). Siglec-9,asurfacereceptoronNKcells,B-cells,andmonocytes,hasbeenidentifiedasareceptorformucinMUC16(14).Cell-surfaceboundaswellassolubleMUC16isoverexpressedinhumanovariantumorcellsanddetectedinperitonealfluidofcancerpatients(107).EngagementofSiglec-9onmonocytesalsoinducedsecretionofimmunosuppressivecytokineIL-10(108).Similarimmune-suppressionmediatedbySiglec-7onNKcellswasobservedinrenalcellcarcinomaexpressingdisialosylglobopentaosylceramide(DSGb5)asamajorganglioside(109).RecentstudyfromC.Bertozzigroupprovidedstrongevidencethatsiglec-7-mediatedcytotoxicityofNKcellscanbemodulatedbythealterationofglycansoncellsurfaces(110).Presentationofsialylatedligandsontumorcellsrecognizedbysiglec-7resultedinenhancedphosphorylationofcytoplasmictyrosineresidues,causingdampeningofcytolyticactivity. TheassociationbetweenSiglec-9positiveimmunecellsandMUC1-positivetumorcellshasbeendetectedintissuesofhumancolon,pancreas,andbreastcancer.Interestingly,Siglec-9bindingtoMUC1expressingtumorcellswasshowntoinducerecruitmentofβ-cateninintumorcellsresultinginpromotionofcellgrowthinvitro(111).ThesefindingssuggestthatSiglec-9engagementofcarcinomamucinMUC1maybeinvolvedintumorgrowth,however;thenatureofSiglec-9ligandsaswellasthecellularcontextinvivoremainstobedefined. Takentogether,thecurrentevidenceislargelybasedonclinicalcorrelationofcancer–glycanexpressionandseveralexperimentsshowingSiglec-cancer–glycaninteractioninvitro.Whethertheseinteractionsindeedfunctionallymodulateimmunecellresponsesinthetumormicroenvironmentandtherebyaffectcancerprogressioninvivorequiresexperimentalvalidation. SiglecsasTargetofCancerTherapy TheidentificationofSiglec-2andSiglec-3asmarkersofacutemyeloidleukemia(AML)andB-celllymphomasraisedinterestinpotentialimmunotherapy(112–114).Anti-Siglec-2andsiglec-3specificantibodieswereconjugatedwithvarietyoftoxinsandsuchimmunotoxinshavebeentargetedinseveralautoimmunediseasesandhematologicalmalignancies[reviewedinRef.(93,94,115)].Inthemajorityofacutelymphoblasticleukemias(ALL)Siglec-2(CD22)wasidentifiedasausefultargetforcell-depletiontherapy(116).InotuzumabozogamicinisanimmunotoxincomprisedofahumanizedIgG4monoclonalantibodycovalentlylinkedtocalecheamicin(CMC-544).CMC-544wasactiveagainstB-celltumorsinpreclinicalmodelsandhasbeenevaluatedinphaseIstudyforpatientswithB-celllineageALL(117).Inotuzumabozogamicinusedasasingletherapyinpatientswithrefractory-relapsedALLshowedpositiveresults. Theimmunotoxingemetuzumabozogamicin(OG,Mylotarg;Wyeth,Madison,NJ,USA),whichconsistsofahumanizedanti-CD33(siglec-3)murineantibodylinkedtocalicheamicin,wasapprovedbytheFDAfortreatmentofCD33+AMLpatients.BindingandendocytosisoftheconjugateresultedintheintracellularreleaseofthetoxincausingcelldeathofCD33+cells(94,115).Howeverthedrugisoffthemarketsince2010becausethekeyphaseIIItrial(SouthWestOncologyGroupStudyS0106)inwhichGOwascombinedwithinductionchemotherapyfailedtoimprovedisease-freesurvivalandcausedhigherfatalinductiontoxicityratecomparedtochemotherapyalone(118).RecentstudiesusinglowerorfractionateddoseofGOsuggestthatGOmaystillimprovesurvivalofdistinctsubsetsofAMLpatients,particularlypatientswithfavorablecytogenetics(119).NewapproacheswithhumanizedCD33antibodyconjugatedtosyntheticDNAcross-linkingpyrrolobenzodiazepine(SGN-CD33A)havebeendevelopedandrevealedpromisingeffectivenessinanimalmodels(120).SGN-CD33AisnowcurrentlybeingtestedinaphaseItrial(ClinicalTrials.gov:NCT01902329). Galectins Incontrasttosiglecsandselectins,whicharemostlycell-surface-boundreceptors,galectinsaresolubleimmunomodulatorylectins(121).Galectinsbindtogalactosethatiseitherβ1,3-orβ1,4-linkedtoN-acetylglucosamine,acommondisaccharidefoundbothonN-andO-linkedglycansandglycolipids.Galectinsactbothintracellularlybymodulatingsignalingpathwaysandextracellularlyasregulatoryreceptors(100).Uptodatethegalectinfamilyconsistsof15members,whichareclassifiedintothreegroupsbasedonstructuraldifferences:prototypegalectins(Galectin-1,-2,-5,-7,-10,-11,-13,-14,and-15)havingonecarbohydraterecognitiondomain(CRD),tandemrepeat-typegalectins(Galectin-4,-6,-8,-9,and-12)havingtwoCRDs,andthesinglememberGalectin-3,whichhasoneCRDconnectedtoanon-lectinN-terminalregionresponsibleforoligomerization(100).Galectinsareexpressedbyvariouscelltypesincludingepithelialandimmunecells,buttheirexpressionisalteredduringprogressionofcolon,breast,lung,pancreatic,headandneck,andcervicalcancers(16,122).Manystudiesindicatethatcancer-associatedgalectinscouldregulatecancercellproliferation,signaling,adhesion,invasion,andmetastasis(122–124).Galectin-1andGalectin-3weremostintensivelystudiedincontextofcancer. Galectin-1 Accumulatingevidenceindicatethattumor-derivedGalectin-1contributestoimmunosuppressiveactivityindifferenttumors,includinglungandpancreaticcarcinoma,melanoma,andneuroblastoma(16,125–127).IthasbeenshownthatGalectin-1bindingtoT-cellsthroughN-andO-linkedglycansonCD43orCD45mucinsinducesapoptosisofactivatedT-cells(128,129).Galectin-1expressionbymelanomacellsinducedapoptosisoftumor-specificeffectorT-cells,andGalectin-1inhibitionallowedgenerationofatumor-specificT1response(126).Modificationofcell-surfaceglycosylationaffectsglycanpatternonT-cellsandtherebychangesGalectin-1binding.Enhancedexpressionofα2,6-sialyltransferase-1(ST6Gal1)selectivelymodifiedN-glycansonCD45andtherebyinhibitedGalectin-1binding(130).HowGalectin-1contributestoimmune-suppressionintumorshasbeendelineatedinlungcancer(131).HighexpressionofGalectin-1inlungcancercelllines,aswellasinhumantumortissues,altersthephenotypeofmonocyte-deriveddendriticcellsandimpairsT-cellresponse,concomitantwithincreasedpresenceofregulatoryT-cells(Tregs).TheregulatoryeffectofGalectin-1ismediatedbyincreasedexpressionofIL-10inmonocytestherebyinducingaTh2-dominantcytokineprofile.TheenhancedinfiltrationofCD11c+dendriticcellsinhumanlungcancersampleshasbeenrecapitulatedinamousemodel,whichwascompletelyomittedaftertransplantationofGalectin-1silencedtumorcells.Inanotherstudy,theamountofGalectin-1positivecellscorrelatedwiththetumorgradeinhumanbreastcancer(132).SilencingofGalectin-1inametastaticmurinemammarytumorledtoareductionoftumorgrowthandlungmetastasiswithaconcomitantreductionininfiltratingregulatoryT-cells. ExperimentalevidencealsosuggeststhatGalectin-1expressedonvarioustumor-celltypesincludinghepatocellularcarcinoma,melanoma,ovarian,andprostatecancercellsmediatestumor-celladhesiontotheextracellularmatrix(133,134).Inaddition,Galectin-1mediatedattachmentofcancercellstotheextracellularmatrixandendothelialcellsthroughbindingtoCD44andCD326onmurinebreastandcoloncancercells(16).Galectin-1mightalsobeinvolvedinformationofplatelet-cancercellcomplexessinceitwasshowntoactivateplatelets(135).Murinebreast,colon,andLewislungcancercellswithsilencedGalectin-1showeddecreasedlungmetastasis,whichwasassociatedwithincreasedT-cellnumbersandreducedangiogenesis(16,125).Takentogether,tumor-derivedGalectin-1exertsitsimmunosuppressivefunctionthroughbindingtoendogenous(non-tumor-derived)glycansandtherebycontributestocancerprogression. Galectin-3 Thereisaccumulatingevidencethatthecancer-associatedT,Tn,andsTnstructurespromotemetastasisthroughbindingtoGalectin-3.Galectin-3expressionisalsoincreasedinpatientseraofseveralcancertypesandassociatedwithincreasedriskofmetastasis(136,137).Forinstance,Tantigenexpressionbybreastandprostatecancercellsfacilitatedinteractionswithcancer-associatedGalectin-3orwithendothelialassociatedGalectin-3(66,138–140).Theseinteractionsleadtohomotypicaggregationofcancercells,whichprotectscancercellsfromapoptosisinducedbythelackofadhesiontotheextracellularmatrix(139).Inaddition,cancercell-associatedTantigenscaninduceGalectin-3expressionontheendothelium,whichenabledcancer-endotheliumadhesion(140).Anotherstudyhasshownthatlysosomal-associatedmembraneprotein-1(LAMP-1)onhighlymetastaticmelanomacellscarriesN-acetyllactosaminylstructures,whicharerecognizedbyGalectin-3onlungendothelialcellssuggestingthatlungendothelialgalectin-3canserveasanchorforLAMP-1expressingtumorcellsinthecirculation(141). Acharacteristicfeatureofgalectinsistheinductionofcomplexformationbycross-linkingglycoproteins,whichcanformmultimers“lattice”microdomain(121).ComplexN-glycansareformedbyGnT5modificationofN-glycansthataretheligandsforGalectin-3(142).ExpressionofGnT5haslongbeenimplicatedintumorprogressionandmetastasis(17).Inparticular,theabsenceofGnT5delayedtumorformationandsuppressedmetastasis(21).Accordingly,up-regulatedGnT5expressionhasbeenobservedinvarioushumancancers(18,143);andtheectopicexpressionoftheGnT-Vinmultipleepithelialcellsresultedinincreasedcellmotility,tumorformation,andenhancedmetastasis(144,145).Furthermore,GnT5-dependentmodificationsoftyrosinekinasereceptorssuchasEGF,TGF-β,IGFR,andPDGFenhancedaffinitytogalectin-3andtherebyprolongedtheircell-surfaceexpression(22,146).Galectin-3-inducedlatticeformationpreventedthesurfaceclearanceofreceptorsbyclathrin-dependentendocytosisandenabledinteractionwithinhibitorycaveolin-1domains. BranchedO-glycanswithpoly-N-acetyllactosaminestructuresarerecognizedbyGalectin-3(147).InC2GnT1-expressingbladdertumorcellscore2O-glycanspresentonMHCclassI-relatedchainAareboundtoGalectin-3thatreducedtheaffinityfortheactivatingNKcellreceptorsNKG2D,therebyimpairingNKcellfunctionandanti-tumoractivity. RecentfindingssuggestthatGalectin-3alsoregulatesdynamicsofN-cadherinandthelipidraftmarkergangliosideGM1(148).AccumulationofN-cadherinandGM1atcell–celljunctionsdestabilizedcell–celljunctionsandtherebypromotedtumor-cellmigration.N-glycansonα5β1integrinareimportantfortheirproperbindingtofibronectin(149,150).IncreasedGnT5mediatedβ1,6-branchingreducescell-surfaceclusteringofα5β1integrin,specificallyoftheβ1subunit,resultinginalessadhesivephenotypeduetoreducedadhesiontofibronectinandmodulatesfibronectinmatrixremodelingintumors(20,151).Thus,Galectin-3latticeformationprovidesanothermechanismhowalteredglycosylationcontributestothemalignantandinvasivephenotypeoftumorcells(148). Selectins