ZFC in nLab
文章推薦指數: 80 %
Axioms nLab ZFC SkiptheNavigationLinks| HomePage| AllPages| LatestRevisions| Discussthispage| Contents Context Foundations foundations Thebasisofitall mathematicallogic first-orderlogic typetheory,homotopytypetheory settheory materialsettheory ZFC ZFA structuralsettheory ETCS SEAR universe Foundationalaxioms foundationalaxiom basicconstructions: axiomofcartesianproducts axiomofdisjointunions axiomoftheemptyset axiomoffullness axiomoffunctionsets axiomofpowersets axiomofquotientsets materialaxioms: axiomofextensionality axiomoffoundation axiomofanti-foundation Mostowski'saxiom axiomofpairing axiomoftransitiveclosure axiomofunion structuralaxioms: axiomofmaterialization axiomsofchoice: axiomofchoice axiomofcountablechoice axiomofdependentchoice axiomofexcludedmiddle axiomofexistence axiomofmultiplechoice Markov'saxiom presentationaxiom smallcardinalityselectionaxiom axiomofsmallviolationsofchoice axiomofweaklyinitialsetsofcovers Whitehead'sprinciple largecardinalaxioms: axiomofinfinity axiomofuniverses regularextensionaxiom inaccessiblecardinal measurablecardinal elementaryembedding supercompactcardinal Vopěnka'sprinciple strongaxioms axiomofseparation axiomofreplacement further reflectionprinciple Removingaxioms constructivemathematics predicativemathematics Editthissidebar Contents Idea History Axioms Variations Constructiveversions Classtheories Largecardinals Miscellaneousvariations Relationtostructuralsettheories Relatedentries References Idea ThemostcommonlyacceptedstandardfoundationofmathematicstodayisamaterialsettheorycommonlyknownasZermelo–FraenkelsettheorywiththeaxiomofchoiceorZFCZFCforshort.Therearemanyvariationsonthattheory(includingconstructiveandclass-basedversions,whicharealsodiscussedhere). AccompanyingZFC,especiallytakingintoaccounttheaxiomoffoundation,isapicture(or‘ontology’)ofmaterialsetsformingacumulativehierarchyorganizedbyanordinal-valuedrankfunction.Thispicture(sometimesreferredtoasthe‘iterativeconception’)considerssetsasgeneratedbystartingatbottomwiththeemptysetandbuildingtohigherranksbyapplyingapowersetoperationtogettoanextsuccessorordinalrank,andtakingunionstogettolimitordinalranks.Thisiterativeconceptionfindsalternativeexpressioninalgebraicsettheory. History ThefirstversionwasdevelopedbyErnstZermeloin1908;in1922,AbrahamFraenkelandThoralfSkolemindependentlyproposedaprecisefirst-orderversionwiththeaxiomofreplacement;vonNeumannaddedtheaxiomoffoundationin1925.Alloftheseversionsincludedtheaxiomofchoice,butthiswasconsideredcontroversialforsometime;onehasmerelyZFZFifitistakenout. ZFCZFCissimilartotheclasstheoriesNBG(duetoJohnvonNeumann,PaulBernays,andKurtGödel)andMK(duetoAnthonyMorseandJohnKelley).Theformerisaconservative,finitelyaxiomatisableextensionofZFCZFC,whilethelatterisstrongerandcannotbefinitelyaxiomatised(althoughaconservativeextensioninvolvingmeta-classescouldbe). Contemporarysettheoristsoftenacceptadditionallargecardinalaxioms,whichcangreatlyincreasethestrengthofZFCZFC,farbeyondevenMKMK.Otheradditionalaxiomswhicharesometimesaddedaretheaxiomofdeterminacy(orvariousweakerversionsofit)ortheaxiomofconstructibility.TherearealsoweakervariantsofZFCZFC,especiallyforconstructiveandpredicativemathematics.Thentherearealternativesonadifferentbasis,notablyNFU(averyimpredicativematerialsettheorywithasetofallsets)andETCS(astructuralsettheory). (Thesourceforthishistory,especiallythedates,ismostlytheEnglishWikipedia.) Axioms