ZFC in nLab
文章推薦指數: 80 %
Axioms nLab ZFC SkiptheNavigationLinks| HomePage| AllPages| LatestRevisions| Discussthispage| Contents Context Foundations foundations Thebasisofitall mathematicallogic first-orderlogic typetheory,homotopytypetheory settheory materialsettheory ZFC ZFA structuralsettheory ETCS SEAR universe Foundationalaxioms foundationalaxiom basicconstructions: axiomofcartesianproducts axiomofdisjointunions axiomoftheemptyset axiomoffullness axiomoffunctionsets axiomofpowersets axiomofquotientsets materialaxioms: axiomofextensionality axiomoffoundation axiomofanti-foundation Mostowski'saxiom axiomofpairing axiomoftransitiveclosure axiomofunion structuralaxioms: axiomofmaterialization axiomsofchoice: axiomofchoice axiomofcountablechoice axiomofdependentchoice axiomofexcludedmiddle axiomofexistence axiomofmultiplechoice Markov'saxiom presentationaxiom smallcardinalityselectionaxiom axiomofsmallviolationsofchoice axiomofweaklyinitialsetsofcovers Whitehead'sprinciple largecardinalaxioms: axiomofinfinity axiomofuniverses regularextensionaxiom inaccessiblecardinal measurablecardinal elementaryembedding supercompactcardinal Vopěnka'sprinciple strongaxioms axiomofseparation axiomofreplacement further reflectionprinciple Removingaxioms constructivemathematics predicativemathematics Editthissidebar Contents Idea History Axioms Variations Constructiveversions Classtheories Largecardinals Miscellaneousvariations Relationtostructuralsettheories Relatedentries References Idea ThemostcommonlyacceptedstandardfoundationofmathematicstodayisamaterialsettheorycommonlyknownasZermelo–FraenkelsettheorywiththeaxiomofchoiceorZFCZFCforshort.Therearemanyvariationsonthattheory(includingconstructiveandclass-basedversions,whicharealsodiscussedhere). AccompanyingZFC,especiallytakingintoaccounttheaxiomoffoundation,isapicture(or‘ontology’)ofmaterialsetsformingacumulativehierarchyorganizedbyanordinal-valuedrankfunction.Thispicture(sometimesreferredtoasthe‘iterativeconception’)considerssetsasgeneratedbystartingatbottomwiththeemptysetandbuildingtohigherranksbyapplyingapowersetoperationtogettoanextsuccessorordinalrank,andtakingunionstogettolimitordinalranks.Thisiterativeconceptionfindsalternativeexpressioninalgebraicsettheory. History ThefirstversionwasdevelopedbyErnstZermeloin1908;in1922,AbrahamFraenkelandThoralfSkolemindependentlyproposedaprecisefirst-orderversionwiththeaxiomofreplacement;vonNeumannaddedtheaxiomoffoundationin1925.Alloftheseversionsincludedtheaxiomofchoice,butthiswasconsideredcontroversialforsometime;onehasmerelyZFZFifitistakenout. ZFCZFCissimilartotheclasstheoriesNBG(duetoJohnvonNeumann,PaulBernays,andKurtGödel)andMK(duetoAnthonyMorseandJohnKelley).Theformerisaconservative,finitelyaxiomatisableextensionofZFCZFC,whilethelatterisstrongerandcannotbefinitelyaxiomatised(althoughaconservativeextensioninvolvingmeta-classescouldbe). Contemporarysettheoristsoftenacceptadditionallargecardinalaxioms,whichcangreatlyincreasethestrengthofZFCZFC,farbeyondevenMKMK.Otheradditionalaxiomswhicharesometimesaddedaretheaxiomofdeterminacy(orvariousweakerversionsofit)ortheaxiomofconstructibility.TherearealsoweakervariantsofZFCZFC,especiallyforconstructiveandpredicativemathematics.Thentherearealternativesonadifferentbasis,notablyNFU(averyimpredicativematerialsettheorywithasetofallsets)andETCS(astructuralsettheory). (Thesourceforthishistory,especiallythedates,ismostlytheEnglishWikipedia.) Axioms