SelectinsarevascularcelladhesionmoleculesthatbelongtoafamilyofC-typelectins,whichfacilitatetheinitialattachmentofleukocytestotheendotheliumduringtheprocessofleukocyteextravasation.TheselectinfamilyconsistsofL-,E-,andP-selectin,whichsharearound50%sequencehomologyintheirC-typelectindomain(152).L-selectin(LECAM-1andCD62L)isconstitutivelyexpressedonalmostallhematopoieticcelltypesincludingmyeloidcells,naïve,andsomeactivatedmemoryT-cells(152)andenablesadhesionofleukocytestotheactivatedendotheliumorinhighendothelialvenulesoftheperipherallymphnodes(153,154).E-selectin(ELAM-1andCD62E)isexclusivelydisplayedonendothelialcells,whichrequiresdenovoexpressioninresponsetoinflammatorystimulisuchasTNF-αandIl-1β.However,skinandpartsofthebonemarrowmicrovasculaturehavebeenshowntoconstitutivelyexpresscertainE-selectinlevels(155).Oncontrary,P-selectin(PADGEMandCD62P)isstoredinalpha-granulesofplateletsaswellasinWeibel–Palladebodiesofendothelialcellsandcanberapidlymobilizedtothecell-surfaceuponactivationofplateletsortheendothelia.E-andP-selectinbindtoligandsonmyeloidcells(156),certaintypesoflymphocytes(152)butalsotoseveraltypesoftumorcells(157–159).Selectinsarethemost-studiedlectinsincancerbiology,whichpromotecell–cellinteractionwithtumorcellsandtheirmicroenvironment(9).Allthreeselectinshavebeenshowntocontributetotumordisseminationandspecificallyfacilitateprocesseswhenthetumorcellsareinthecirculation. SelectinLigandExpressionCorrelateswithCancerProgression ThereiscompellingclinicalandexperimentalevidencethatoverexpressionoftetrasaccharidessLexandsLeacorrelateswithpoorprognosisduetoenhancedmetastaticphenotypeinanumberofcancertypes,includingcolon,gastric,prostate,renal,pancreatic,andlungcancer(89,160–165).EnhancedexpressionofsLex/aoncancercellscorrelatedwithincreasedabilitytoadheretoE-selectinortotheactivatedendothelialcellsandstromalcellsinvitro(157,166–168).Furthermore,highcell-surfaceexpressionlevelsofsLexwerelinkedtoenhancedmetastaticactivityinvariousexperimentalmetastasismodelsusinghumancarcinomacellscomparedtolowerorminimalsLexexpression(169–171). TheminimalrecognitionmotifforallthreeselectinsaretetrasaccharidessLex/a(Figure2)(172).SLexareterminalstructuresofN-orO-linkedglycansattachedtoglycoproteinsandglycolipidsdisplayedbymostcirculatingleukocytesandendothelialcellswhereassLeaisdetectedonsomeepithelialcellsbutmostlyonvarioustumorcells(3,4,173).ThefourglycosyltransferasesN-acetylglucosaminyltransferase,β1,4-galactosyltransferase,α2,3-sialyltransferase,andα1,3-fucosyltransferase-7areresponsibleforsynthesisofsialyl-Lewisa/xstructuresoncellsofthehematopoieticsystem(172,174).Efficientselectinbindingtocarbohydratesusuallyrequiresaglycoproteinscaffoldthatfacilitatesthepresentationofselectinligandsinclusters(175).OneofthebestcharacterizedligandsforallthreeselectinsistheP-selectinglycoproteinligand-1(PSGL-1),whichisconcentratedonthetipsofmicrovillionleukocytesurface(176).TothemostcommonmucinscarryingselectinligandsthatareassociatedwithcancerprogressionbelongMUC1,MUC2,MUC4,andMUC16(35,45,177,178).Apartfrommucins,severalotherselectinligandcarriersontumorcellshavebeenidentifiedthatincludesCD24,CD44,death-receptor3,E-selectinligand-1,PSGL-1,andpodocalyxin-likeproteinandthislistisbyfarnotcomplete(179–183).Severaloftheseligandsarealsoexpressedontumorcellsandareassociatedwithcancerprogression.Forinstance,CD44glycoproteinsexistinseveralisoformsandareexpressedonepithelialandendothelialcellsaswellasonmultiplecancercelltypessuchasgastric,colorectal,pancreatic,andlungcancer(184–186).TheaberrantexpressionofCD44incolorectalcarcinomacellscorrelatedwithincreasedmetastaticpotentialinvivo(187,188).Basedonflow-basedadhesionassaysinvitro,CD44vonhumancoloncarcinomacellsbindstoP-,E-,andL-selectin(189,190).Themajorityofselectinligandsarepresentedonmucins,buttheycanbefoundequallyfunctionalalsoonN-linkedglycansorglycolipids.Finally,P-andL-selectinsalsobindtoheparin,heparansulfate,andsulfatedglycolipids,whichalsoindicatescertainflexibilityinligandrecognition(9,175).Inaddition,chondroitinsulfateglycosaminoglycans(CS-GAGs)onbreastcancercellswereidentifiedtoserveasaP-selectinligandthatisassociatedwithbreastcancermetastasis(191).Despitethelargevarietyofglycans,tumorcellsexpresssialylatedandfucosylatedmolecules,mostlyonmucinswhicharealsorecognizedbyselectins(158,159,167,192,193). FIGURE2 Figure2.FormationofLewisantigens.TerminalGlcNAcresidues,particularlyoncore2structures,arefurtherextendedbyadditionofβ1,4galactose,forLewisxepitope,andβ1,3galactose,forLewisaepitope.Thisisfurtherfollowedbytheadditionofα2,3-linkedsialicacidtoGalbyST3Galenzymesandfinalizedbytheadditionofα1,3-linkedfucoseforsLexandα1,4-linkedfucoseforthesLeaantigen.FUT3finalizedthesynthesisofLeaantigen,whileFUT6andFUT7wereshowntofinalizeLexepitopes. IncreasedexpressionofsLex/aintumorcellshasbeenattributedtoelevatedlevelsofα1,3-fucosyltransferase-7(FUT7),whichhasalsobeenshowntocorrespondwithincreasedmalignancyinlungcancerpatients(161).Inaddition,overexpressionofα1,3-fucosyltransferase-3and-6inmetastaticprostatecancercellscorrelatedwithhighersLexlevelsandmoremetastasisthatwasdependentonE-selectin-mediatedrecruitmenttodistantsites(169,194).GenesencodingforFUT3,FUT4,andST3GAL6enzymesthatareinvolvedinsLexsynthesisweresignificantlyincreasedinbreastcancersandcorrelatedwithmetastasistothebonewheresLexreceptorE-selectinisconstitutivelyexpressed(195).InflammatorycytokinesmightalsobeinvolvedinsLexproduction.TNF-αenhancedmotilityandinvasionpropertiesofprostaticcancercellswereassociatedwithselectiveupregulationofgenesrelatedtosLexsynthesis(196).StudiesanalyzingprostateandpancreaticcancercellhomingintoboneshowedthatE-selectin-mediatedadhesionisdependentonenhancedα1,3-fucosyltransferase,FUT3,FUT6,andFUT7activity(197,198).Consequently,down-regulationofα1,3-fucosyltransferaseactivitydramaticallyreducedprostatecancerincidence.However,thereisalsothepossibilitythatselectin-mediatedactivationofeithertumorcellsorthetumormicroenvironmentfurtherpromoteinflammationthatisahallmarkofcancerprogression. P-Selectin Theassociationbetweencirculatingcancercells,platelets,andformationoftumormicroemboliiswidelyaccepted(199–202).Manystudiesshowedthatplateletsenhancehematogenousdissemination,intravasculartumor-cellsurvival,andmetastasis(203–206).However,themajormechanismofplatelet-adhesiontotumorcellshasbeenfoundtobemediatedbyplateletP-selectin(6).Platelet-tumorcellinteractionsweresignificantlyreducedinP-selectindeficientmice,andconsequentlyattenuationofmetastasiswasobserved.EnzymaticremovalofcarcinomamucinscarryingselectinligandsfromtumorcellspriortotailveininjectionresultedinattenuatedmetastasiscomparabletotheabsenceofP-selectin(158,203).Inaddition,endothelialP-selectin-mediatedinteractionsalsocontributedtometastasisindicatingthatbothplateletandendothelialP-selectinpromoteearlyeventsduringtissuescolonization(11,207).AnotherstudyshowsthatplateletspromotelungmetastasisofB16F1melanomaand4T1.2breastcancercells(208).PlateletdepletionresultedinasignificantreductionoflungmetastasiswhencomparedtoNKcelldepletedanimals,indicatinganadditionalpro-metastaticfunctionofplatelets.Thesefindingsareinagreementwithadirecteffectofplatelet–tumor-cellinteractionsthatpromotesthemetastaticbehavioroftumorcells(209).Takentogether,P-selectin-mediatedinteractionssignificantlycontributetotheearlystepsofmetastasiswhentumorcellsareincirculation. L-Selectin L-selectinbindstoavarietyoftumorcellsandcontributestometastasis(167,210).IntravenousinjectionofhumanandmurinetumorcellsinL-selectindeficientmiceresultedinreducedrecruitmentofleukocytesandsubsequentlyattenuatedmetastasisthatconfirmedtheactiveroleofL-selectin-mediatedinteractioninthisprocess(11,13).MetastasiswasfurtherattenuatedinP-andL-selectindoubledeficientmiceprovidingevidencethatbothselectinssynergisticallycontributetometastasis(11).Inaddition,theenhancedexpressionofselectinligandsaroundthemetastatictumorcellswasdetectedwithL-selectinchimera,whichcorrelatedwiththerecruitmentofleukocytes(13).ThesefindingsindicatedthatL-selectiniseitherresponsibleforrecruitmentofleukocytesortheirinteractionswithinthemetastaticmicroenvironment.Enhancedpresenceofinflammatorycells,primarilymyeloid-derivedcells,inthetumormicroenvironmentisusuallyassociatedwithtumorgrowthandmetastaticdissemination(211,212).Thus,L-selectinrepresentsapotentialfacilitatorofmyeloidcellrecruitmenttometastaticsitesandtherebypromotesearlystepsofmetastasis,e.g.,tumor-cellextravasation(13,213).Duringinflammation,leukocyteinteractionwiththeendotheliumresultsininducedvascularpermeability.However,whetherL-selectinpromotesmetastasisthroughadirectengagementwithselectinligandsontumorcellsorrathermimicsinflammatory-likereactionaccompanyingtheprocessoftumor-cellseedingindistantorgansremainstobedetermined. E-Selectin E-selectinhasbeenthefirstselectinintensivelystudiedincontextofmetastasis(9,10).TheoriginalhypothesiswasthatE-selectinmediatesmetastaticdisseminationtodistantorgansthroughbindingtoligandsontumorcells,similarlytoleukocyteadhesionduringinflammation(3).Numerousstudiesprovidedevidencethattumorcellsexpressingselectinligandsadheretoactivatedendotheliumunderflowconditioninvitro(157,168,181).WhiledifferentE-selectinligandswerelinkedtoenhancedmetastasis,themajorityofthembelongtothemucintypemolecules.Despitetheobservationofincreasedprimarytumorgrowthinselectindeficientmice,whichseemstobelinkedtoreducedanti-tumorigenicinfiltrationofimmunecells(214),thereisaccumulatingevidencethatE-selectinpromotescancermetastasisinanimalmodels.EnhancedE-selectinexpressionwasobservedintheliverduringmetastaticcolonizationandthedown-regulationofE-selectinresultedinattenuationofmetastasis(215,216).MetastasiswasredirectedtotheE-selectinoverexpressingliverusingexperimentallungmetastasismodel,whichprovideddirectevidenceforinvolvementofE-selectininfacilitationoftumor-cellseeding(217).Accordingly,experimentallivermetastasisofhumancoloncarcinomacellswasalsoE-selectin-dependent(218).However,experimentallungmetastasisofhumancolonadenocarcinomacellsremainedunchangedinE-selectindeficientmice(219).Oncontrary,spontaneousmetastasisofhumanbreastcancercellstothelungswassignificantlyattenuatedinE-selectin-deficientmice(220).Interestingly,Hiratsukaetal.showedthatfactorssecretedfromprimarytumorscanactivateendothelialfocaladhesionkinaseandE-selectinexpressioninthelungvasculatureandtherebyinducetheformationofpermissiblesitesformetastasis(221).Enhancedhomingofmetastatictumorcellstothesesiteswasobservedandwasassociatedwithmetastasis.Theseobservationsindicatethatprimarytumorscanactivelyformadistantmetastaticnicheandupregulateexpressionofcelladhesionmoleculesinvolvedintumorcell-endothelialinteractions.Inconclusion,thereisconvincingevidencethatendothelialE-selectinfacilitatesmetastasisbyenablingtumor-celladhesiontovasculature.Nevertheless,theexactmechanismofE-selectinfacilitationofmetastasisremainstobedefined. CarcinomaMucinsasInitiatorsofCancer-RelatedProthromboticActivity