Set Theory - Stanford Encyclopedia of Philosophy
文章推薦指數: 80 %
One can prove in ZFC—and the use of the AC is necessary—that there are non-determined sets. Thus, the Axiom of Determinacy (AD), which asserts ...
StanfordEncyclopediaofPhilosophy
Menu
Browse
TableofContents
What'sNew
RandomEntry
Chronological
Archives
About
EditorialInformation
AbouttheSEP
EditorialBoard
HowtoCitetheSEP
SpecialCharacters
AdvancedTools
Contact
SupportSEP
SupporttheSEP
PDFsforSEPFriends
MakeaDonation
SEPIAforLibraries
EntryNavigation
EntryContents
Bibliography
AcademicTools
FriendsPDFPreview
AuthorandCitationInfo
BacktoTop
SetTheoryFirstpublishedWedOct8,2014;substantiverevisionTueFeb12,2019
Settheoryisthemathematicaltheoryofwell-determined
collections,calledsets,ofobjectsthatarecalled
members,orelements,oftheset.Puresettheory
dealsexclusivelywithsets,sotheonlysetsunderconsiderationare
thosewhosemembersarealsosets.Thetheoryofthe
hereditarily-finitesets,namelythosefinitesetswhose
elementsarealsofinitesets,theelementsofwhicharealsofinite,
andsoon,isformallyequivalenttoarithmetic.So,theessenceof
settheoryisthestudyofinfinitesets,andthereforeitcanbe
definedasthemathematicaltheoryoftheactual—asopposedto
potential—infinite.
Thenotionofsetissosimplethatitisusuallyintroduced
informally,andregardedasself-evident.Insettheory,however,as
isusualinmathematics,setsaregivenaxiomatically,sotheir
existenceandbasicpropertiesarepostulatedbytheappropriate
formalaxioms.Theaxiomsofsettheoryimplytheexistenceofa
set-theoreticuniversesorichthatallmathematicalobjectscanbe
construedassets.Also,theformallanguageofpuresettheoryallows
onetoformalizeallmathematicalnotionsandarguments.Thus,settheory
hasbecomethestandardfoundationformathematics,asevery
mathematicalobjectcanbeviewedasaset,andeverytheoremof
mathematicscanbelogicallydeducedinthePredicateCalculusfrom
theaxiomsofsettheory.
Bothaspectsofsettheory,namely,asthemathematicalscienceof
theinfinite,andasthefoundationofmathematics,areof
philosophicalimportance.
1.Theorigins
2.Theaxiomsofsettheory
2.1TheaxiomsofZFC
3.Thetheoryoftransfiniteordinalsandcardinals
3.1Cardinals
4.Theuniverse\(V\)ofallsets
5.Settheoryasthefoundationofmathematics
5.1Metamathematics
5.2Theincompletenessphenomenon
6.Thesettheoryofthecontinuum
6.1DescriptiveSetTheory
6.2Determinacy
6.3TheContinuumHypothesis
7.Gödel’sconstructibleuniverse
8.Forcing
8.1Otherapplicationsofforcing
9.Thesearchfornewaxioms
10.Largecardinals
10.1Innermodelsoflargecardinals
10.2Consequencesoflargecardinals
11.Forcingaxioms
Bibliography
AcademicTools
OtherInternetResources
RelatedEntries
1.Theorigins
Settheory,asaseparatemathematicaldiscipline,beginsinthe
workofGeorgCantor.Onemightsaythatsettheorywasborninlate
1873,whenhemadetheamazingdiscoverythatthelinearcontinuum,
thatis,therealline,isnotcountable,meaningthatitspoints
cannotbecountedusingthenaturalnumbers.So,eventhoughtheset
ofnaturalnumbersandthesetofrealnumbersarebothinfinite,
therearemorerealnumbersthantherearenaturalnumbers,which
openedthedoortotheinvestigationofthedifferentsizesof
infinity.Seetheentryonthe
earlydevelopmentofsettheory
foradiscussionoftheoriginof
set-theoreticideasandtheirusebydifferentmathematiciansand
philosophersbeforeandaroundCantor’stime.