ZFCZFCisasimplytypedfirst-ordermaterialsettheory,withasingletypeVVcalledthecumulativehierarchyandabinarymembershippredicate∈\inonVV.EverytermofVVinstandardZFCZFCisapureset,whichwewillcallsimplyaset.Asetaaissaidtobelongto,bein,beamemberof,orbeanelementofasetbbifa∈ba\inb,andsetbbissaidtohavethememberaa. TherearealsovariationsofZFCwithnon-settermssuchasurelementsandclasses.Urelementsmaybedistinguishedfromsetsandclassessincetheyhavenoelements(althoughtheemptysetalsohasnoelements);setsareusuallythoseclassesthatarethemselveselements(members)ofsets.Urelementsarealsocalledatoms,andZFZFwithatomsincludedissometimescalledZFAorZFUZFU. Extensionality:Iftwosetshavethesamemembers,thentheyareequalandthemselvesmembersofthesamesets.Seeaxiomofextensionalityforvariations,suchaswhetherthisistakenasadefinitionoranaxiomatisationofequalityofsets,andhowtheconditionmightbestrengthenedif(10)isleftout. NullSet:Thereisanemptyset:aset∅\emptywithnoelements.By(1),itfollowsthatthissetisunique;byeventheweakestversionof(5),itisenoughtostatetheexistenceofsomeset.(Analogousremarksapplytoaxioms(3),(4),(6),(7),and(8),exceptwhen(5)isomittedand(4)and(6)areneededtoderiveit.) Pairing:Ifaaandbbaresets,thenthereisaset{a,b}\{a,b\},theunorderedpairingofaaandbb,whoseelementsarepreciselythosesetsequaltoaaorbb.Betweenthem,(2)and(3)formanullary/binarypair;theunaryversionfollowsfrom(3),since{a}={a,a}\{a\}=\{a,a\}by(1).Thehigherfinitaryversionsrelyalsoon(4)(with{a,b,c}={a}∪{b,c}\{a,b,c\}=\{a\}\cup\{b,c\},etc),sotheyshouldprobablybestatedexplicitlyasanaxiomscheme?if(4)isomitted(butnobodyseemstodothat). Union:If𝒞\mathcal{C}isaset,thenthereisaset⋃𝒞\bigcup\mathcal{C},theunionof𝒞\mathcal{C},whoseelementsarepreciselytheelementsoftheelementsof𝒞\mathcal{C}.ItisnormaltowriteA∪BA\cupBfor⋃{A,B}\bigcup\{A,B\},etc,A∪B∪CA\cupB\cupCfor⋃{A,B,C}\bigcup\{A,B,C\},etc.Notethat⋃{A}=A\bigcup\{A\}=Aand⋃∅=∅\bigcup\empty=\empty(using(1)toprovetheseresults),sonospecialnotationisneededforthese. Separation/Specification/Comprehension:Givenanypredicateϕ[x]\phi[x]inthelanguageofsettheorywiththechosenfreevariablexxoftypeVV,ifUUisaset,thenthereisaset{x∈U|ϕ[x]}\{x\inU\;|\;\phi[x]\},thesubsetofUUgivenbyϕ\phi,whoseelementsarepreciselythoseelementsxxofUUsuchthatϕ[x]\phi[x]holds.Therearemanyvariations,fromBoundedSeparationtoFullComprehension,whichweshouldprobablydescribeataxiomofseparation;theversionlistedhereisFullSeparation.Thisisanaxiomscheme?,butitcanbemadeasingleaxiominNBGNBG(butnotcompletelyinMKMK).Notethat(5)followsfrom(4)and(6)usingclassicallogic,soitisoftenleftout,butitmustbeincludedinintuitionisticvariations,variationswhere(6)isomittedorweakened(orwhere(4)isomittedorweakened,inprinciple,althoughthatneverhappensinpractice),andvariationswhere(5)itselfisstrengthened. Replacement/Collection:Givenapredicateψ[x,Y]\psi[x,Y]withthechosenfreevariablesxxandYYoftypeVV,ifUUisasetandifforeveryxxinUUthereisauniqueYYsuchthatψ[x,Y]\psi[x,Y]holds,thenthereisset{ιY.ψ[x,Y]|x∈U}\{\iota\,Y.\;\psi[x,Y]\;|\;x\inU\},theimageofUUunderψ\psi,whoseelementsarepreciselythosesetsYYsuchthatthereisanelementxxofUUsuchthatψ[x,Y]\psi[x,Y]holds;ifΨ[x]\Psi[x]isadefinedterm,thenwewrite{Ψ[x]|x∈U}\{\Psi[x]\;|\;x\inU\}for{ιY.Y=Ψ[x]|x∈U}\{\iota\,Y.