Alteredcancerglycosylationisnotreflectedonlyoncell-surfacemolecules,butaberrantlyglycosylatedproteinsaredetectedinthecirculation(26).Antibodiesraisedagainsttumorcells,wereshowntospecificallyrecognizeglycanstructures,e.g.,sLea,whicharecurrentlyusedforcancerdiagnostics(45).Thepresenceofcarcinomamucins(e.g.,CA-125,CA19-9),whicharesheddedfromtumors,areroutinelyusedasserumtumormarkersindiagnosisofcancer.Besides,efficientbindingofrecombinantsolubleselectintocarcinomamucinshasbeenobserved(158,222).Increasedthromboembolismisarecognizedcomplicationinvariouscarcinomas,particularlymucinouscarcinomas,however;thereareseveralpathologicmechanismslikelytobeinvolved(7).Idiopathicthromboembolism,whichisfrequentlyassociatedwithoccultcarcinomas,belongstotheTrousseausyndrome.Recentstudiesprovidedevidencethatintravenousinjectionofcarcinomamucinscarryingselectinligandsintomiceresultedingenerationofplatelet-richmicrothrombi(222).ThispathologywasmarkedlydiminishedinP-selectinorL-selectindeficientmice.Interestingly,carcinomamucinscouldnotactivateplateletsandtherebycouldnotgeneratemicrothrombiinmicelackingPSGL-1(223).CarcinomamucinsinitiatedthrombosisonlyinthepresenceofplateletsthatinducedreleaseofcathepsinGfromneutrophilsthroughaselectin-dependent,reciprocalactivationofneutrophilsandplatelets.Takentogether,carcinomamucinscarryingselectinligandsinbloodcirculationmayserveasinitiatorsofthrombiformationobservedincancerpatients. SelectinsShapetheMetastaticMicroenvironment Thereisaccumulatingevidencethatselectinsfacilitateheterotypicinteractionsbetweentumorcellsandbloodcomponents,includingtheendotheliumandtherebypromotetumor-cellseeding,survivalandextravasation(8,9,224).Whencirculatingtumorcellsarrestinthemicrovasculatureofdistantorgans,earlyonmarkersofendothelialcellactivationandinflammation,includingE-selectin,wereupregulatedinexperimentallungandlivermetastasismodels(219,225–228).EnhancedE-selectinexpressionwasdetectedalsointhemetastaticlungsusingaspontaneousmetastaticmodelwithLewislungcarcinoma(219,221).Consequently,inhibitionofendothelialactivationand/orE-selectinfunctionattenuatedmetastasis(227,229).Endothelialactivationcausedbyfactorsderivedfromprimarytumororfromarrestedtumorsinthevasculaturepromotedselectin-mediatedinteractionsandformationofapermissivemicroenvironmentwithinthevasculaturepriortotumor-cellextravasation(11,13,213).Tumor-cellglycan-inducedandP-selectin-dependentendothelialactivationresultedinenhancedexpressionofE-selectinandvascularcelladhesionmolecule1(VCAM-1)andpromotedlungcolonizationandmetastasis(213).Inaddition,elevatedproductionofchemokineCCL5contributedtotherecruitmentofmonocytes.Accordingly,endothelialVCAM-1expressionwasinducedbytumor-cellembolusthatresultedinincreasedrecruitmentofmyeloidcellssupportingmetastasis(225).Recruitmentofinflammatorycells,especiallymyeloid-derivedcells,isstronglyassociatedwithenhancedmetastaticcolonizationthatisatleastpartiallydependentonL-selectin(12,13,213,230–232).Takentogether,theselectin-mediatedinteractionsplayacriticalroleduringtheestablishmentofmetastasisthatisco-initiatedbyaberrantglycansontumorcellsincirculation.Whethertumorglycansonlyinitiatetheinflammatory-likecascadeleadingtometastasisorhavefurtherfunctioninshapingthisprocessremainstobedefined. ConclusionandPerspectives Cancer-associatedaberrantglycosylationhasbeenidentifiedinvirtuallyeverytypeofcancer.Expressionofcancer-specificglycanepitopesrepresentsagreatopportunitytoexplorethemfordiagnosticsandpotentiallyspecifictargetingoftumors.Consideringthatgenesonlyindirectlyregulateglycanformation,itisstillpuzzlingthatglycanepitopeshavebeenconsistentlyvalidatedascancermarkers.Basedonthebroadexpressionandhighspecificityforcancertissues,Tantigeniscurrentlyexploredasapotentialtargetforthedevelopmentofcancerdiagnosticsandimmunotherapeutics(16,233).SincetheexpressionofsTnantigensonthemajorityoftumorscorrelatedwithpoorprognosis,thesTnantigenhasbecomeatargetforcancervaccine(58,61).AdministrationofsTndisaccharideconjugatetohighlyimmunogenicproteininducedantibodiesagainstsTnandshowedprotectiveeffectsinamousemodelofbreastcancer(234).AlthougharandomizedphaseIIIclinicaltrialusingthesamesTnvaccinedidnotimproveoverallsurvival,patientswithhightiteragainstthesTnhadsignificantlyprolongedoverallsurvival(235). Theaccumulatingknowledgeaboutthefunctionoflectin–tumor-cellglycaninteractionsincancerwillopenwaysfornewapproachestointerferewithcancerprogression.However,theexploitationofsuchtherapeuticopportunitiesrequiresacomprehensiveknowledgeabouttheunderlyingmechanismsoflectin-mediatedinteractions.Nevertheless,theroleofselectinsincancerprogressionhasbeenextensivelyinvestigatedinnumberofpreclinicalmodelsandthemechanismatleastpartiallycharacterized(9).Clearly,furtherstudiesintheexactmechanismofactionarestillrequired,butselectininhibitionincancerhasbeeninadvertentlyclinicallytestedincancerpatientstreatedwithantithrombotictherapies(236).UnfractionatedheparinaswellaslowmolecularweightheparinhasastrongP-andL-selectininhibitoryactivityatclinicallyrelevantconcentrations.Retrospectiveanalysisofclinicalstudiesrevealedthatapartfromantithromboticactivity,heparinimprovedsurvivalofcancerpatientsespeciallyinpatientswithearlystagedisease.Still,prospectiveandwell-designedclinicalstudyremainstobeperformed.Similarly,developmentofhighlyspecificligandprobesforsiglecs(e.g.,Siglec-2)revealedtheabilitytotargetsiglec-expressingcells(94).Furtherinvestigationsarerequiredfordecidingwhetherglycan-specifictargetingoflectinsinvolvedincancermodulation(e.g.,siglec,selectins,orgalectins)orratherdevelopmentofglycan-specifictargetingoftumorcellsrepresentstherightapproachforthetreatmentofcancer.Thecell-surfacepresentationofuniqueglycanepitopesmakestheman“ideal”candidatefortargetingsincetheyarebothspecificandtherapeuticallyaccessible.Futurestudiesneedtovalidatethetherapeuticpotentialinclinicallyrelevantexperimentalmodelspriortoclinicalevaluation. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments ThisworkwassupportedbyagrantfromSwissNationalFoundation#31003A-133025toLuborBorsig. References 1.HanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration.Cell(2011)144:646–74.doi:10.1016/j.cell.2011.02.013 CrossRefFullText 2.HakomoriS.Aberrantglycosylationincancercellmembranesasfocusedonglycolipids:overviewandperspectives.CancerRes(1985)45:2405–14. 3.KannagiR.Carbohydrate-mediatedcelladhesioninvolvedinhematogenousmetastasisofcancer.GlycoconjJ(1997)14:577–84.doi:10.1023/A:1018532409041 PubmedAbstract|PubmedFullText|CrossRefFullText 4.KimYJ,VarkiA.Perspectivesonthesignificanceofalteredglycosylationofglycoproteinsincancer.GlycoconjJ(1997)14:569–76.doi:10.1023/A:1018580324971 CrossRefFullText 5.FusterMM,EskoJD.Thesweetandsourofcancer:glycansasnoveltherapeutictargets.NatRevCancer(2005)5:526–42.doi:10.1038/nrc1649 PubmedAbstract|PubmedFullText|CrossRefFullText 6.KimYJ,BorsigL,VarkiNM,VarkiA.P-selectindeficiencyattenuatestumorgrowthandmetastasis.ProcNatlAcadSciUSA(1998)95:9325–30.doi:10.1073/pnas.95.16.9325 PubmedAbstract|PubmedFullText|CrossRefFullText 7.VarkiA.Trousseau’ssyndrome:multipledefinitionsandmultiplemechanisms.Blood(2007)110:1723–9.doi:10.1182/blood-2006-10-053736 PubmedAbstract|PubmedFullText|CrossRefFullText 8.LabelleM,HynesRO.Theinitialhoursofmetastasis:theimportanceofcooperativehost-tumorcellinteractionsduringhematogenousdissemination.CancerDiscov(2012)2:1091–9.doi:10.1158/2159-8290.CD-12-0329 PubmedAbstract|PubmedFullText|CrossRefFullText 9.LäubliH,BorsigL.Selectinspromotetumormetastasis.SeminCancerBiol(2010)20:169–77.doi:10.1016/j.semcancer.2010.04.005 CrossRefFullText 10.WitzIP.Theselectin-selectinligandaxisintumorprogression.CancerMetastasisRev(2008)27:19–30.doi:10.1007/s10555-007-9101-z PubmedAbstract|PubmedFullText|CrossRefFullText 11.BorsigL,WongR,HynesRO,VarkiNM,VarkiA.SynergisticeffectsofL-andP-selectininfacilitatingtumormetastasiscaninvolvenon-mucinligandsandimplicateleukocytesasenhancersofmetastasis.ProcNatlAcadSciUSA(2002)99:2193–8.doi:10.1073/pnas.261704098 PubmedAbstract|PubmedFullText|CrossRefFullText 12.HoosA,ProtsyukD,BorsigL.MetastaticgrowthprogressioncausedbyPSGL-1-mediatedrecruitmentofmonocytestometastaticsites.CancerRes(2014)74:695–704.doi:10.1158/0008-5472.CAN-13-0946 CrossRefFullText 13.LäubliH,StevensonJL,VarkiA,VarkiNM,BorsigL.L-selectinfacilitationofmetastasisinvolvestemporalinductionoffut7-dependentligandsatsitesoftumorcellarrest.CancerRes(2006)66:1536–42.doi:10.1158/0008-5472.CAN-05-3121 PubmedAbstract|PubmedFullText|CrossRefFullText 14.BelisleJA,HoribataS,JenniferGA,PetrieS,KapurA,AndreS,etal.IdentificationofSiglec-9asthereceptorforMUC16onhumanNKcells,Bcells,andmonocytes.MolCancer(2010)9:118.doi:10.1186/1476-4598-9-118 PubmedAbstract|PubmedFullText|CrossRefFullText 15.MiyazakiK,SakumaK,KawamuraYI,IzawaM,OhmoriK,MitsukiM,etal.Colonicepithelialcellsexpressspecificligandsformucosalmacrophageimmunosuppressivereceptorssiglec-7and-9.JImmunol(2012)188:4690–700.doi:10.4049/jimmunol.1100605 PubmedAbstract|PubmedFullText|CrossRefFullText 16.ItoK,StannardK,GabuteroE,ClarkAM,NeoSY,OnturkS,etal.Galectin-1asapotenttargetforcancertherapy:roleinthetumormicroenvironment.CancerMetastasisRev(2012)31:763–78.doi:10.1007/s10555-012-9388-2 PubmedAbstract|PubmedFullText|CrossRefFullText 17.DennisJW,LaferteS,WaghorneC,BreitmanML,KerbelRS.Beta1-6branchingofAsn-linkedoligosaccharidesisdirectlyassociatedwithmetastasis.Science(1987)236:582–5.doi:10.1126/science.2953071 PubmedAbstract|PubmedFullText|CrossRefFullText 18.LauKS,DennisJW.N-Glycansincancerprogression.Glycobiology(2008)18:750–60.doi:10.1093/glycob/cwn071 CrossRefFullText 19.GuoHB,RandolphM,PierceM.InhibitionofaspecificN-glycosylationactivityresultsinattenuationofbreastcarcinomacellinvasiveness-relatedphenotypes:inhibitionofepidermalgrowthfactor-induceddephosphorylationoffocaladhesionkinase.JBiolChem(2007)282:22150–62.doi:10.1074/jbc.M611518200 PubmedAbstract|PubmedFullText|CrossRefFullText 20.LaganaA,GoetzJG,CheungP,RazA,DennisJW,NabiIR.GalectinbindingtoMgat5-modifiedN-glycansregulatesfibronectinmatrixremodelingintumorcells.MolCellBiol(2006)26:3181–93.doi:10.1128/MCB.26.8.3181-3193.2006 PubmedAbstract|PubmedFullText|CrossRefFullText 21.GranovskyM,FataJ,PawlingJ,MullerWJ,KhokhaR,DennisJW.SuppressionoftumorgrowthandmetastasisinMgat5-deficientmice.NatMed(2000)6:306–12.doi:10.1038/73163 PubmedAbstract|PubmedFullText|CrossRefFullText 22.PartridgeEA,LeRoyC,DiGuglielmoGM,PawlingJ,CheungP,GranovskyM,etal.RegulationofcytokinereceptorsbyGolgiN-glycanprocessingandendocytosis.Science(2004)306:120–4.doi:10.1126/science.1102109 PubmedAbstract|PubmedFullText|CrossRefFullText 23.BorsigL.Glycansincancer.In:PavaoMS,editor.BiologyofExtracellularMatrix.GlycansinDiseaseandTherapeutics.Berlin:SpringerVerlag(2011).p.63–81. 