AccordingtoCantor,twosets\(A\)and\(B\)havethesamesize,or
cardinality,iftheyarebijectable,i.e.,theelementsof
\(A\)canbeputinaone-to-onecorrespondencewiththeelementsof
\(B\).Thus,theset\(\mathbb{N}\)ofnaturalnumbersandtheset
\(\mathbb{R}\)ofrealnumbershavedifferentcardinalities.In1878
CantorformulatedthefamousContinuumHypothesis(CH),which
assertsthateveryinfinitesetofrealnumbersiseithercountable,
i.e.,ithasthesamecardinalityas\(\mathbb{N}\),orhasthesame
cardinalityas\(\mathbb{R}\).Inotherwords,thereareonlytwo
possiblesizesofinfinitesetsofrealnumbers.TheCHisthemost
famousproblemofsettheory.Cantorhimselfdevotedmucheffortto
it,andsodidmanyotherleadingmathematiciansofthefirsthalfof
thetwentiethcentury,suchasHilbert,wholistedtheCHasthefirst
probleminhiscelebratedlistof23unsolvedmathematicalproblems
presentedin1900attheSecondInternationalCongressof
Mathematicians,inParis.TheattemptstoprovetheCHledtomajor
discoveriesinsettheory,suchasthetheoryofconstructiblesets,
andtheforcingtechnique,whichshowedthattheCHcanneitherbe
provednordisprovedfromtheusualaxiomsofsettheory.Tothisday,
theCHremainsopen.
Earlyon,someinconsistencies,orparadoxes,arosefromanaive
useofthenotionofset;inparticular,fromthedeceivinglynatural
assumptionthateverypropertydeterminesaset,namelythesetof
objectsthathavetheproperty.OneexampleisRussell’s
Paradox,alsoknowntoZermelo:
considerthepropertyofsetsofnotbeingmembersof
themselves.Ifthepropertydeterminesaset,callit\(A\),then\(A\)is
amemberofitselfifandonlyif\(A\)isnotamemberof
itself.
Thus,somecollections,likethecollectionofallsets,the
collectionofallordinalsnumbers,orthecollectionofallcardinal
numbers,arenotsets.Suchcollectionsarecalledproper
classes.
Inordertoavoidtheparadoxesandputitonafirmfooting,set
theoryhadtobeaxiomatized.Thefirstaxiomatizationwasdueto
Zermelo(1908)anditcameasaresultoftheneedtospelloutthe
basicset-theoreticprinciplesunderlyinghisproofofCantor’s
Well-OrderingPrinciple.Zermelo’saxiomatizationavoidsRussell’s
ParadoxbymeansoftheSeparationaxiom,whichisformulatedas
quantifyingoverpropertiesofsets,andthusitisasecond-order
statement.FurtherworkbySkolemandFraenkelledtothe
formalizationoftheSeparationaxiomintermsofformulasof
first-order,insteadoftheinformalnotionofproperty,aswellasto
theintroductionoftheaxiomofReplacement,whichisalsoformulated
asanaxiomschemaforfirst-orderformulas(seenextsection).The
axiomofReplacementisneededforaproperdevelopmentofthetheory
oftransfiniteordinalsandcardinals,usingtransfiniterecursion
(seeSection3).Itisalsoneededto
provetheexistenceofsuchsimplesetsasthesetofhereditarily
finitesets,i.e.,thosefinitesetswhoseelementsarefinite,the
elementsofwhicharealsofinite,andsoon;ortoprovebasic
set-theoreticfactssuchasthateverysetiscontainedina
transitiveset,i.e.,asetthatcontainsallelementsofitselements
(seeMathias2001fortheweaknessesofZermelosettheory).Afurther
addition,byvonNeumann,oftheaxiomofFoundation,ledtothe
standardaxiomsystemofsettheory,knownastheZermelo-Fraenkel
axiomsplustheAxiomofChoice,orZFC.
Otheraxiomatizationsofsettheory,suchasthoseofvon
Neumann-Bernays-Gödel(NBG),orMorse-Kelley(MK),allowalsofor
aformaltreatmentofproperclasses.