\;Y=\Psi[x]\;|\;x\inU\}.Againtherearemanyvariations,fromWeakReplacementtoStrongCollection,whichweshouldprobablydescribeataxiomofreplacement;theonedescribedhereisReplacement.Thisisalsoanaxiomscheme?,butitcanbemadeintoasingleaxiominbothNBGNBGandMKMK.Onecouldcombinethiswith(5)toproduce{ιY.ψ[x,Y]|x∈U|ϕ[x]}\{\iota\,Y.\;\psi[x,Y]\;|\;x\inU\;|\;\phi[x]\},butnobodyseemstodothis. PowerSets:IfUUisaset,thenthereisaset𝒫U\mathcal{P}U,thepowersetofUU,whoseelementsarepreciselythesubsetsofUU,thatisthesetsAAwhoseelementsareallelementsofUU.Whenusingintuitionisticlogic,itispossibletoacceptonlyaweakversionofthis,suchasSubsetCollectionor(evenweaker)Exponentiation.Butinclassicallogic,PowerSetsfollowsfromExponentiationandtheweakestformof(5). Infinity:Thereisasetω\omegaoffiniteordinalsaspuresets.Normallyonestatesthat∅∈ω\empty\in\omegaanda∪{a}∈ωa\cup\{a\}\in\omegawhenevera∈ωa\in\omega,althoughvariationsarepossible.Usinganybuttheweakestversionof(6),itisenoughtostatethatthereisasetsatisfyingPeano'saxiomsofnaturalnumbers,orevenanyDedekind-infiniteset.Itseemstobeuncommontoincorporate(2)into(8),butinprinciple(8)implies(2). Choice:If𝒞\mathcal{C}isaset,eachofwhoseelementshasanelement,thenthereisasetwithexactlyoneelementfromeachelementof𝒞\mathcal{C}.Notethatthissetisnotunique,norcanweconstructacanonicalversionwhichis,sowedonotgiveitanynameornotation.ThisversionisthesimplesttostateinthelanguageofZFCZFC;seeaxiomofchoiceforfurtherdiscussionandweakversions.Itispossibletoincorporate(9)into(5)or(6),butthisseemstoberare. Foundation/Regularity/Induction:Givenaformulaϕ\phiwithachosenfreevariableXXoftypeVV,ifϕ\phiholdswheneverϕ[a/X]\phi[a/X]holdsforeverya∈Xa\inX,thenϕ\phiholdsabsolutely.Forvariations(includingtheaxiomofanti-foundation),seeaxiomoffoundation.Thisaxiomscheme?canbemadeintoasingleaxiomeveninZFCZFCitself(althoughnotinversionswithintuitionisticlogic;inthatcaseitcanbemadeasingleaxiomonlyinaclasstheory). Variations Zermelo'soriginalversionconsistsofaxioms(1–5)and(7–9),inasomewhatimpreciseform(whichaffectstheinterpretationof5)ofhigher-orderclassicallogic. ThemodernZFZFconsistsof(1–8)and(10),usingfirst-orderclassicallogic,thestrongestformof(6)(thatis,StrongCollection,althoughthestandardReplacementissufficientwithclassicallogic),andthestrongestformof(5)possibleusingonlysetsandnotclasses(FullSeparation).SinceFullSeparationfollowsfromReplacementwithclassicallogic,itisoftenomittedfromthelistofaxioms. ZFCZFCadds(9)andisthusthestrongestversionwithoutclassesoradditionalaxioms.TheversionoriginallyformulatedbyFraenkelandSkolemdidnotinclude(10),althoughthethreefoundersalleventuallyacceptedit. ItiscommontotakeZermelosettheory(Z\mathrm{Z})tobeZFZFwithout(6),althoughZermeloneveracceptedthefirst-orderformulation;notethattheweakestform(WeakReplacement)of(6)followsfrom(7)and(5),soitholdseveninZ\mathrm{Z}. AnothervariantisboundedZermelosettheory(BZBZ),whichislikeZ\mathrm{Z}butwithonlyBoundedSeparation;thisisofinteresttocategorytheoristsbecauseBZCBZCisequivalenttoETCS. Constructiveversions