24.KaurS,KumarS,MomiN,SassonAR,BatraSK.Mucinsinpancreaticcanceranditsmicroenvironment.NatRevGastroenterolHepatol(2013)10:607–20.doi:10.1038/nrgastro.2013.120 PubmedAbstract|PubmedFullText|CrossRefFullText 25.Dall’OlioF,MalagoliniN,TrincheraM,ChiricoloM.Mechanismsofcancer-associatedglycosylationchanges.FrontBiosci(LandmarkEd)(2012)17:670–99.doi:10.2741/3951 PubmedAbstract|PubmedFullText|CrossRefFullText 26.KannagiR,SakumaK,MiyazakiK,LimKT,YusaA,YinJ,etal.Alteredexpressionofglycangenesincancersinducedbyepigeneticsilencingandtumorhypoxia:cluesintheongoingsearchfornewtumormarkers.CancerSci(2010)101:586–93.doi:10.1111/j.1349-7006.2009.01455.x PubmedAbstract|PubmedFullText|CrossRefFullText 27.KoikeT,KimuraN,MiyazakiK,YabutaT,KumamotoK,TakenoshitaS,etal.Hypoxiainducesadhesionmoleculesoncancercells:amissinglinkbetweenWarburgeffectandinductionofselectin-ligandcarbohydrates.ProcNatlAcadSciUSA(2004)101:8132–7.doi:10.1073/pnas.0402088101 PubmedAbstract|PubmedFullText|CrossRefFullText 28.SchultzMJ,SwindallAF,BellisSL.Regulationofthemetastaticcellphenotypebysialylatedglycans.CancerMetastasisRev(2012)31:501–18.doi:10.1007/s10555-012-9359-7 PubmedAbstract|PubmedFullText|CrossRefFullText 29.VarkiNM,VarkiA.Diversityincellsurfacesialicacidpresentations:implicationsforbiologyanddisease.LabInvest(2007)87:851–7.doi:10.1038/labinvest.3700656 PubmedAbstract|PubmedFullText|CrossRefFullText 30.Dall’OlioF,MalagoliniN,diStefanoG,MinniF,MarranoD,Serafini-CessiF.IncreasedCMP-NeuAc:Galbeta1,4GlcNAc-Ralpha2,6sialyltransferaseactivityinhumancolorectalcancertissues.IntJCancer(1989)44:434–9.doi:10.1002/ijc.2910440309 PubmedAbstract|PubmedFullText|CrossRefFullText 31.GessnerP,RiedlS,QuentmaierA,KemmnerW.EnhancedactivityofCMP-neuAc:Galbeta1-4GlcNAc:alpha2,6-sialyltransferaseinmetastasizinghumancolorectaltumortissueandserumoftumorpatients.CancerLett(1993)75:143–9.doi:10.1016/0304-3835(93)90056-F PubmedAbstract|PubmedFullText|CrossRefFullText 32.SealesEC,JuradoGA,BrunsonBA,WakefieldJK,FrostAR,BellisSL.Hypersialylationofbeta1integrins,observedincolonadenocarcinoma,maycontributetocancerprogressionbyup-regulatingcellmotility.CancerRes(2005)65:4645–52.doi:10.1158/0008-5472.CAN-04-3117 PubmedAbstract|PubmedFullText|CrossRefFullText 33.MarcosNT,BennettEP,GomesJ,MagalhaesA,GomesC,DavidL,etal.ST6GalNAc-Icontrolsexpressionofsialyl-Tnantigeningastrointestinaltissues.FrontBiosci(EliteEd)(2011)3:1443–55. PubmedAbstract|PubmedFullText 34.UemuraT,ShiozakiK,YamaguchiK,MiyazakiS,SatomiS,KatoK,etal.ContributionofsialidaseNEU1tosuppressionofmetastasisofhumancoloncancercellsthroughdesialylationofintegrinbeta4.Oncogene(2009)28:1218–29.doi:10.1038/onc.2008.471 PubmedAbstract|PubmedFullText|CrossRefFullText 35.BaldusSE,MonigSP,HanischFG,ZirbesTK,FluckeU,OelertS,etal.ComparativeevaluationoftheprognosticvalueofMUC1,MUC2,sialyl-Lewis(a)andsialyl-Lewis(x)antigensincolorectaladenocarcinoma.Histopathology(2002)40:440–9.doi:10.1046/j.1365-2559.2002.01389.x PubmedAbstract|PubmedFullText|CrossRefFullText 36.CampbellBJ,FinnieIA,HounsellEF,RhodesJM.DirectdemonstrationofincreasedexpressionofThomsen-Friedenreich(TF)antigenincolonicadenocarcinomaandulcerativecolitismucinanditsconcealmentinnormalmucin.JClinInvest(1995)95:571–6.doi:10.1172/JCI117700 PubmedAbstract|PubmedFullText|CrossRefFullText 37.KumarSR,SauterER,QuinnTP,DeutscherSL.Thomsen-FriedenreichandTnantigensinnipplefluid:carbohydratebiomarkersforbreastcancerdetection.ClinCancerRes(2005)11:6868–71.doi:10.1158/1078-0432.CCR-05-0146 PubmedAbstract|PubmedFullText|CrossRefFullText 38.SotozonoMA,OkadaY,TsujiT.TheThomsen-Friedenreichantigen-relatedcarbohydrateantigensinhumangastricintestinalmetaplasiaandcancer.JHistochemCytochem(1994)42:1575–84.doi:10.1177/42.12.7527063 PubmedAbstract|PubmedFullText|CrossRefFullText 39.SpringerGF.TandTn,generalcarcinomaautoantigens.Science(1984)224:1198–206.doi:10.1126/science.6729450 PubmedAbstract|PubmedFullText|CrossRefFullText 40.JuT,LanneauGS,GautamT,WangY,XiaB,StowellSR,etal.HumantumorantigensTnandsialylTnarisefrommutationsinCosmc.CancerRes(2008)68:1636–46.doi:10.1158/0008-5472.CAN-07-2345 PubmedAbstract|PubmedFullText|CrossRefFullText 41.MiyazakiK,OhmoriK,IzawaM,KoikeT,KumamotoK,FurukawaK,etal.LossofdisialylLewis(a),theligandforlymphocyteinhibitoryreceptorsialicacid-bindingimmunoglobulin-likelectin-7(Siglec-7)associatedwithincreasedsialylLewis(a)expressiononhumancoloncancers.CancerRes(2004)64:4498–505.doi:10.1158/0008-5472.CAN-03-3614 PubmedAbstract|PubmedFullText|CrossRefFullText 42.TsuchidaA,OkajimaT,FurukawaK,AndoT,IshidaH,YoshidaA,etal.SynthesisofdisialylLewisa(Le(a))structureincoloncancercelllinesbyasialyltransferase,ST6GalNAcVI,responsibleforthesynthesisofalpha-seriesgangliosides.JBiolChem(2003)278:22787–94.doi:10.1074/jbc.M211034200 PubmedAbstract|PubmedFullText|CrossRefFullText 43.NudelmanE,FukushiY,LeverySB,HiguchiT,HakomoriS.Novelfucolipidsofhumanadenocarcinoma:disialosylLeaantigen(III4FucIII6NeuAcIV3NeuAcLc4)ofhumancolonicadenocarcinomaandthemonoclonalantibody(FH7)definingthisstructure.JBiolChem(1986)261:5487–95. PubmedAbstract|PubmedFullText 44.SawadaM,MoriyaS,SaitoS,ShinehaR,SatomiS,YamoriT,etal.Reducedsialidaseexpressioninhighlymetastaticvariantsofmousecolonadenocarcinoma26andretardationoftheirmetastaticabilitybysialidaseoverexpression.IntJCancer(2002)97:180–5.doi:10.1002/ijc.1598 PubmedAbstract|PubmedFullText|CrossRefFullText 45.HollingsworthMA,SwansonBJ.Mucinsincancer:protectionandcontrolofthecellsurface.NatRevCancer(2004)4:45–60.doi:10.1038/nrc1251 CrossRefFullText 46.BrockhausenI.Mucin-typeO-glycansinhumancolonandbreastcancer:glycodynamicsandfunctions.EMBORep(2006)7:599–604.doi:10.1038/sj.embor.7400705 PubmedAbstract|PubmedFullText|CrossRefFullText 47.Taylor-PapadimitriouJ,BurchellJ,MilesDW,DalzielM.MUC1andcancer.BiochimBiophysActa(1999)1455:301–13.doi:10.1016/S0925-4439(99)00055-1 CrossRefFullText 48.IwaiT,KudoT,KawamotoR,KubotaT,TogayachiA,HirumaT,etal.Core3synthaseisdown-regulatedincoloncarcinomaandprofoundlysuppressesthemetastaticpotentialofcarcinomacells.ProcNatlAcadSciUSA(2005)102:4572–7.doi:10.1073/pnas.0407983102 PubmedAbstract|PubmedFullText|CrossRefFullText 49.RadhakrishnanP,GrandgenettPM,MohrAM,BuntSK,YuF,ChowdhuryS,etal.Expressionofcore3synthaseinhumanpancreaticcancercellssuppressestumorgrowthandmetastasis.IntJCancer(2013)133:2824–33.doi:10.1002/ijc.28322 PubmedAbstract|PubmedFullText|CrossRefFullText 50.MachidaE,NakayamaJ,AmanoJ,FukudaM.Clinicopathologicalsignificanceofcore2beta1,6-N-acetylglucosaminyltransferasemessengerRNAexpressedinthepulmonaryadenocarcinomadeterminedbyinsituhybridization.CancerRes(2001)61:2226–31. PubmedAbstract|PubmedFullText 51.ShimodairaK,NakayamaJ,NakamuraN,HasebeO,KatsuyamaT,FukudaM.Carcinoma-associatedexpressionofcore2beta-1,6-N-acetylglucosaminyltransferasegeneinhumancolorectalcancer:roleofO-glycansintumorprogression.CancerRes(1997)57:5201–6. PubmedAbstract|PubmedFullText 52.StHillCA,FarooquiM,MitcheltreeG,GulbahceHE,JessurunJ,CaoQ,etal.ThehighaffinityselectinglycanligandC2-O-sLexandmRNAtranscriptsofthecore2beta-1,6-N-acetylglucosaminyltransferase(C2GnT1)genearehighlyexpressedinhumancolorectaladenocarcinomas.BMCCancer(2009)9:79.doi:10.1186/1471-2407-9-79 PubmedAbstract|PubmedFullText|CrossRefFullText 53.BrockhausenI,YangJM,BurchellJ,WhitehouseC,Taylor-PapadimitriouJ.MechanismsunderlyingaberrantglycosylationofMUC1mucininbreastcancercells.EurJBiochem(1995)233:607–17.doi:10.1111/j.1432-1033.1995.607_2.x PubmedAbstract|PubmedFullText|CrossRefFullText 54.BurchellJM,MungulA,Taylor-PapadimitriouJ.O-linkedglycosylationinthemammarygland:changesthatoccurduringmalignancy.JMammaryGlandBiolNeoplasia(2001)6:355–64.doi:10.1023/A:1011331809881 PubmedAbstract|PubmedFullText|CrossRefFullText 55.DalzielM,WhitehouseC,McFarlaneI,BrockhausenI,GschmeissnerS,SchwientekT,etal.TherelativeactivitiesoftheC2GnT1andST3Gal-IglycosyltransferasesdetermineO-glycanstructureandexpressionofatumor-associatedepitopeonMUC1.JBiolChem(2001)276:11007–15.doi:10.1074/jbc.M006523200 PubmedAbstract|PubmedFullText|CrossRefFullText 56.SolatyckaA,OwczarekT,PillerF,PillerV,PulaB,WojciechL,etal.MUC1inhumanandmurinemammarycarcinomacellsdecreasestheexpressionofcore2beta1,6-N-acetylglucosaminyltransferaseandbeta-galactosidealpha2,3-sialyltransferase.Glycobiology(2012)22:1042–54.doi:10.1093/glycob/cws075 PubmedAbstract|PubmedFullText|CrossRefFullText 57.MatsuuraN,NaritaT,HiraiwaN,HiraiwaM,MuraiH,IwaseT,etal.Geneexpressionoffucosyl-andsialyl-transferaseswhichsynthesizesialylLewisx,thecarbohydrateligandsforE-selectin,inhumanbreastcancer.IntJOncol(1998)12:1157–64. PubmedAbstract|PubmedFullText 58.CaoY,StosiekP,SpringerGF,KarstenU.Thomsen-Friedenreich-relatedcarbohydrateantigensinnormaladulthumantissues:asystematicandcomparativestudy.HistochemCellBiol(1996)106:197–207.doi:10.1007/BF02484401 PubmedAbstract|PubmedFullText|CrossRefFullText 59.CoonJS,WeinsteinRS,SummersJL.BloodgroupprecursorT-antigenexpressioninhumanurinarybladdercarcinoma.AmJClinPathol(1982)77:692–9. PubmedAbstract|PubmedFullText 60.GhazizadehM,OguroT,SasakiY,AiharaK,ArakiT,SpringerGF.ImmunohistochemicalandultrastructurallocalizationofTantigeninovariantumors.AmJClinPathol(1990)93:315–21. PubmedAbstract|PubmedFullText 61.ItzkowitzSH,YuanM,MontgomeryCK,KjeldsenT,TakahashiHK,BigbeeWL,etal.ExpressionofTn,sialosyl-Tn,andTantigensinhumancoloncancer.CancerRes(1989)49:197–204. PubmedAbstract|PubmedFullText 62.LimasC,LangeP.T-antigeninnormalandneoplasticurothelium.Cancer(1986)58:1236–45.doi:10.1002/1097-0142(19860915)58:6<1236::AID-CNCR2820580611>3.0.CO;2-I PubmedAbstract|PubmedFullText|CrossRefFullText 63.ZhangS,ZhangHS,Cordon-CardoC,ReuterVE,SinghalAK,LloydKO,etal.Selectionoftumorantigensastargetsforimmuneattackusingimmunohistochemistry:II.Bloodgroup-relatedantigens.IntJCancer(1997)73:50–6.doi:10.1002/(SICI)1097-0215(19970926)73:1<42::AID-IJC8>3.0.CO;2-1 PubmedAbstract|PubmedFullText|CrossRefFullText 