2.Theaxiomsofsettheory
ZFCisanaxiomsystemformulatedinfirst-orderlogicwith
equalityandwithonlyonebinaryrelationsymbol\(\in\)for
membership.Thus,wewrite\(A\inB\)toexpressthat\(A\)isamemberof
theset\(B\).Seethe
SupplementonBasicSetTheory
forfurtherdetails.Seealsothe
SupplementonZermelo-FraenkelSetTheory
foraformalizedversionoftheaxiomsandfurthercomments.We
statebelowtheaxiomsofZFCinformally.
2.1TheaxiomsofZFC
Extensionality:Iftwosets\(A\)and\(B\)have
thesameelements,thentheyareequal.
NullSet:Thereexistsaset,denotedby
\({\varnothing}\)andcalledtheemptyset,whichhasno
elements.
Pair:Givenanysets\(A\)and\(B\),there
existsaset,denotedby\(\{A,B\}\),whichcontains\(A\)and\(B\)asits
onlyelements.Inparticular,thereexiststheset\(\{A\}\)whichhas
\(A\)asitsonlyelement.
PowerSet:Foreveryset\(A\)thereexistsa
set,denotedby\(\mathcal{P}(A)\)andcalledthepowersetof
\(A\),whoseelementsareallthesubsetsof\(A\).
Union:Foreveryset\(A\),thereexistsaset,
denotedby\(\bigcupA\)andcalledtheunionof\(A\),whose
elementsarealltheelementsoftheelementsof\(A\).
Infinity:Thereexistsaninfiniteset.In
particular,thereexistsaset\(Z\)thatcontains\({\varnothing}\)and
suchthatif\(A\inZ\),then\(\bigcup\{A,\{A\}\}\inZ\).
Separation:Foreveryset\(A\)andeverygiven
property,thereisasetcontainingexactlytheelementsof\(A\)that
havethatproperty.Apropertyisgivenbyaformula
\(\varphi\)ofthefirst-orderlanguageofsettheory.
Thus,Separationisnotasingleaxiombutanaxiomschema,that
is,aninfinitelistofaxioms,oneforeachformula
\(\varphi\).
Replacement:Foreverygivendefinable
functionwithdomainaset\(A\),thereisasetwhoseelementsare
allthevaluesofthefunction.
Replacementisalsoanaxiomschema,asdefinablefunctionsare
givenbyformulas.
Foundation:Everynon-emptyset\(A\)contains
an\(\in\)-minimalelement,thatis,anelementsuchthatnoelementof
\(A\)belongstoit.
ThesearetheaxiomsofZermelo-Fraenkelsettheory,orZF.The
axiomsofNullSetandPairfollowfromtheotherZFaxioms,sothey
maybeomitted.Also,ReplacementimpliesSeparation.
Finally,thereistheAxiomofChoice(AC):
Choice:Foreveryset\(A\)of
pairwise-disjointnon-emptysets,thereexistsasetthatcontains
exactlyoneelementfromeachsetin\(A\).
TheACwas,foralongtime,acontroversialaxiom.Ontheone
hand,itisveryusefulandofwideuseinmathematics.Ontheother
hand,ithasratherunintuitiveconsequences,suchasthe
Banach-TarskiParadox,whichsaysthattheunitballcanbe
partitionedintofinitely-manypieces,whichcanthenberearrangedto
formtwounitballs.Theobjectionstotheaxiomarisefromthefact
thatitassertstheexistenceofsetsthatcannotbeexplicitly
defined.ButGödel’s1938proofofitsconsistency,relativeto
theconsistencyofZF,dispelledanysuspicionsleftaboutit.
TheAxiomofChoiceisequivalent,moduloZF,tothe
Well-orderingPrinciple,whichassertsthateverysetcanbe
well-ordered,i.e.,itcanbelinearlyorderedsothateverynon-empty
subsethasaminimalelement.