Seealsoconstructivesettheory. Themostwell-knownfoundationsforconstructivemathematicsthroughmaterialsettheoryarePeterAczel'sconstructiveZermelo–Fraenkelsettheory(CZFCZF)andJohnMyhill'sintuitionisticZermelo–Fraenkelsettheory(IZFIZF). CZFCZFusesaxioms(1–8)and(10),usuallyweakforms,inintuitionisticlogic;specifically,itusesBoundedSeparationfor(5),StrongCollectionfor(6),andanintermediate(SubsetCollection)formof(7).IZFIZFissimliar,butitusesFullSeparationfor(5)andthefullstrengthof(7);Myhill'soriginalversionusesonlyReplacementfor(6),butCollection(equivalenttoStrongCollectionusingFullSeparation)isstandardnow. Notethatadding(9)toIZFIZFimpliesexcludedmiddleandsomakesZFCZFC.However,someauthorsliketoincludeaweakformof(9),suchasdependentchoiceorCOSHEP. MikeShulman'ssurveyofmaterialandstructuralsettheories(Shulman2018)takesCPZ↺−CPZ^{\circlearrowleft-}asthemostbasicform;itconsistsof(1–4)andtheweakestversions(BoundedSeparationandWeakReplacement)of(5&6)inintuitionisticlogic.Adding(10)givesCPZ−CPZ^{-},adding(8)givesCPZ↺CPZ^{\circlearrowleft},andaddingbothgivesCPZCPZ,constructivepre-Zermelosettheory.Shulmangivessystematicnotationforotherversions,whichincludesthose(constructiveandclassical)listedabove. Myhillhasanotherversion,constructivesettheory(CSTCST);thisconsistsof(1–4),BoundedSeparationfor(5),Replacementfor(6),theweakest(Exponentiation)formof(7),(8),andaweakversion(DependentChoice)of(9).Italsousesavariationofthelanguage,withurelementsfornaturalnumbers;notethattheexistenceofω\omegastillfollowsusing(6).ThisclassifiesCSTCSTasCΠZF↺+DC\mathrm{C}{\Pi}ZF^{\circlearrowleft}+DCinShulman'ssystemifoneignorestheuseofurelementsandstrengthensReplacementtoStrongCollection. Classtheories Morse–Kelleyclasstheory(MKMK)featuresbothsetsandproperclasses.Thisallowsittostrengthen(5)toFullComprehension,sinceϕ\phicanincludequantificationoverclasses;thesameholdsin(6)and(10),althoughthisdoesnotaddanyadditionalstrength. VonNeumann–Bernays–Gödelclasstheory(NBGNBG)usesthesamelanguageasMKMK,butitstillusesonlyFullSeparationfor(5).ThismakesitconservativeoverZFCZFCandalsoallowsforafiniteaxiomatisation;wereplacetheformulasin(5)and(6)withclasses,andaddsomespecialcasesof(5)forsubclasses,oneforeachlogicalconnective.(ItisprovablethatplainZFZF,ifconsistent,cannotbefinitelyaxiomatizedinitsownfirst-orderlanguage;NBGNBGescapesthisconclusionbyextendingthelanguagewiththenotionofclasses.) OnecanalsoreworkalloftheweakversionsofsettheoryaboveintoaclasstheorylikeNBGNBG,whichisconservativeovertheoriginalsettheory.OnecanalsouseaclasstheorylikeMKMK,althoughthisdestroysanyattempttouseaweakversionof(5). Largecardinals OneoftenaddsaxiomsforlargecardinalstoZFCZFC.Even(8)canbeseenasalargecardinalaxiom,statingthatℵ0\aleph_0exists.Theseadditionalaxiomsaremostcommonlystudiedinthecontextofamaterialsettheory,buttheyworkjustaswellinastructuralsettheory. Notethataddinganinaccessiblecardinal(commonlyconsideredthesmallestsortoflargecardinal)toZFCZFCisalreadystrongerthanMKMK:givenaninaccessiblecardinalκ\kappa,onecaninterpretthesetsandclassesinMKMKasthesetsinVκV_\kappaandVκ+1V_{\kappa+1},respectively.Ofcourse,onecanaddalargecardinaltoMKMKtogetsomethingevenstronger. Itisoftenconvenienttoassumethatonealwayshasmorelargecardinalswhennecessary.Youcannotsaythisinanabsolutesense,butyoucanadopttheaxiomthateverysetbelongstosomeGrothendieckuniverse.AddingthisaxiomtoZFCZFCmakesTarski–Grothendiecksettheory(TGTG).Thisisnotthelastword,however;youcanmakeitstrongerbyaddingclassesinthestyleofMKMK,orevenaddingacardinalwhichisinaccessiblefromTGTG.Infact,wehavebarelybegunthelargecardinalsknowntomodernsettheory! Miscellaneousvariations