64.DavidsonB,GotliebWH,Ben-BaruchG,KopolovicJ,GoldbergI,NeslandJM,etal.Expressionofcarbohydrateantigensinadvanced-stageovariancarcinomasandtheirmetastases-Aclinicopathologicstudy.GynecolOncol(2000)77:35–43.doi:10.1006/gyno.1999.5708 PubmedAbstract|PubmedFullText|CrossRefFullText 65.DevinePL,McKenzieIF.Mucins:structure,function,andassociationswithmalignancy.Bioessays(1992)14:619–25.doi:10.1002/bies.950140909 PubmedAbstract|PubmedFullText|CrossRefFullText 66.YuLG.TheoncofetalThomsen-Friedenreichcarbohydrateantigenincancerprogression.GlycoconjJ(2007)24:411–20.doi:10.1007/s10719-007-9034-3 PubmedAbstract|PubmedFullText|CrossRefFullText 67.JulienS,Krzewinski-RecchiMA,Harduin-LepersA,GouyerV,HuetG,LeBourhisX,etal.Expressionofsialyl-TnantigeninbreastcancercellstransfectedwiththehumanCMP-Neu5Ac:GalNAcalpha2,6-sialyltransferase(ST6GalNacI)cDNA.GlycoconjJ(2001)18:883–93.doi:10.1023/A:1022200525695 CrossRefFullText 68.OzakiH,MatsuzakiH,AndoH,KajiH,NakanishiH,IkeharaY,etal.EnhancementofmetastaticabilitybyectopicexpressionofST6GalNAcIonagastriccancercelllineinamousemodel.ClinExpMetastasis(2012)29:229–38.doi:10.1007/s10585-011-9445-1 PubmedAbstract|PubmedFullText|CrossRefFullText 69.YangJM,ByrdJC,SiddikiBB,ChungYS,OkunoM,SowaM,etal.AlterationsofO-glycanbiosynthesisinhumancoloncancertissues.Glycobiology(1994)4:873–84.doi:10.1093/glycob/4.6.873 PubmedAbstract|PubmedFullText|CrossRefFullText 70.BrockhausenI.PathwaysofO-glycanbiosynthesisincancercells.BiochimBiophysActa(1999)1473:67–95.doi:10.1016/S0304-4165(99)00170-1 CrossRefFullText 71.MarcosNT,PinhoS,GrandelaC,CruzA,Samyn-PetitB,Harduin-LepersA,etal.RoleofthehumanST6GalNAc-IandST6GalNAc-IIinthesynthesisofthecancer-associatedsialyl-Tnantigen.CancerRes(2004)64:7050–7.doi:10.1158/0008-5472.CAN-04-1921 PubmedAbstract|PubmedFullText|CrossRefFullText 72.SchneiderF,KemmnerW,HaenschW,FrankeG,GretschelS,KarstenU,etal.OverexpressionofsialyltransferaseCMP-sialicacid:Galbeta1,3GalNAc-Ralpha6-Sialyltransferaseisrelatedtopoorpatientsurvivalinhumancolorectalcarcinomas.CancerRes(2001)61:4605–11. PubmedAbstract|PubmedFullText 73.KumamotoK,GotoY,SekikawaK,TakenoshitaS,IshidaN,KawakitaM,etal.IncreasedexpressionofUDP-galactosetransportermessengerRNAinhumancoloncancertissuesanditsimplicationinsynthesisofThomsen-FriedenreichantigenandSialylLewisA/Xdeterminants.CancerRes(2001)61:4620–7. PubmedAbstract|PubmedFullText 74.JuT,CummingsRD.AuniquemolecularchaperoneCosmcrequiredforactivityofthemammaliancore1beta3-galactosyltransferase.ProcNatlAcadSciUSA(2002)99:16613–8.doi:10.1073/pnas.262438199 PubmedAbstract|PubmedFullText|CrossRefFullText 75.SchietingerA,PhilipM,YoshidaBA,AzadiP,LiuH,MeredithSC,etal.Amutantchaperoneconvertsawild-typeproteinintoatumor-specificantigen.Science(2006)314:304–8.doi:10.1126/science.1129200 PubmedAbstract|PubmedFullText|CrossRefFullText 76.BarrowH,TamB,DuckworthCA,RhodesJM,YuLG.Suppressionofcore1Gal-transferaseisassociatedwithreductionofTFandreciprocalincreaseofTn,sialyl-TnandCore3glycansinhumancoloncancercells.PLoSOne(2013)8:e59792.doi:10.1371/journal.pone.0059792 PubmedAbstract|PubmedFullText|CrossRefFullText 77.JulienS,AdriaenssensE,OttenbergK,FurlanA,CourtandG,Vercoutter-EdouartAS,etal.ST6GalNAcIexpressioninMDA-MB-231breastcancercellsgreatlymodifiestheirO-glycosylationpatternandenhancestheirtumourigenicity.Glycobiology(2006)16:54–64.doi:10.1093/glycob/cwj033 PubmedAbstract|PubmedFullText|CrossRefFullText 78.BurchellJ,PoulsomR,HanbyA,WhitehouseC,CooperL,ClausenH,etal.Analpha2,3sialyltransferase(ST3GalI)iselevatedinprimarybreastcarcinomas.Glycobiology(1999)9:1307–11.doi:10.1093/glycob/9.12.1307 PubmedAbstract|PubmedFullText|CrossRefFullText 79.PiccoG,JulienS,BrockhausenI,BeatsonR,AntonopoulosA,HaslamS,etal.Over-expressionofST3Gal-Ipromotesmammarytumorigenesis.Glycobiology(2010)20:1241–50.doi:10.1093/glycob/cwq085 PubmedAbstract|PubmedFullText|CrossRefFullText 80.BaldusSE,HanischFG,KotlarekGM,ZirbesTK,ThieleJ,IsenbergJ,etal.CoexpressionofMUC1mucinpeptidecoreandtheThomsen-Friedenreichantigenincolorectalneoplasms.Cancer(1998)82:1019–27.doi:10.1002/(SICI)1097-0142(19980315)82:6<1019::AID-CNCR3>3.0.CO;2-9 PubmedAbstract|PubmedFullText|CrossRefFullText 81.BurdickMD,HarrisA,ReidCJ,IwamuraT,HollingsworthMA.OligosaccharidesexpressedonMUC1producedbypancreaticandcolontumorcelllines.JBiolChem(1997)272:24198–202.doi:10.1074/jbc.272.39.24198 PubmedAbstract|PubmedFullText|CrossRefFullText 82.SinghR,CampbellBJ,YuLG,FernigDG,MiltonJD,GoodladRA,etal.Cellsurface-expressedThomsen-FriedenreichantigenincoloncancerispredominantlycarriedonhighmolecularweightsplicevariantsofCD44.Glycobiology(2001)11:587–92.doi:10.1093/glycob/11.7.587 PubmedAbstract|PubmedFullText|CrossRefFullText 83.StorrSJ,RoyleL,ChapmanCJ,HamidUM,RobertsonJF,MurrayA,etal.TheO-linkedglycosylationofsecretory/shedMUC1fromanadvancedbreastcancerpatient’sserum.Glycobiology(2008)18:456–62.doi:10.1093/glycob/cwn022 PubmedAbstract|PubmedFullText|CrossRefFullText 84.ConzeT,CarvalhoAS,LandegrenU,AlmeidaR,ReisCA,DavidL,etal.MUC2mucinisamajorcarrierofthecancer-associatedsialyl-Tnantigeninintestinalmetaplasiaandgastriccarcinomas.Glycobiology(2010)20:199–206.doi:10.1093/glycob/cwp161 PubmedAbstract|PubmedFullText|CrossRefFullText 85.HofmannM,RudyW,ZollerM,TolgC,PontaH,HerrlichP,etal.CD44splicevariantsconfermetastaticbehaviorinrats:homologoussequencesareexpressedinhumantumorcelllines.CancerRes(1991)51:5292–7. PubmedAbstract|PubmedFullText 86.PontaH,ShermanL,HerrlichPA.CD44:fromadhesionmoleculestosignallingregulators.NatRevMolCellBiol(2003)4:33–45.doi:10.1038/nrm1004 PubmedAbstract|PubmedFullText|CrossRefFullText 87.WaiPY,KuoPC.TheroleofOsteopontinintumormetastasis.JSurgRes(2004)121:228–41.doi:10.1016/j.jss.2004.03.028 PubmedAbstract|PubmedFullText|CrossRefFullText 88.BresalierRS,NivY,ByrdJC,DuhQY,ToribaraNW,RockwellRW,etal.Mucinproductionbyhumancoloniccarcinomacellscorrelateswiththeirmetastaticpotentialinanimalmodelsofcoloncancermetastasis.JClinInvest(1991)87:1037–45.doi:10.1172/JCI115063 PubmedAbstract|PubmedFullText|CrossRefFullText 89.NakamoriS,KameyamaM,ImaokaS,FurukawaH,IshikawaO,SasakiY,etal.IncreasedexpressionofsialylLewisxantigencorrelateswithpoorsurvivalinpatientswithcolorectalcarcinoma:clinicopathologicalandimmunohistochemicalstudy.CancerRes(1993)53:3632–7. PubmedAbstract|PubmedFullText 90.ClementM,RocherJ,LoirandG,LePenduJ.Expressionofsialyl-Tnepitopesonbeta1integrinaltersepithelialcellphenotype,proliferationandhaptotaxis.JCellSci(2004)117:5059–69.doi:10.1242/jcs.01350 PubmedAbstract|PubmedFullText|CrossRefFullText 91.MatsumotoY,ZhangQ,AkitaK,NakadaH,HamamuraK,TokudaN,etal.pp-GalNAc-T13induceshighmetastaticpotentialofmurineLewislungcancerbygeneratingtrimericTnantigen.BiochemBiophysResCommun(2012)419:7–13.doi:10.1016/j.bbrc.2012.01.086 PubmedAbstract|PubmedFullText|CrossRefFullText 92.HoWL,CheMI,ChouCH,ChangHH,JengYM,HsuWM,etal.B3GNT3expressionsuppressescellmigrationandinvasionandpredictsfavorableoutcomesinneuroblastoma.CancerSci(2013)104:1600–8.doi:10.1111/cas.12294 PubmedAbstract|PubmedFullText|CrossRefFullText 93.CrockerPR,McMillanSJ,RichardsHE.CD33-relatedsiglecsaspotentialmodulatorsofinflammatoryresponses.AnnNYAcadSci(2012)1253:102–11.doi:10.1111/j.1749-6632.2011.06449.x PubmedAbstract|PubmedFullText|CrossRefFullText 94.O’ReillyMK,PaulsonJC.Siglecsastargetsfortherapyinimmune-cell-mediateddisease.TrendsPharmacolSci(2009)30:240–8.doi:10.1016/j.tips.2009.02.005 PubmedAbstract|PubmedFullText|CrossRefFullText 95.VarkiA,GagneuxP.Multifariousrolesofsialicacidsinimmunity.AnnNYAcadSci(2012)1253:16–36.doi:10.1111/j.1749-6632.2012.06517.x PubmedAbstract|PubmedFullText|CrossRefFullText 96.CrockerPR,PaulsonJC,VarkiA.Siglecsandtheirrolesintheimmunesystem.NatRevImmunol(2007)7:255–66.doi:10.1038/nri2056 PubmedAbstract|PubmedFullText|CrossRefFullText 97.AvrilT,AttrillH,ZhangJ,RaperA,CrockerPR.NegativeregulationofleucocytefunctionsbyCD33-relatedsiglecs.BiochemSocTrans(2006)34:1024–7.doi:10.1042/BST0341024 PubmedAbstract|PubmedFullText|CrossRefFullText 98.LockK,ZhangJ,LuJ,LeeSH,CrockerPR.ExpressionofCD33-relatedsiglecsonhumanmononuclearphagocytes,monocyte-deriveddendriticcellsandplasmacytoiddendriticcells.Immunobiology(2004)209:199–207.doi:10.1016/j.imbio.2004.04.007 PubmedAbstract|PubmedFullText|CrossRefFullText 99.NutkuE,AizawaH,HudsonSA,BochnerBS.LigationofSiglec-8:aselectivemechanismforinductionofhumaneosinophilapoptosis.Blood(2003)101:5014–20.doi:10.1182/blood-2002-10-3058 PubmedAbstract|PubmedFullText|CrossRefFullText 100.RabinovichGA,vanKooykY,CobbBA.Glycobiologyofimmuneresponses.AnnNYAcadSci(2012)1253:1–15.doi:10.1111/j.1749-6632.2012.06492.x CrossRefFullText 101.TakamiyaR,OhtsuboK,TakamatsuS,TaniguchiN,AngataT.TheinteractionbetweenSiglec-15andtumor-associatedsialyl-TnantigenenhancesTGF-betasecretionfrommonocytes/macrophagesthroughtheDAP12-Sykpathway.Glycobiology(2013)23:178–87.doi:10.1093/glycob/cws139 PubmedAbstract|PubmedFullText|CrossRefFullText 102.CrockerPR,GordonS.Propertiesanddistributionofalectin-likehemagglutinindifferentiallyexpressedbymurinestromaltissuemacrophages.JExpMed(1986)164:1862–75.doi:10.1084/jem.164.6.1862 PubmedAbstract|PubmedFullText|CrossRefFullText 103.MarmeyB,BoixC,BarbarouxJB,Dieu-NosjeanMC,DieboldJ,AudouinJ,etal.CD14andCD169expressioninhumanlymphnodesandspleen:specificexpansionofCD14+CD169−monocyte-derivedcellsindiffuselargeB-celllymphomas.HumPathol(2006)37:68–77.doi:10.1016/j.humpath.2005.09.016 PubmedAbstract|PubmedFullText|CrossRefFullText 104.NathD,HartnellA,HapperfieldL,MilesDW,BurchellJ,Taylor-PapadimitriouJ,etal.Macrophage-tumourcellinteractions:identificationofMUC1onbreastcancercellsasapotentialcounter-receptorforthemacrophage-restrictedreceptor,sialoadhesin.Immunology(1999)98:213–9.doi:10.1046/j.1365-2567.1999.00827.x PubmedAbstract|PubmedFullText|CrossRefFullText 105.YamashiroS,TakeyaM,NishiT,KuratsuJ,YoshimuraT,UshioY,etal.Tumor-derivedmonocytechemoattractantprotein-1inducesintratumoralinfiltrationofmonocyte-derivedmacrophagesubpopulationintransplantedrattumors.AmJPathol(1994)145:856–67. PubmedAbstract|PubmedFullText 106.OhnishiK,KomoharaY,SaitoY,MiyamotoY,WatanabeM,BabaH,etal.CD169-positivemacrophagesinregionallymphnodesareassociatedwithafavorableprognosisinpatientswithcolorectalcarcinoma.CancerSci(2013)104:1237–44.doi:10.1111/cas.12212 PubmedAbstract|PubmedFullText|CrossRefFullText 107.BullerRE,BermanML,BlossJD,ManettaA,DiSaiaPJ.SerumCA125regressioninepithelialovariancancer:correlationwithreassessmentfindingsandsurvival.GynecolOncol(1992)47:87–92.doi:10.1016/0090-8258(92)90082-T PubmedAbstract|PubmedFullText|CrossRefFullText 108.AndoM,TuW,NishijimaK,IijimaS.Siglec-9enhancesIL-10productioninmacrophagesviatyrosine-basedmotifs.BiochemBiophysResCommun(2008)369:878–83.doi:10.1016/j.bbrc.2008.02.111 PubmedAbstract|PubmedFullText|CrossRefFullText 109.KawasakiY,ItoA,WithersDA,TaimaT,KakoiN,SaitoS,etal.GangliosideDSGb5,preferredligandforSiglec-7,inhibitsNKcellcytotoxicityagainstrenalcellcarcinomacells.Glycobiology(2010)20:1373–9.doi:10.1093/glycob/cwq116 PubmedAbstract|PubmedFullText|CrossRefFullText 110.HudakJE,CanhamSM,BertozziCR.GlygocalyxengineeringrevealsaSiglec-basedmechanismforNKcellimmunoevasion.NatChemBiol(2014)10:69–75.doi:10.1038/nchembio.1388 PubmedAbstract|PubmedFullText|CrossRefFullText 111.TanidaS,AkitaK,IshidaA,MoriY,TodaM,InoueM,etal.Bindingofthesialicacid-bindinglectin.JBiolChem(2013)288:31842–52.doi:10.1074/jbc.M113.471318 PubmedAbstract|PubmedFullText|CrossRefFullText 112.BallED.Invitropurgingofbonemarrowforautologousmarrowtransplantationinacutemyelogenousleukemiausingmyeloid-specificmonoclonalantibodies.BoneMarrowTransplant(1988)3:387–92. 