Althoughnotformallynecessary,besidesthesymbol\(\in\)one
normallyusesforconvenienceotherauxiliarydefinedsymbols.For
example,\(A\subseteqB\)expressesthat\(A\)isasubsetof
\(B\),i.e.,everymemberof\(A\)isamemberof\(B\).Othersymbolsare
usedtodenotesetsobtainedbyperformingbasicoperations,suchas
\(A\cupB\),whichdenotestheunionof\(A\)and\(B\),i.e.,the
setwhoseelementsarethoseof\(A\)and\(B\);or\(A\capB\),which
denotestheintersectionof\(A\)and\(B\),i.e.,thesetwhose
elementsarethosecommonto\(A\)and\(B\).Theorderedpair
\((A,B)\)isdefinedastheset\(\{\{A\},\{A,B\}\}\).Thus,two
orderedpairs\((A,B)\)and\((C,D)\)areequalifandonlyif\(A=C\)and
\(B=D\).AndtheCartesianproduct\(A\timesB\)isdefinedas
thesetofallorderedpairs\((C,D)\)suchthat\(C\inA\)and\(D\in
B\).Givenanyformula\(\varphi(x,y_1,\ldots,y_n)\),andsets
\(A,B_1,\ldots,B_n\),onecanformthesetofallthoseelementsof\(A\)
thatsatisfytheformula\(\varphi(x,B_1,\ldots,B_n)\).Thissetis
denotedby\(\{a\inA:\varphi(a,B_1,\ldots,B_n)\}\).InZFonecan
easilyprovethatallthesesetsexist.Seethe
SupplementonBasicSetTheory
forfurtherdiscussion.
3.Thetheoryoftransfiniteordinalsandcardinals
InZFConecandeveloptheCantoriantheoryoftransfinite(i.e.,
infinite)ordinalandcardinalnumbers.Followingthedefinitiongiven
byVonNeumannintheearly1920s,theordinalnumbers,or
ordinals,forshort,areobtainedbystartingwiththeempty
setandperformingtwooperations:takingtheimmediatesuccessor,and
passingtothelimit.Thus,thefirstordinalnumberis
\({\varnothing}\).Givenanordinal\(\alpha\),itsimmediate
successor,denotedby\(\alpha+1\),istheset\(\alpha\cup\{
\alpha\}\).Andgivenanon-emptyset\(X\)ofordinalssuchthatfor
every\(\alpha\inX\)thesuccessor\(\alpha+1\)isalsoin\(X\),one
obtainsthelimitordinal\(\bigcupX\).Oneshowsthatevery
ordinalis(strictly)well-orderedby\(\in\),i.e.,itislinearly
orderedby\(\in\)andthereisnoinfinite\(\in\)-descending
sequence.Also,everywell-orderedsetisisomorphictoaunique
ordinal,calleditsorder-type.
Notethateveryordinalisthesetofitspredecessors.However,
theclass\(ON\)ofallordinalsisnotaset.Otherwise,\(ON\)wouldbe
anordinalgreaterthanalltheordinals,whichisimpossible.The
firstinfiniteordinal,whichisthesetofallfiniteordinals,is
denotedbytheGreekletteromega(\(\omega\)).InZFC,oneidentifies
thefiniteordinalswiththenaturalnumbers.Thus,\({\varnothing}=0\),
\(\{{\varnothing}\}=1\),\(\{{\varnothing},\{{\varnothing}\}\}=2\),
etc.,hence\(\omega\)isjusttheset\(\mathbb{N}\)ofnatural
numbers.
Onecanextendtheoperationsofadditionandmultiplicationof
naturalnumberstoalltheordinals.Forexample,theordinal\(\alpha
+\beta\)istheorder-typeofthewell-orderingobtainedby
concatenatingawell-orderedsetoforder-type\(\alpha\)anda
well-orderedsetoforder-type\(\beta\).Thesequenceofordinals,
well-orderedby\(\in\),startsasfollows
0,1,2,…,\(n\),…,\(\omega\),\(\omega+1\),
\(\omega+2\),…,\(\omega+\omega\),…,\(\omega\cdotn\),
…,\(\omega\cdot\omega\),…,\(\omega^n\),…,
\(\omega^\omega\),…
Theordinalssatisfytheprincipleoftransfinite
induction:supposethat\(C\)isaclassofordinalssuchthat
whenever\(C\)containsallordinals\(\beta\)smallerthansomeordinal
\(\alpha\),then\(\alpha\)isalsoin\(C\).Thentheclass\(C\)contains
allordinals.UsingtransfiniteinductiononecanproveinZFC(and
oneneedstheaxiomofReplacement)theimportantprincipleof
transfiniterecursion,whichsaysthat,givenanydefinable
class-function\(G:V\toV\),onecandefineaclass-function\(F:ON\toV\)
suchthat\(F(\alpha)\)isthevalueofthefunction\(G\)appliedtothe
function\(F\)restrictedto\(\alpha\).Oneusestransfiniterecursion,
forexample,inordertodefineproperlythearithmeticaloperations
ofaddition,product,andexponentiationontheordinals.