Theaxiomofconstructibility,usuallynotated“V=LV=L”,isaverystrongaxiomthatcanbeaddedtoZFZF;itassertsthatallsetsbelongtotheconstructibleuniverseLL,whichcanbe“constructed”inadefinablewaythroughatransfiniteprocedure.Thisnotionof“constructible”shouldnotbeconfusedwithconstructivemathematics;forinstance,V=LV=Limpliestheaxiomofchoiceandthusalsoexcludedmiddleevenwithintuitionisticlogic.V=LV=Lalsoimpliesthegeneralizedcontinuumhypothesis(GCHGCH),whichishowGödeloriginallyprovedthatGCHGCHwasconsistentwithZFCZFC.However,itisincompatiblewiththesufficientlylargecardinals:theexistenceofameasurablecardinalimpliesthatV≠LV\neqL.MostcontemporarysettheoristsdonotregardV=LV=Laspotentially“true.” Theaxiomofdeterminacy(ADAD)isanotheraxiomthatcanbeaddedtoZFZF;itassertsthatacertainclassofinfinitegame?sisdetermined(oneplayerortheotherhasawinningstrategy).ADADisinconsistentwiththefullaxiomofchoice,althoughitisconsistentwithdependentchoice.AweakerformofADADcalled“projectivedeterminacy”isconsistentwithACACandisequiconsistentwithcertainlargecardinalassertions. TheGCHGCHitself,oritsnegation,couldalsoberegardedasanadditionalaxiomthatcanbeaddedtoZFZF.Manysettheoristswouldprefertofindamore“natural”axiom,suchasalargecardinalaxiom,whichimplieseitherGCHGCHoritsnegation.Theequiconsistencyofprojectivedeterminacywithalargecardinalassertioncanberegardedasastepinthisdirection. Relationtostructuralsettheories ThestructuralsettheoryETCSisequivalenttoBZCBZCinthatthecategoryofsetsinthattheorysatisfiesETCSETCSwhilethewell-foundedpuresetsinETCSETCSsatisfyBZCBZC.Thisuses(1–4),BoundedSeparationfor(5),and(7–10),withWeakReplacementfollowingfrom(5)and(7). MikeShulman'sSEARCisequivalenttoZFCZFCinthesameway.SEARSEAR,whichlackstheaxiomofchoice,isequivalenttoZF↺ZF^{\circlearrowleft},whichisZFZFwithout(10),inaweakersenseofequivalence. Shulman2018isanextensivesurveyofvariationsofZFCZFCandvariationsofETCSETCS(mostlyweakones),showinghowthesecorrespond. Relatedentries materialsettheory algebraicsettheory cumulativehierarchy References Zermelo’saxiomatisationgrewoutofhisreflectionsonhisproofsofthewell-orderingtheorem(1904/08)andwaspublishedin ErnstZermelo,UntersuchungenüberdieGrundlagenderMengenlehreI,Math.Ann.65(1908)pp.261-81.(gdz) EnglishversionsoftheearlykeytextsonsettheorybyZermelo,Fraenkel,Skolem,vonNeumannetal.canbefoundin J.vanHeijenoort,FromFregetoGödel-ASourcebookinMathematicalLogic1879-1931,HarvardUP1967. TherearemanytextswhichdiscussZFCandthecumulativehierarchyfromatraditional(material)set-theoreticperspective.Agoodexampleis KennethKunen,SetTheory:AnIntroductiontoIndependenceProofs,StudiesinLogicandtheFoundationsofMathematicsVol.102(2006),Elsevier. AclassificationofaxiomsofvariantsofZFCZFC,withaneyetowardscorrespondingstructuralsettheories,is MichaelShulman(2018).Comparingmaterialandstructuralsettheories.arXiv:1808.05204. LastrevisedonFebruary6,2021at20:21:31. Seethehistoryofthispageforalistofallcontributionstoit. EditDiscussPreviousrevisionChangesfrompreviousrevisionHistory(40revisions) Cite Print Source
延伸文章資訊
- 1Zermelo–Fraenkel set theory - Wikipedia
Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands ...
- 2Zermelo-Fraenkel Axioms -- from Wolfram MathWorld
The system of axioms 1-8 is called Zermelo-Fraenkel set theory, denoted "ZF." The system of axiom...
- 3ZFC in nLab
Axioms
- 4Set Theory - Stanford Encyclopedia of Philosophy
One can prove in ZFC—and the use of the AC is necessary—that there are non-determined sets. Thus,...
- 5策梅洛-弗蘭克爾集合論- 維基百科
策梅洛-弗蘭克爾集合論(英語:Zermelo-Fraenkel Set Theory),含選擇公理時常簡寫為ZFC,是在數學基礎中最常用形式的公理化集合論,不含選擇公理的則簡寫為ZF。