113.DrexlerHG.Classificationofacutemyeloidleukemias–acomparisonofFABandimmunophenotyping.Leukemia(1987)1:697–705. PubmedAbstract|PubmedFullText 114.Ziegler-HeitbrockHW,MunkerR,DorkenB,GaedickeG,ThielE.Inductionoffeaturescharacteristicofhairycellleukemiainchroniclymphocyticleukemiaandprolymphocyticleukemiacells.CancerRes(1986)46:2172–8. PubmedAbstract|PubmedFullText 115.JandusC,SimonHU,vonGuntenS.Targetingsiglecs–anovelpharmacologicalstrategyforimmuno-andglycotherapy.BiochemPharmacol(2011)82:323–32.doi:10.1016/j.bcp.2011.05.018 PubmedAbstract|PubmedFullText|CrossRefFullText 116.JainN,OBrienS,ThomasD,KantarjianH.Inotuzumabozogamicininthetreatmentofacutelymphoblasticleukemia.FrontBiosci(EliteEd)(2014)6:40–5.doi:10.2741/E688 CrossRefFullText 117.KantarjianH,ThomasD,JorgensenJ,KebriaeiP,JabbourE,RyttingM,etal.Resultsofinotuzumabozogamicin,aCD22monoclonalantibody,inrefractoryandrelapsedacutelymphocyticleukemia.Cancer(2013)119:2728–36.doi:10.1002/cncr.28136 PubmedAbstract|PubmedFullText|CrossRefFullText 118.PetersdorfSH,KopeckyKJ,SlovakM,WillmanC,NevillT,BrandweinJ,etal.Aphase3studyofgemtuzumabozogamicinduringinductionandpostconsolidationtherapyinyoungerpatientswithacutemyeloidleukemia.Blood(2013)121:4854–60.doi:10.1182/blood-2013-01-466706 PubmedAbstract|PubmedFullText|CrossRefFullText 119.GasiorowskiRE,ClarkGJ,BradstockK,HartDN.Antibodytherapyforacutemyeloidleukaemia.BrJHaematol(2013)164:481–75.doi:10.1111/bjh.12691 CrossRefFullText 120.KungSutherlandMS,WalterRB,JeffreySC,BurkePJ,YuC,KostnerH,etal.SGN-CD33A:anovelCD33-targetingantibody-drugconjugateusingapyrrolobenzodiazepinedimerisactiveinmodelsofdrug-resistantAML.Blood(2013)122:1455–63.doi:10.1182/blood-2013-03-491506 PubmedAbstract|PubmedFullText|CrossRefFullText 121.RabinovichGA,ToscanoMA.Turning‘sweet’onimmunity:galectin-glycaninteractionsinimmunetoleranceandinflammation.NatRevImmunol(2009)9:338–52.doi:10.1038/nri2536 PubmedAbstract|PubmedFullText|CrossRefFullText 122.LiuFT,RabinovichGA.Galectinsasmodulatorsoftumourprogression.NatRevCancer(2005)5:29–41.doi:10.1038/nrc1527 PubmedAbstract|PubmedFullText|CrossRefFullText 123.CalificeS,CastronovoV,VanDenBruleF.Galectin-3andcancer(Review).IntJOncol(2004)25:983–92. 124.TakenakaY,FukumoriT,RazA.Galectin-3andmetastasis.GlycoconjJ(2004)19:543–9.doi:10.1023/B:GLYC.0000014084.01324.15 CrossRefFullText 125.BanhA,ZhangJ,CaoH,BouleyDM,KwokS,KongC,etal.Tumorgalectin-1mediatestumorgrowthandmetastasisthroughregulationofT-cellapoptosis.CancerRes(2011)71:4423–31.doi:10.1158/0008-5472.CAN-10-4157 PubmedAbstract|PubmedFullText|CrossRefFullText 126.RubinsteinN,AlvarezM,ZwirnerNW,ToscanoMA,IlarreguiJM,BravoA,etal.Targetedinhibitionofgalectin-1geneexpressionintumorcellsresultsinheightenedTcell-mediatedrejection;apotentialmechanismoftumor-immuneprivilege.CancerCell(2004)5:241–51.doi:10.1016/S1535-6108(04)00024-8 PubmedAbstract|PubmedFullText|CrossRefFullText 127.TangD,YuanZ,XueX,LuZ,ZhangY,WangH,etal.HighexpressionofGalectin-1inpancreaticstellatecellsplaysaroleinthedevelopmentandmaintenanceofanimmunosuppressivemicroenvironmentinpancreaticcancer.IntJCancer(2012)130:2337–48.doi:10.1002/ijc.26290 PubmedAbstract|PubmedFullText|CrossRefFullText 128.HernandezJD,NguyenJT,HeJ,WangW,ArdmanB,GreenJM,etal.Galectin-1bindsdifferentCD43glycoformstoclusterCD43andregulateTcelldeath.JImmunol(2006)177:5328–36. PubmedAbstract|PubmedFullText 129.NguyenJT,EvansDP,GalvanM,PaceKE,LeitenbergD,BuiTN,etal.CD45modulatesgalectin-1-inducedTcelldeath:regulationbyexpressionofcore2O-glycans.JImmunol(2001)167:5697–707. PubmedAbstract|PubmedFullText 130.AmanoM,GalvanM,HeJ,BaumLG.TheST6GalIsialyltransferaseselectivelymodifiesN-glycansonCD45tonegativelyregulategalectin-1-inducedCD45clustering,phosphatasemodulation,andTcelldeath.JBiolChem(2003)278:7469–75.doi:10.1074/jbc.M209595200 PubmedAbstract|PubmedFullText|CrossRefFullText 131.KuoPL,HungJY,HuangSK,ChouSH,ChengDE,JongYJ,etal.Lungcancer-derivedgalectin-1mediatesdendriticcellanergythroughinhibitorofDNAbinding3/IL-10signalingpathway.JImmunol(2011)186:1521–30.doi:10.4049/jimmunol.1002940 PubmedAbstract|PubmedFullText|CrossRefFullText 132.Dalotto-MorenoT,CrociDO,CerlianiJP,Martinez-AlloVC,Dergan-DylonS,Mendez-HuergoSP,etal.Targetinggalectin-1overcomesbreastcancer-associatedimmunosuppressionandpreventsmetastaticdisease.CancerRes(2013)73:1107–17.doi:10.1158/0008-5472.CAN-12-2418 PubmedAbstract|PubmedFullText|CrossRefFullText 133.PerilloNL,MarcusME,BaumLG.Galectins:versatilemodulatorsofcelladhesion,cellproliferation,andcelldeath.JMolMed(Berl)(1998)76:402–12.doi:10.1007/s001090050232 PubmedAbstract|PubmedFullText|CrossRefFullText 134.vandenBruleF,CalificeS,GarnierF,FernandezPL,BerchuckA,CastronovoV.Galectin-1accumulationintheovarycarcinomaperitumoralstromaisinducedbyovarycarcinomacellsandaffectsbothcancercellproliferationandadhesiontolaminin-1andfibronectin.LabInvest(2003)83:377–86.doi:10.1097/01.LAB.0000059949.01480.40 PubmedAbstract|PubmedFullText|CrossRefFullText 135.PacienzaN,PoznerRG,BiancoGA,D’AtriLP,CrociDO,NegrottoS,etal.Theimmunoregulatoryglycan-bindingproteingalectin-1triggershumanplateletactivation.FASEBJ(2008)22:1113–23.doi:10.1096/fj.07-9524com PubmedAbstract|PubmedFullText|CrossRefFullText 136.IurisciI,TinariN,NatoliC,AngelucciD,CianchettiE,IacobelliS.Concentrationsofgalectin-3intheseraofnormalcontrolsandcancerpatients.ClinCancerRes(2000)6:1389–93. PubmedAbstract|PubmedFullText 137.VereeckenP,ZouaouiBoudjeltiaK,DebrayC,AwadaA,LegssyerI,SalesF,etal.Highserumgalectin-3inadvancedmelanoma:preliminaryresults.ClinExpDermatol(2006)31:105–9.doi:10.1111/j.1365-2230.2005.01992.x PubmedAbstract|PubmedFullText|CrossRefFullText 138.KhaldoyanidiSK,GlinskyVV,SikoraL,GlinskiiAB,MossineVV,QuinnTP,etal.MDA-MB-435humanbreastcarcinomacellhomo-andheterotypicadhesionunderflowconditionsismediatedinpartbyThomsen-Friedenreichantigen-galectin-3interactions.JBiolChem(2003)278:4127–34. 139.ZhaoQ,BarclayM,HilkensJ,GuoX,BarrowH,RhodesJM,etal.Interactionbetweencirculatinggalectin-3andcancer-associatedMUC1enhancestumourcellhomotypicaggregationandpreventsanoikis.MolCancer(2010)9:154.doi:10.1186/1476-4598-9-154 PubmedAbstract|PubmedFullText|CrossRefFullText 140.GlinskyVV,GlinskyGV,Rittenhouse-OlsonK,HuflejtME,GlinskiiOV,DeutscherSL,etal.TheroleofThomsen-Friedenreichantigeninadhesionofhumanbreastandprostatecancercellstotheendothelium.CancerRes(2001)61:4851–7. 141.KrishnanV,BaneSM,KawlePD,NareshKN,KalraiyaRD.Alteredmelanomacellsurfaceglycosylationmediatesorganspecificadhesionandmetastasisvialectinreceptorsonthelungvascularendothelium.ClinExpMetastasis(2005)22:11–24.doi:10.1007/s10585-005-2036-2 PubmedAbstract|PubmedFullText|CrossRefFullText 142.LauKS,PartridgeEA,GrigorianA,SilvescuCI,ReinholdVN,DemetriouM,etal.ComplexN-glycannumberanddegreeofbranchingcooperatetoregulatecellproliferationanddifferentiation.Cell(2007)129:123–34.doi:10.1016/j.cell.2007.01.049 PubmedAbstract|PubmedFullText|CrossRefFullText 143.KobataA,AmanoJ.Alteredglycosylationofproteinsproducedbymalignantcells,andapplicationforthediagnosisandimmunotherapyoftumours.ImmunolCellBiol(2005)83:429–39.doi:10.1111/j.1440-1711.2005.01351.x PubmedAbstract|PubmedFullText|CrossRefFullText 144.ChenL,ZhangW,FregienN,PierceM.Theher-2/neuoncogenestimulatesthetranscriptionofN-acetylglucosaminyltransferaseVandexpressionofitscellsurfaceoligosaccharideproducts.Oncogene(1998)17:2087–93.doi:10.1038/sj.onc.1202124 PubmedAbstract|PubmedFullText|CrossRefFullText 145.DemetriouM,NabiIR,CoppolinoM,DedharS,DennisJW.Reducedcontact-inhibitionandsubstratumadhesioninepithelialcellsexpressingGlcNAc-transferaseV.JCellBiol(1995)130:383–92.doi:10.1083/jcb.130.2.383 PubmedAbstract|PubmedFullText|CrossRefFullText 146.LajoieP,PartridgeEA,GuayG,GoetzJG,PawlingJ,LaganaA,etal.PlasmamembranedomainorganizationregulatesEGFRsignalingintumorcells.JCellBiol(2007)179:341–56.doi:10.1083/jcb.200611106 PubmedAbstract|PubmedFullText|CrossRefFullText 147.TsuboiS,SutohM,HatakeyamaS,HiraokaN,HabuchiT,HorikawaY,etal.AnovelstrategyforevasionofNKcellimmunitybytumoursexpressingcore2O-glycans.EMBOJ(2011)30:3173–85.doi:10.1038/emboj.2011.215 PubmedAbstract|PubmedFullText|CrossRefFullText 148.BoscherC,DennisJW,NabiIR.Glycosylation,galectinsandcellularsignaling.CurrOpinCellBiol(2011)23:383–92.doi:10.1016/j.ceb.2011.05.001 PubmedAbstract|PubmedFullText|CrossRefFullText 149.VeigaSS,ChammasR,CellaN,BrentaniRR.Glycosylationofbeta-1integrinsinB16-F10mousemelanomacellsasdeterminantofdifferentialbindingandacquisitionofbiologicalactivity.IntJCancer(1995)61:420–4.doi:10.1002/ijc.2910610324 PubmedAbstract|PubmedFullText|CrossRefFullText 150.ZhengM,FangH,HakomoriS.FunctionalroleofN-glycosylationinalpha5beta1integrinreceptor.De-N-glycosylationinducesdissociationoralteredassociationofalpha5andbeta1subunitsandconcomitantlossoffibronectinbindingactivity.JBiolChem(1994)269:12325–31. PubmedAbstract|PubmedFullText 151.GuoHB,LeeI,KamarM,AkiyamaSK,PierceM.AberrantN-glycosylationofbeta1integrincausesreducedalpha5beta1integrinclusteringandstimulatescellmigration.CancerRes(2002)62:6837–45. PubmedAbstract|PubmedFullText 152.KansasGS.Selectinsandtheirligands:currentconceptsandcontroversies.Blood(1996)88:3259–87. 