Recallthataninfinitesetiscountableifitis
bijectable,i.e.,itcanbeputintoaone-to-onecorrespondence,with
\(\omega\).Alltheordinalsdisplayedaboveareeitherfiniteor
countable.Butthesetofallfiniteandcountableordinalsisalsoan
ordinal,called\(\omega_1\),andisnotcountable.Similarly,theset
ofallordinalsthatarebijectablewithsomeordinallessthanor
equalto\(\omega_1\)isalsoanordinal,called\(\omega_2\),andisnot
bijectablewith\(\omega_1\),andsoon.
3.1Cardinals
Acardinalisanordinalthatisnotbijectablewithany
smallerordinal.Thus,everyfiniteordinalisacardinal,and
\(\omega\),\(\omega_1\),\(\omega_2\),etc.arealsocardinals.The
infinitecardinalsarerepresentedbytheletteraleph(\(\aleph\))of
theHebrewalphabet,andtheirsequenceisindexedbytheordinals.It
startslikethis
\(\aleph_0\),\(\aleph_1\),\(\aleph_2\),…,\(\aleph_\omega\),
\(\aleph_{\omega+1}\),…,\(\aleph_{\omega+\omega}\),…,
\(\aleph_{\omega^2}\),…,\(\aleph_{\omega^\omega}\),…,
\(\aleph_{\omega_1}\),…,\(\aleph_{\omega_2}\),…
Thus,\(\omega=\aleph_0\),\(\omega_1=\aleph_1\),\(\omega_2=\aleph_2\),
etc.Foreverycardinalthereisabiggerone,andthelimitofan
increasingsequenceofcardinalsisalsoacardinal.Thus,theclass
ofallcardinalsisnotaset,butaproperclass.
Aninfinitecardinal\(\kappa\)iscalledregularifitis
nottheunionoflessthan\(\kappa\)smallercardinals.Thus,
\(\aleph_0\)isregular,andsoareallinfinitesuccessorcardinals,
suchas\(\aleph_1\).Non-regularinfinitecardinalsarecalled
singular.Thefirstsingularcardinalis\(\aleph_\omega\),as
itistheunionofcountably-manysmallercardinals,namely
\(\aleph_\omega=\bigcup_{n\kappa\),whichimpliesthatthecofinalityof
thecardinal\(2^{\aleph_0}\),whateverthatcardinalis,mustbe
uncountable.ButthisisessentiallyallthatZFCcanproveaboutthe
valueoftheexponential\(2^{\aleph_0}\).
Inthecaseofexponentiationofsingularcardinals,ZFChasalot
moretosay.In1989,Shelahprovedtheremarkableresultthatif
\(\aleph_\omega\)isastronglimit,thatis,
\(2^{\aleph_n}\alpha\)andeverysequenceofelementsof\(M\)oflength
\(\alpha\)belongsto\(M\).
Woodincardinalsfallbetweenstrongandsupercompact.Every
supercompactcardinalisWoodin,andif\(\delta\)isWoodin,then
\(V_\delta\)isamodelofZFCinwhichthereisaproperclassof
strongcardinals.Thus,whileaWoodincardinal\(\delta\)neednotbe
itselfverystrong—thefirstoneisnotevenweakly
compact—itimpliestheexistenceofmanylargecardinalsin
\(V_\delta\).
Beyondsupercompactcardinalswefindtheextendible
cardinals,thehuge,thesuperhuge,etc.
Kunen’stheoremaboutthenon-existenceofanon-trivialelementary
embedding\(j:V\toV\)actuallyshowsthattherecannotbeanelementary
embedding\(j:V_{\lambda+2}\toV_{\lambda+2}\)differentfromthe
identity,forany\(\lambda\).
