ZFC: Why? What? And, how?. Naïve set theory ...
文章推薦指數: 80 %
That's it! Zermelo-Fraenkel set theory with the axiom of choice, ZFC, consists of the 10 axioms we just learned about: extensionality, empty set ...
SigninLatestMostPopularAllstoriesAboutWriteforCantor'sParadisePrivatdozentNewsletterZFC:Why?What?And,how?RobertPassmannFollowMay20·11minreadZermelo-Fraenkelsettheorywiththeaxiomofchoiceisconsideredthestandardfoundationformathematics.Butwhy?Whatareitsaxioms?Andhowdoesthistheoryallowustosettletheparadoxesofnaïvesettheory?Exercisesinsettheory.(Photobyauthor)Naïvesettheorydoesn’tdothejobOurjourneybeginswithnaïvesettheory.That’snotaformallogicaltheoryaxiomatisedinaformallanguage.Rather,naïvesettheoryisaninformalcollectionofassumptionsaboutsets,formulatedinnaturallanguage:Foranytwosetsthere’saunionandanintersection.Wehaveasetofnaturalnumbers,andfromthosewecanconstructtherealnumbers.Thecrucialassumptionofnaïvesettheory,however,istheso-calledunrestrictedcomprehensionschemastatingthat:ForanypropertyP(x),thereisasetconsistingofexactlythosexthatsatisfyP.Atfirstlook,comprehensioncertainlymakessense:Givenanypropertyweshouldbeabletotalkaboutthesetofallthoseobjectssatisfyingtheproperty.Forexample,whenwetalkaboutthesetofprimenumbers—thosexthatarenaturalnumbersandhaveexactlytwodivisors.Itturnsout,however,thattheunrestrictedcomprehensionschemaishighlyproblematic.BetrandRusselldiscoveredthefollowingparadoxin1901—Russell’sparadox:TakeP(x)tobethepropertythat‘xdoesnotcontainitself,’or‘x∉x’insymbolicnotation.Bytheunrestrictedcomprehensionschema,theremustbeasetyconsistingofallthosesetsxthatsatisfyP(x).Thatis,yconsistsofallsetsthatdonotcontainthemselves.Doesycontainitself?Isitthecasethaty∈y?Ifso,thenP(y)musthold.Buttheny∉y.That’sacontradiction.Itmustthereforebethecasethaty∉y.ButthismeansthatP(y)cannothold.Thisgetsusthaty∈y.Yetanothercontradiction.Russell’sparadoxthereforeshowsthattheunrestrictedcomprehensionschemaisinconsistent.Ifweassumeit,thenweintroducepropercontradictionsintoourreasoning.Moreset-theoreticparadoxeswerefoundaroundtheturnofthe20thcentury.AnotherexampleisBurali-Forti’sparadox:Heusedtheunrestrictedcomprehensionschematodefinethesetzofallordinals.Thatis,hechoseP(x)tomeanthat‘xisanordinal’andthenappliedcomprehensiontogetthesetzofallsetssatisfyingP(x).Itthenturnsoutthatzitselfsatisfiesthedefinitionofanordinal.Soz∈z,andthereforez
延伸文章資訊
- 1ZFC | Brilliant Math & Science Wiki
ZFC, or Zermelo-Fraenkel set theory, is an axiomatic system used to formally define set theory (a...
- 2ZFC in nLab
Axioms
- 3The Axioms of Set Theory ZFC - People – Department of ...
In this chapter, we shall present and discuss the axioms of Zermelo-Fraenkel Set. Theory includin...
- 4策梅洛-弗蘭克爾集合論- 維基百科
策梅洛-弗蘭克爾集合論(英語:Zermelo-Fraenkel Set Theory),含選擇公理時常簡寫為ZFC,是在數學基礎中最常用形式的公理化集合論,不含選擇公理的則簡寫為ZF。
- 5Set Theory - Stanford Encyclopedia of Philosophy
One can prove in ZFC—and the use of the AC is necessary—that there are non-determined sets. Thus,...