153.GuyerDA,MooreKL,LynamEB,SchammelCM,RogeljS,McEverRP,etal.P-selectinglycoproteinligand-1(PSGL-1)isaligandforL-selectininneutrophilaggregation.Blood(1996)88:2415–21. PubmedAbstract|PubmedFullText 154.SperandioM,SmithML,ForlowSB,OlsonTS,XiaL,McEverRP,etal.P-selectinglycoproteinligand-1mediatesL-selectin-dependentleukocyterollinginvenules.JExpMed(2003)197:1355–63.doi:10.1084/jem.20021854 PubmedAbstract|PubmedFullText|CrossRefFullText 155.SipkinsDA,WeiX,WuJW,RunnelsJM,CoteD,MeansTK,etal.Invivoimagingofspecializedbonemarrowendothelialmicrodomainsfortumourengraftment.Nature(2005)435:969–73.doi:10.1038/nature03703 PubmedAbstract|PubmedFullText|CrossRefFullText 156.LenterM,LevinovitzA,IsenmannS,VestweberD.MonospecificandcommonglycoproteinligandsforE-andP-selectinonmyeloidcells.JCellBiol(1994)125:471–81.doi:10.1083/jcb.125.2.471 PubmedAbstract|PubmedFullText|CrossRefFullText 157.BurdickMM,McCafferyJM,KimYS,BochnerBS,KonstantopoulosK.Coloncarcinomacellglycolipids,integrins,andotherglycoproteinsmediateadhesiontoHUVECsunderflow.AmJPhysiolCellPhysiol(2003)284:C977–87.doi:10.1152/ajpcell.00423.2002 PubmedAbstract|PubmedFullText|CrossRefFullText 158.KimYJ,BorsigL,HanHL,VarkiNM,VarkiA.Distinctselectinligandsoncoloncarcinomamucinscanmediatepathologicalinteractionsamongplatelets,leukocytes,andendothelium.AmJPathol(1999)155:461–72.doi:10.1016/S0002-9440(10)65142-5 PubmedAbstract|PubmedFullText|CrossRefFullText 159.McCartyOJ,MousaSA,BrayPF,KonstantopoulosK.Immobilizedplateletssupporthumancoloncarcinomacelltethering,rolling,andfirmadhesionunderdynamicflowconditions.Blood(2000)96:1789–97. PubmedAbstract|PubmedFullText 160.JorgensenT,BernerA,KaalhusO,TveterKJ,DanielsenHE,BryneM.Up-regulationoftheoligosaccharidesialylLewisX:anewprognosticparameterinmetastaticprostatecancer.CancerRes(1995)55:1817–9. PubmedAbstract|PubmedFullText 161.OgawaJ,InoueH,KoideS.Expressionofalpha-1,3-fucosyltransferasetypeIVandVIIgenesisrelatedtopoorprognosisinlungcancer.CancerRes(1996)56:325–9. PubmedAbstract|PubmedFullText 162.RenkonenJ,PaavonenT,RenkonenR.EndothelialandepithelialexpressionofsialylLewis(x)andsialylLewis(a)inlesionsofbreastcarcinoma.IntJCancer(1997)74:296–300.doi:10.1002/(SICI)1097-0215(19970620)74:3<296::AID-IJC11>3.0.CO;2-A PubmedAbstract|PubmedFullText|CrossRefFullText 163.TakahashiS,OdaT,HasebeT,SasakiS,KinoshitaT,KonishiM,etal.OverexpressionofsialylLewisxantigenisassociatedwithformationofextratumoralvenousinvasionandpredictspostoperativedevelopmentofmassivehepaticmetastasisincaseswithpancreaticductaladenocarcinoma.Pathobiology(2001)69:127–35.doi:10.1159/000048767 PubmedAbstract|PubmedFullText|CrossRefFullText 164.TatsumiM,WatanabeA,SawadaH,YamadaY,ShinoY,NakanoH.ImmunohistochemicalexpressionofthesialylLewisxantigenongastriccancercellscorrelateswiththepresenceoflivermetastasis.ClinExpMetastasis(1998)16:743–50.doi:10.1023/A:1006584829246 PubmedAbstract|PubmedFullText|CrossRefFullText 165.TozawaK,OkamotoT,KawaiN,HashimotoY,HayashiY,KohriK.PositivecorrelationbetweensialylLewisXexpressionandpathologicfindingsinrenalcellcarcinoma.KidneyInt(2005)67:1391–6.doi:10.1111/j.1523-1755.2005.00216.x PubmedAbstract|PubmedFullText|CrossRefFullText 166.InabaY,OhyamaC,KatoT,SatohM,SaitoH,HagisawaS,etal.Genetransferofalpha1,3-fucosyltransferaseincreasestumorgrowthofthePC-3humanprostatecancercelllinethroughenhancedadhesiontoprostaticstromalcells.IntJCancer(2003)107:949–57.doi:10.1002/ijc.11513 PubmedAbstract|PubmedFullText|CrossRefFullText 167.MannoriG,CrottetP,CecconiO,HanasakiK,AruffoA,NelsonRM,etal.DifferentialcoloncancercelladhesiontoE-,P-,andL-selectin:roleofmucin-typeglycoproteins.CancerRes(1995)55:4425–31. PubmedAbstract|PubmedFullText 168.StHillCA,BullardKM,WalcheckB.Expressionofthehigh-affinityselectinglycanligandC2-O-sLeXbycoloncarcinomacells.CancerLett(2005)217:105–13.doi:10.1016/j.canlet.2004.06.038 PubmedAbstract|PubmedFullText|CrossRefFullText 169.BarthelSR,WieseGK,ChoJ,OppermanMJ,HaysDL,SiddiquiJ,etal.Alpha1,3fucosyltransferasesaremasterregulatorsofprostatecancercelltrafficking.ProcNatlAcadSciUSA(2009)106:19491–6.doi:10.1073/pnas.0906074106 PubmedAbstract|PubmedFullText|CrossRefFullText 170.IzumiY,TaniuchiY,TsujiT,SmithCW,NakamoriS,FidlerIJ,etal.CharacterizationofhumancoloncarcinomavariantcellsselectedforsialylLexcarbohydrateantigen:livercolonizationandadhesiontovascularendothelialcells.ExpCellRes(1995)216:215–21.doi:10.1006/excr.1995.1027 PubmedAbstract|PubmedFullText|CrossRefFullText 171.WestonBW,HillerKM,MaybenJP,ManousosGA,BendtKM,LiuR,etal.Expressionofhumanalpha(1,3)fucosyltransferaseantisensesequencesinhibitsselectin-mediatedadhesionandlivermetastasisofcoloncarcinomacells.CancerRes(1999)59:2127–35. PubmedAbstract|PubmedFullText 172.RosenSD,BertozziCR.Theselectinsandtheirligands.CurrOpinCellBiol(1994)6:663–73.doi:10.1016/0955-0674(94)90092-2 CrossRefFullText 173.KimYS,GumJJr,BrockhausenI.Mucinglycoproteinsinneoplasia.GlycoconjJ(1996)13:693–707.doi:10.1007/BF00702333 PubmedAbstract|PubmedFullText|CrossRefFullText 174.SperandioM,GleissnerCA,LeyK.Glycosylationinimmunecelltrafficking.ImmunolRev(2009)230:97–113.doi:10.1111/j.1600-065X.2009.00795.x CrossRefFullText 175.VarkiA.Selectinligands:willtherealonespleasestandup?JClinInvest(1997)99:158–62.doi:10.1172/JCI119142 CrossRefFullText 176.McEverRP.Selectins:lectinsthatinitiatecelladhesionunderflow.CurrOpinCellBiol(2002)14:581–6.doi:10.1016/S0955-0674(02)00367-8 PubmedAbstract|PubmedFullText|CrossRefFullText 177.ChaturvediP,SinghAP,BatraSK.Structure,evolution,andbiologyoftheMUC4mucin.FASEBJ(2008)22:966–81.doi:10.1096/fj.07-9673rev PubmedAbstract|PubmedFullText|CrossRefFullText 178.ChenSH,DallasMR,BalzerEM,KonstantopoulosK.Mucin16isafunctionalselectinligandonpancreaticcancercells.FASEBJ(2012)26:1349–59.doi:10.1096/fj.11-195669 PubmedAbstract|PubmedFullText|CrossRefFullText 179.AignerS,SthoegerZM,FogelM,WeberE,ZarnJ,RuppertM,etal.CD24,amucin-typeglycoprotein,isaligandforP-selectinonhumantumorcells.Blood(1997)89:3385–95. PubmedAbstract|PubmedFullText 180.BurdickMM,ChuJT,GodarS,SacksteinR.HCELListhemajorE-andL-selectinligandexpressedonLS174Tcoloncarcinomacells.JBiolChem(2006)281:13899–905.doi:10.1074/jbc.M513617200 PubmedAbstract|PubmedFullText|CrossRefFullText 181.DimitroffCJ,DeschenyL,TrujilloN,KimR,NguyenV,HuangW,etal.IdentificationofleukocyteE-selectinligands,P-selectinglycoproteinligand-1andE-selectinligand-1,onhumanmetastaticprostatetumorcells.CancerRes(2005)65:5750–60.doi:10.1158/0008-5472.CAN-04-4653 PubmedAbstract|PubmedFullText|CrossRefFullText 182.GoutS,MorinC,HouleF,HuotJ.Deathreceptor-3,anewE-Selectincounter-receptorthatconfersmigrationandsurvivaladvantagestocoloncarcinomacellsbytriggeringp38andERKMAPKactivation.CancerRes(2006)66:9117–24.doi:10.1158/0008-5472.CAN-05-4605 PubmedAbstract|PubmedFullText|CrossRefFullText 183.ThomasSN,SchnaarRL,KonstantopoulosK.Podocalyxin-likeproteinisanE-/L-selectinligandoncoloncarcinomacells:comparativebiochemicalpropertiesofselectinligandsinhostandtumorcells.AmJPhysiolCellPhysiol(2009)296:C505–13.doi:10.1152/ajpcell.00472.2008 PubmedAbstract|PubmedFullText|CrossRefFullText 184.HeiderKH,HofmannM,HorsE,vandenBergF,PontaH,HerrlichP,etal.Ahumanhomologueoftheratmetastasis-associatedvariantofCD44isexpressedincolorectalcarcinomasandadenomatouspolyps.JCellBiol(1993)120:227–33.doi:10.1083/jcb.120.1.227 PubmedAbstract|PubmedFullText|CrossRefFullText 185.PennoMB,AugustJT,BaylinSB,MabryM,LinnoilaRI,LeeVS,etal.ExpressionofCD44inhumanlungtumors.CancerRes(1994)54:1381–7. 186.RallCJ,RustgiAK.CD44isoformexpressioninprimaryandmetastaticpancreaticadenocarcinoma.CancerRes(1995)55:1831–5. PubmedAbstract|PubmedFullText 187.HaradaN,MizoiT,KinouchiM,HoshiK,IshiiS,ShiibaK,etal.IntroductionofantisenseCD44SCDNAdown-regulatesexpressionofoverallCD44isoformsandinhibitstumorgrowthandmetastasisinhighlymetastaticcoloncarcinomacells.IntJCancer(2001)91:67–75.doi:10.1002/1097-0215(20010101)91:1<67::AID-IJC1011>3.0.CO;2-D PubmedAbstract|PubmedFullText|CrossRefFullText 188.ReederJA,GotleyDC,WalshMD,FawcettJ,AntalisTM.ExpressionofantisenseCD44variant6inhibitscolorectaltumormetastasisandtumorgrowthinawoundenvironment.CancerRes(1998)58:3719–26. PubmedAbstract|PubmedFullText 189.HanleyWD,BurdickMM,KonstantopoulosK,SacksteinR.CD44onLS174TcoloncarcinomacellspossessesE-selectinligandactivity.CancerRes(2005)65:5812–7.doi:10.1158/0008-5472.CAN-04-4557 PubmedAbstract|PubmedFullText|CrossRefFullText 190.HanleyWD,NapierSL,BurdickMM,SchnaarRL,SacksteinR,KonstantopoulosK.VariantisoformsofCD44areP-andL-selectinligandsoncoloncarcinomacells.FASEBJ(2006)20:337–9. PubmedAbstract|PubmedFullText 191.CooneyCA,JousheghanyF,Yao-BorengasserA,PhanavanhB,GomesT,Kieber-EmmonsAM,etal.Chondroitinsulfatesplayamajorroleinbreastcancermetastasis:aroleforCSPG4andCHST11geneexpressioninformingsurfaceP-selectinligandsinaggressivebreastcancercells.BreastCancerRes(2011)13:R58.doi:10.1186/bcr2895 PubmedAbstract|PubmedFullText|CrossRefFullText 192.KaytesPS,GengJG.P-selectinmediatesadhesionofthehumanmelanomacelllineNKI-4:identificationofglycoproteinligands.Biochemistry(1998)37:10514–21.doi:10.1021/bi9730846 PubmedAbstract|PubmedFullText|CrossRefFullText 193.StoneJP,WagnerDD.P-selectinmediatesadhesionofplateletstoneuroblastomaandsmallcelllungcancer.JClinInvest(1993)92:804–13.doi:10.1172/JCI116654 PubmedAbstract|PubmedFullText|CrossRefFullText 194.LiJ,GuillebonAD,HsuJW,BarthelSR,DimitroffCJ,LeeYF,etal.Humanfucosyltransferase6enablesprostatecancermetastasistobone.BrJCancer(2013)109:3014–22.doi:10.1038/bjc.2013.690 PubmedAbstract|PubmedFullText|CrossRefFullText 195.JulienS,IveticA,GrigoriadisA,QizeD,BurfordB,SprovieroD,etal.SelectinligandSialyl-Lewisxantigendrivesmetastasisofhormone-dependentbreastcancers.CancerRes(2011)71:7683–93.doi:10.1158/0008-5472.CAN-11-1139 PubmedAbstract|PubmedFullText|CrossRefFullText 196.RadhakrishnanP,ChachadiV,LinMF,SinghR,KannagiR,ChengPW.TNFalphaenhancesthemotilityandinvasivenessofprostaticcancercellsbystimulatingtheexpressionofselectiveglycosyl-andsulfotransferasegenesinvolvedinthesynthesisofselectinligands.BiochemBiophysResCommun(2011)409:436–41.doi:10.1016/j.bbrc.2011.05.019 PubmedAbstract|PubmedFullText|CrossRefFullText 197.BarthelSR,HaysDL,YazawaEM,OppermanM,WalleyKC,NimrichterL,etal.Definitionofmoleculardeterminantsofprostatecancercellboneextravasation.CancerRes(2013)73:942–52.doi:10.1158/0008-5472.CAN-12-3264 PubmedAbstract|PubmedFullText|CrossRefFullText 198.YinX,RanaK,PonmudiV,KingMR.KnockdownoffucosyltransferaseIIIdisruptstheadhesionofcirculatingcancercellstoE-selectinwithoutaffectinghematopoieticcelladhesion.CarbohydrRes(2010)345:2334–42.doi:10.1016/j.carres.2010.07.028 PubmedAbstract|PubmedFullText|CrossRefFullText 199.BorsigL.Theroleofplateletactivationintumormetastasis.ExpertRevAnticancerTher(2008)8:1247–55.doi:10.1586/14737140.8.8.1247 PubmedAbstract|PubmedFullText|CrossRefFullText 200.GayLJ,Felding-HabermannB.Contributionofplateletstotumourmetastasis.NatRevCancer(2011)11:123–34. 