Thestrongestlargecardinalnotionsnotknowntobeinconsistent,
moduloZFC,arethefollowing:
Thereexistsanelementaryembedding\(j:V_{\lambda+1}\to
V_{\lambda+1}\)differentfromtheidentity.
Thereexistsanelementaryembedding\(j:L(V_{\lambda+1})\to
L(V_{\lambda+1})\)differentfromtheidentity.
Largecardinalsformalinearhierarchyofincreasingconsistency
strength.Infacttheyarethesteppingstonesoftheinterpretability
hierarchyofmathematicaltheories.Seetheentryon
independenceandlargecardinals
formoredetails.Givenanysentence\(\varphi\),exactly
onethefollowingthreepossibilitiesholdsaboutthetheoryZFCplus
\(\varphi\):
ZFCplus\(\varphi\)isinconsistent.
ZFCplus\(\varphi\)isequiconsistentwithZFC.
ZFCplus\(\varphi\)isequiconsistentwithZFCplustheexistenceof
somelargecardinal.
Thus,largecardinalscanbeusedtoprovethatagivensentence
\(\varphi\)doesnotimplyanothersentence\(\psi\),moduloZFC,by
showingthatZFCplus\(\psi\)impliestheconsistencyofsomelarge
cardinal,whereasZFCplus\(\varphi\)isconsistentassumingthe
existenceofasmallerlargecardinal,orjustassumingthe
consistencyofZFC.Inotherwords,\(\psi\)hashigherconsistency
strengththan\(\varphi\),moduloZFC.Then,byGödel’ssecond
incompletenesstheorem,ZFCplus\(\varphi\)cannotprove\(\psi\),
assumingZFCplus\(\varphi\)isconsistent.
Aswealreadypointedout,onecannotproveinZFCthatlarge
cardinalsexist.Buteverythingindicatesthattheirexistencenot
onlycannotbedisproved,butinfacttheassumptionoftheir
existenceisaveryreasonableaxiomofsettheory.Foronething,
thereisalotofevidencefortheirconsistency,especiallyforthose
largecardinalsforwhichitispossibletoconstructaninner
model.
10.1Innermodelsoflargecardinals
AninnermodelofZFCisatransitiveproperclassthat
containsalltheordinalsandsatisfiesallZFCaxioms.Thus,\(L\)is
thesmallestinnermodel,while\(V\)isthelargest.Somelarge
cardinals,suchasinaccessible,Mahlo,orweakly-compact,mayexist
in\(L\).Thatis,if\(\kappa\)hasoneoftheselargecardinal
properties,thenitalsohasthepropertyin\(L\).Butsomelarge
cardinalscannotexistin\(L\).Indeed,Scott(1961)showedthatif
thereexistsameasurablecardinal\(\kappa\),then\(V\neL\).Itis
importanttonoticethat\(\kappa\)doesbelongto\(L\),since\(L\)
containsallordinals,butitisnotmeasurablein\(L\)becausea
\(\kappa\)-completenon-principalmeasureon\(\kappa\)cannotexist
there.
If\(\kappa\)isameasurablecardinal,thenonecanconstructan
\(L\)-likemodelinwhich\(\kappa\)ismeasurablebytakinga
\(\kappa\)-completenon-principalandnormalmeasure\(U\)on\(\kappa\),
andproceedingasinthedefinitionof\(L\),butnowusing\(U\)asan
additionalpredicate.Theresultingmodel,called\(L[U]\),isaninner
modelofZFCinwhich\(\kappa\)ismeasurable,andinfact\(\kappa\)is
theonlymeasurablecardinal.Themodeliscanonical,inthesense
thatanyothernormalmeasurewitnessingthemeasurabilityof\(\kappa\)
wouldyieldthesamemodel,andhasmanyofthepropertiesof\(L\).For
instance,ithasaprojectivewellorderingofthereals,andit
satisfiestheGCH.
Buildingsimilar\(L\)-likemodelsforstrongerlargecardinals,such
asstrong,orWoodin,ismuchharder.Thosemodelsareoftheform
\(L[E]\),where\(E\)isasequenceofextenders,eachextender
beingasystemofmeasures,thatencodetherelevantelementary
embeddings.
Thelargest\(L\)-likeinnermodelsforlargecardinalsthathave
beenobtainedsofarcancontainWoodinlimitsofWoodincardinals
(Neeman2002).However,buildingan\(L\)-likemodelforasupercompact
cardinalisstillachallenge.Thesupercompactbarrierseemstobe
thecrucialone,forWoodinhasshownthatforakindof\(L\)-like
innermodelforasupercompactcardinal,whichhecallsthe
Ultimate-\(L\),allstrongerlargecardinalsthatmayexistin\(V\),suchas
extendible,huge,I1,etc.wouldalsoexistinthemodel.The
constructionofUltimate-\(L\)isstillincomplete,anditisnotclear
yetthatitwillsucceed,foritrestsuponsometechnicalhypotheses
thatneedtobeconfirmed.
10.2Consequencesoflargecardinals
Theexistenceoflargecardinalshasdramaticconsequences,even
forsimply-definablesmallsets,liketheprojectivesetsofreal
numbers.Forexample,Solovay(1970)proved,assumingthatthere
existsameasurablecardinal,thatall\(\mathbf{\Sigma}^1_2\)setsof
realsareLebesguemeasurableandhavetheBaireproperty,which
cannotbeprovedinZFCalone.AndShelahandWoodin(1990)showed
thattheexistenceofaproperclassofWoodincardinalsimpliesthat
thetheoryof\(L(\mathbb{R})\),evenwithrealnumbersasparameters,
cannotbechangedbyforcing,whichimpliesthatallsetsofreal
numbersthatbelongto\(L(\mathbb{R})\)areregular.Further,undera
weakerlarge-cardinalhypothesis,namelytheexistenceofinfinitely
manyWoodincardinals,MartinandSteel(1989)provedthatevery
projectivesetofrealnumbersisdetermined,i.e.,theaxiomofPD
holds,henceallprojectivesetsareregular.Moreover,Woodinshowed
thattheexistenceofinfinitelymanyWoodincardinals,plusa
measurablecardinalaboveallofthem,impliesthateverysetofreals
in\(L(\mathbb{R})\)isdetermined,i.e.,theaxiom\(AD^{L(\mathbb{R})}\)
holds,henceallsetsofrealnumbersthatbelongto\(L(\mathbb{R})\),
andthereforeallprojectivesets,areregular.Healsoshowedthat
Woodincardinalsprovidetheoptimallargecardinalassumptionsby
provingthatthefollowingtwostatements:
ThereareinfinitelymanyWoodincardinals.
\(AD^{L({\BbbR})}\).
areequiconsistent,i.e.,ZFCplus1isconsistentifandonlyif
ZFCplus2isconsistent.Seetheentryon
largecardinalsanddeterminacy
formoredetailsandrelatedresults.
Anotherareainwhichlargecardinalsplayanimportantroleisthe
exponentiationofsingularcardinals.Theso-calledSingular
CardinalHypothesis(SCH)completelydeterminesthebehaviorof
theexponentiationforsingularcardinals,modulotheexponentiation
forregularcardinals.TheSCHfollowsfromtheGCH,andsoitholds
in\(L\).AconsequenceoftheSCHisthatif
\(2^{\aleph_n}.
[Thiswasthepreviousentryonsettheoryinthe
StanfordEncyclopediaofPhilosophy—seethe
versionhistory.]
RelatedEntries
settheory:continuumhypothesis|
settheory:earlydevelopment|
settheory:independenceandlargecardinals|
settheory:largecardinalsanddeterminacy
Copyright©2019by
JoanBagaria
延伸文章資訊
- 1ZFC: Why? What? And, how?. Naïve set theory ...
That's it! Zermelo-Fraenkel set theory with the axiom of choice, ZFC, consists of the 10 axioms w...
- 2Zermelo-Fraenkel Axioms -- from Wolfram MathWorld
The system of axioms 1-8 is called Zermelo-Fraenkel set theory, denoted "ZF." The system of axiom...
- 3Set Theory - Stanford Encyclopedia of Philosophy
One can prove in ZFC—and the use of the AC is necessary—that there are non-determined sets. Thus,...
- 4ZFC in nLab
Axioms
- 5ZFC | Brilliant Math & Science Wiki
ZFC, or Zermelo-Fraenkel set theory, is an axiomatic system used to formally define set theory (a...