201.HonnKV,TangDG,CrissmanJD.Plateletsandcancermetastasis:acausalrelationship?CancerMetastasisRev(1992)11:325–51.doi:10.1007/BF01307186 PubmedAbstract|PubmedFullText|CrossRefFullText 202.KarpatkinS,PearlsteinE.Roleofplateletsintumorcellmetastases.AnnInternMed(1981)95:636–41.doi:10.7326/0003-4819-95-5-636 PubmedAbstract|PubmedFullText|CrossRefFullText 203.BorsigL,WongR,FeramiscoJ,NadeauDR,VarkiNM,VarkiA.Heparinandcancerrevisited:mechanisticconnectionsinvolvingplatelets,P-selectin,carcinomamucins,andtumormetastasis.ProcNatlAcadSciUSA(2001)98:3352–7.doi:10.1073/pnas.061615598 PubmedAbstract|PubmedFullText|CrossRefFullText 204.CamererE,QaziAA,DuongDN,CornelissenI,AdvinculaR,CoughlinSR.Platelets,protease-activatedreceptors,andfibrinogeninhematogenousmetastasis.Blood(2004)104:397–401.doi:10.1182/blood-2004-02-0434 PubmedAbstract|PubmedFullText|CrossRefFullText 205.NieswandtB,HafnerM,EchtenacherB,MannelDN.Lysisoftumorcellsbynaturalkillercellsinmiceisimpededbyplatelets.CancerRes(1999)59:1295–300. PubmedAbstract|PubmedFullText 206.PalumboJS,TalmageKE,MassariJV,LaJeunesseCM,FlickMJ,KombrinckKW,etal.Plateletsandfibrin(ogen)increasemetastaticpotentialbyimpedingnaturalkillercell-mediatedeliminationoftumorcells.Blood(2005)105:178–85.doi:10.1182/blood-2004-06-2272 PubmedAbstract|PubmedFullText|CrossRefFullText 207.LudwigRJ,BoehmeB,PoddaM,HenschlerR,JagerE,TandiC,etal.EndothelialP-selectinasatargetofheparinactioninexperimentalmelanomalungmetastasis.CancerRes(2004)64:2743–50.doi:10.1158/0008-5472.CAN-03-1054 PubmedAbstract|PubmedFullText|CrossRefFullText 208.CouplandLA,ChongBH,ParishCR.PlateletsandP-selectincontroltumorcellmetastasisinanorgan-specificmannerandindependentlyofNKcells.CancerRes(2012)72:4662–71.doi:10.1158/0008-5472.CAN-11-4010 PubmedAbstract|PubmedFullText|CrossRefFullText 209.LabelleM,BegumS,HynesRO.Directsignalingbetweenplateletsandcancercellsinducesanepithelial-mesenchymal-liketransitionandpromotesmetastasis.CancerCell(2011)20:576–90.doi:10.1016/j.ccr.2011.09.009 PubmedAbstract|PubmedFullText|CrossRefFullText 210.JadhavS,BochnerBS,KonstantopoulosK.Hydrodynamicshearregulatesthekineticsandreceptorspecificityofpolymorphonuclearleukocyte-coloncarcinomacelladhesiveinteractions.JImmunol(2001)167:5986–93. PubmedAbstract|PubmedFullText 211.JoyceJA,PollardJW.Microenvironmentalregulationofmetastasis.NatRevCancer(2009)9:239–52.doi:10.1038/nrc2618 CrossRefFullText 212.MantovaniA,AllavenaP,SicaA,BalkwillF.Cancer-relatedinflammation.Nature(2008)454:436–44.doi:10.1038/nature07205 PubmedAbstract|PubmedFullText|CrossRefFullText 213.LäubliH,SpanausKS,BorsigL.Selectin-mediatedactivationofendothelialcellsinducesexpressionofCCL5andpromotesmetastasisthroughrecruitmentofmonocytes.Blood(2009)114:4583–91.doi:10.1182/blood-2008-10-186585 PubmedAbstract|PubmedFullText|CrossRefFullText 214.TavernaD,MoherH,CrowleyD,BorsigL,VarkiA,HynesRO.Increasedprimarytumorgrowthinmicenullforbeta3-orbeta3/beta5-integrinsorselectins.ProcNatlAcadSciUSA(2004)101:763–8.doi:10.1073/pnas.0307289101 PubmedAbstract|PubmedFullText|CrossRefFullText 215.LaferriereJ,HouleF,TaherMM,ValerieK,HuotJ.TransendothelialmigrationofcoloncarcinomacellsrequiresexpressionofE-selectinbyendothelialcellsandactivationofstress-activatedproteinkinase-2(SAPK2/p38)inthetumorcells.JBiolChem(2001)276:33762–72.doi:10.1074/jbc.M008564200 PubmedAbstract|PubmedFullText|CrossRefFullText 216.TremblayPL,AugerFA,HuotJ.RegulationoftransendothelialmigrationofcoloncancercellsbyE-selectin-mediatedactivationofp38andERKMAPkinases.Oncogene(2006)25:6563–73.doi:10.1038/sj.onc.1209664 PubmedAbstract|PubmedFullText|CrossRefFullText 217.BianconeL,ArakiM,ArakiK,VassalliP,StamenkovicI.RedirectionoftumormetastasisbyexpressionofE-selectininvivo.JExpMed(1996)183:581–7.doi:10.1084/jem.183.2.581 PubmedAbstract|PubmedFullText|CrossRefFullText 218.BrodtP,FallavollitaL,BresalierRS,MeterissianS,NortonCR,WolitzkyBA.LiverendothelialE-selectinmediatescarcinomacelladhesionandpromoteslivermetastasis.IntJCancer(1997)71:612–9.doi:10.1002/(SICI)1097-0215(19970516)71:4<612::AID-IJC17>3.3.CO;2-1 PubmedAbstract|PubmedFullText|CrossRefFullText 219.LäubliH,BorsigL.Selectinsasmediatorsoflungmetastasis.CancerMicroenviron(2010)3:97–105.doi:10.1007/s12307-010-0043-6 CrossRefFullText 220.StubkeK,WickleinD,HerichL,SchumacherU,NehmannN.Selectin-deficiencyreducesthenumberofspontaneousmetastasesinaxenograftmodelofhumanbreastcancer.CancerLett(2012)321:89–99.doi:10.1016/j.canlet.2012.02.019 PubmedAbstract|PubmedFullText|CrossRefFullText 221.HiratsukaS,GoelS,KamounWS,MaruY,FukumuraD,DudaDG,etal.EndothelialfocaladhesionkinasemediatescancercellhomingtodiscreteregionsofthelungsviaE-selectinup-regulation.ProcNatlAcadSciUSA(2011)108:3725–30.doi:10.1073/pnas.1100446108 PubmedAbstract|PubmedFullText|CrossRefFullText 222.WahrenbrockM,BorsigL,LeD,VarkiN,VarkiA.Selectin-mucininteractionsasaprobablemolecularexplanationfortheassociationofTrousseausyndromewithmucinousadenocarcinomas.JClinInvest(2003)112:853–62.doi:10.1172/JCI200318882 PubmedAbstract|PubmedFullText|CrossRefFullText 223.ShaoB,WahrenbrockMG,YaoL,DavidT,CoughlinSR,XiaL,etal.CarcinomamucinstriggerreciprocalactivationofplateletsandneutrophilsinamurinemodelofTrousseausyndrome.Blood(2011)118:4015–23.doi:10.1182/blood-2011-07-368514 PubmedAbstract|PubmedFullText|CrossRefFullText 224.Gil-BernabeAM,FerjancicS,TlalkaM,ZhaoL,AllenPD,ImJH,etal.Recruitmentofmonocytes/macrophagesbytissuefactor-mediatedcoagulationisessentialformetastaticcellsurvivalandpremetastaticnicheestablishmentinmice.Blood(2012)119:3164–75.doi:10.1182/blood-2011-08-376426 PubmedAbstract|PubmedFullText|CrossRefFullText 225.FerjancicS,Gil-BernabeAM,HillSA,AllenPD,RichardsonP,SpareyT,etal.VCAM-1andVAP-1recruitmyeloidcellsthatpromotepulmonarymetastasisinmice.Blood(2013)121:3289–97.doi:10.1182/blood-2012-08-449819 PubmedAbstract|PubmedFullText|CrossRefFullText 226.KhatibAM,KontogianneaM,FallavollitaL,JamisonB,MeterissianS,BrodtP.RapidinductionofcytokineandE-selectinexpressionintheliverinresponsetometastatictumorcells.CancerRes(1999)59:1356–61. PubmedAbstract|PubmedFullText 227.MatsuoY,AmanoS,FuruyaM,NamikiK,SakuraiK,NishiyamaM,etal.Involvementofp38alphamitogen-activatedproteinkinaseinlungmetastasisoftumorcells.JBiolChem(2006)281:36767–75.doi:10.1074/jbc.M604371200 PubmedAbstract|PubmedFullText|CrossRefFullText 228.Vidal-VanaclochaF,FantuzziG,MendozaL,FuentesAM,AnasagastiMJ,MartinJ,etal.IL-18regulatesIL-1beta-dependenthepaticmelanomametastasisviavascularcelladhesionmolecule-1.ProcNatlAcadSciUSA(2000)97:734–9.doi:10.1073/pnas.97.2.734 PubmedAbstract|PubmedFullText|CrossRefFullText 229.KobayashiK,MatsumotoS,MorishimaT,KawabeT,OkamotoT.CimetidineinhibitscancercelladhesiontoendothelialcellsandpreventsmetastasisbyblockingE-selectinexpression.CancerRes(2000)60:3978–84. PubmedAbstract|PubmedFullText 230.LuX,KangY.Chemokine(C-Cmotif)ligand2engagesCCR2+stromalcellsofmonocyticorigintopromotebreastcancermetastasistolungandbone.JBiolChem(2009)284:29087–96.doi:10.1074/jbc.M109.035899 PubmedAbstract|PubmedFullText|CrossRefFullText 231.QianB,DengY,ImJH,MuschelRJ,ZouY,LiJ,etal.Adistinctmacrophagepopulationmediatesmetastaticbreastcancercellextravasation,establishmentandgrowth.PLoSOne(2009)4:e6562.doi:10.1371/journal.pone.0006562 PubmedAbstract|PubmedFullText|CrossRefFullText 232.WolfMJ,HoosA,BauerJ,BoettcherS,KnustM,WeberA,etal.EndothelialCCR2signalinginducedbycoloncarcinomacellsenablesextravasationviatheJAK2-Stat5andp38MAPKpathway.CancerCell(2012)22:91–105.doi:10.1016/j.ccr.2012.05.023 PubmedAbstract|PubmedFullText|CrossRefFullText 233.Fujita-YamaguchiY.RenewedinterestinbasicandappliedresearchinvolvingmonoclonalantibodiesagainstanoncofetalTn-antigen.JBiochem(2013)154:103–5.doi:10.1093/jb/mvt052 PubmedAbstract|PubmedFullText|CrossRefFullText 234.JulienS,PiccoG,SewellR,Vercoutter-EdouartAS,TarpM,MilesD,etal.Sialyl-Tnvaccineinducesantibody-mediatedtumourprotectioninarelevantmurinemodel.BrJCancer(2009)100:1746–54.doi:10.1038/sj.bjc.6605083 PubmedAbstract|PubmedFullText|CrossRefFullText 235.IbrahimNK,MurrayJL,ZhouD,MittendorfEA,SampleD,TautchinM,etal.SurvivaladvantageinpatientswithmetastaticbreastcancerreceivingendocrinetherapyplusSialylTn-KLHvaccine:posthocanalysisofalargerandomizedtrial.JCancer(2013)4:577–84.doi:10.7150/jca.7028 PubmedAbstract|PubmedFullText|CrossRefFullText 236.BorsigL,StevensonJL,VarkiA.Heparinincancer:roleofselectininteractions.In:KhoranaAA,FrancisCW,editors.Cancer-AssociatedThrombosis.NewYork:InformaHealthcare(2007).p.97–113. Keywords:glycosylation,cancer,metastasis,glycanligands,mucins,siglecs,galectins,selectins Citation:HäuselmannIandBorsigL(2014)Alteredtumor-cellglycosylationpromotesmetastasis.Front.Oncol.4:28.doi:10.3389/fonc.2014.00028 Received:13December2013;Accepted:29January2014;Publishedonline:13February2014. Editedby: RogerChammas,UniversidadedeSãoPaulo,Brazil Reviewedby: StephanVonGunten,UniversityofBern,SwitzerlandShoukatDedhar,UniversityofBritishColumbia,Canada Copyright:©2014HäuselmannandBorsig.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:LuborBorsig,ZürichCenterforIntegrativeHumanPhysiology,InstituteofPhysiology,UniversityofZurich,Winterthurerstrasse190,ZurichCH-8057,Switzerlande-mail:[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1What Is Cancer? - NCI
Differences between Cancer Cells and Normal Cells
- 2Cancer cell - Wikipedia
Cancer cells are cells that divide continually, forming solid tumors or flooding the blood with a...
- 3Tumor cell dissemination: emerging biological insights from ...
Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are ... produce S100A8/9 to su...
- 4Frontiers | Early Dissemination of Circulating Tumor Cells
Circulating tumor cells (CTCs) play a causal role in the development of metastasis, the major cau...
- 5TUMOR CELL MORPHOLOGY - Comparative Oncology - NCBI
Morphological and functional characteristics of the malignant cell. Morphologically, the cancerou...