ZFCZFCisasimplytypedfirst-ordermaterialsettheory,withasingletypeVVcalledthecumulativehierarchyandabinarymembershippredicate∈\inonVV.EverytermofVVinstandardZFCZFCisapureset,whichwewillcallsimplyaset.Asetaaissaidtobelongto,bein,beamemberof,orbeanelementofasetbbifa∈ba\inb,andsetbbissaidtohavethememberaa. TherearealsovariationsofZFCwithnon-settermssuchasurelementsandclasses.Urelementsmaybedistinguishedfromsetsandclassessincetheyhavenoelements(althoughtheemptysetalsohasnoelements);setsareusuallythoseclassesthatarethemselveselements(members)ofsets.Urelementsarealsocalledatoms,andZFZFwithatomsincludedissometimescalledZFAorZFUZFU. Extensionality:Iftwosetshavethesamemembers,thentheyareequalandthemselvesmembersofthesamesets.Seeaxiomofextensionalityforvariations,suchaswhetherthisistakenasadefinitionoranaxiomatisationofequalityofsets,andhowtheconditionmightbestrengthenedif(10)isleftout. NullSet:Thereisanemptyset:aset∅\emptywithnoelements.By(1),itfollowsthatthissetisunique;byeventheweakestversionof(5),itisenoughtostatetheexistenceofsomeset.(Analogousremarksapplytoaxioms(3),(4),(6),(7),and(8),exceptwhen(5)isomittedand(4)and(6)areneededtoderiveit.) Pairing:Ifaaandbbaresets,thenthereisaset{a,b}\{a,b\},theunorderedpairingofaaandbb,whoseelementsarepreciselythosesetsequaltoaaorbb.Betweenthem,(2)and(3)formanullary/binarypair;theunaryversionfollowsfrom(3),since{a}={a,a}\{a\}=\{a,a\}by(1).Thehigherfinitaryversionsrelyalsoon(4)(with{a,b,c}={a}∪{b,c}\{a,b,c\}=\{a\}\cup\{b,c\},etc),sotheyshouldprobablybestatedexplicitlyasanaxiomscheme?if(4)isomitted(butnobodyseemstodothat). Union:If𝒞\mathcal{C}isaset,thenthereisaset⋃𝒞\bigcup\mathcal{C},theunionof𝒞\mathcal{C},whoseelementsarepreciselytheelementsoftheelementsof𝒞\mathcal{C}.ItisnormaltowriteA∪BA\cupBfor⋃{A,B}\bigcup\{A,B\},etc,A∪B∪CA\cupB\cupCfor⋃{A,B,C}\bigcup\{A,B,C\},etc.Notethat⋃{A}=A\bigcup\{A\}=Aand⋃∅=∅\bigcup\empty=\empty(using(1)toprovetheseresults),sonospecialnotationisneededforthese. Separation/Specification/Comprehension:Givenanypredicateϕ[x]\phi[x]inthelanguageofsettheorywiththechosenfreevariablexxoftypeVV,ifUUisaset,thenthereisaset{x∈U|ϕ[x]}\{x\inU\;|\;\phi[x]\},thesubsetofUUgivenbyϕ\phi,whoseelementsarepreciselythoseelementsxxofUUsuchthatϕ[x]\phi[x]holds.Therearemanyvariations,fromBoundedSeparationtoFullComprehension,whichweshouldprobablydescribeataxiomofseparation;theversionlistedhereisFullSeparation.Thisisanaxiomscheme?,butitcanbemadeasingleaxiominNBGNBG(butnotcompletelyinMKMK).Notethat(5)followsfrom(4)and(6)usingclassicallogic,soitisoftenleftout,butitmustbeincludedinintuitionisticvariations,variationswhere(6)isomittedorweakened(orwhere(4)isomittedorweakened,inprinciple,althoughthatneverhappensinpractice),andvariationswhere(5)itselfisstrengthened. Replacement/Collection:Givenapredicateψ[x,Y]\psi[x,Y]withthechosenfreevariablesxxandYYoftypeVV,ifUUisasetandifforeveryxxinUUthereisauniqueYYsuchthatψ[x,Y]\psi[x,Y]holds,thenthereisset{ιY.ψ[x,Y]|x∈U}\{\iota\,Y.\;\psi[x,Y]\;|\;x\inU\},theimageofUUunderψ\psi,whoseelementsarepreciselythosesetsYYsuchthatthereisanelementxxofUUsuchthatψ[x,Y]\psi[x,Y]holds;ifΨ[x]\Psi[x]isadefinedterm,thenwewrite{Ψ[x]|x∈U}\{\Psi[x]\;|\;x\inU\}for{ιY.Y=Ψ[x]|x∈U}\{\iota\,Y.\;Y=\Psi[x]\;|\;x\inU\}.Againtherearemanyvariations,fromWeakReplacementtoStrongCollection,whichweshouldprobablydescribeataxiomofreplacement;theonedescribedhereisReplacement.Thisisalsoanaxiomscheme?,butitcanbemadeintoasingleaxiominbothNBGNBGandMKMK.Onecouldcombinethiswith(5)toproduce{ιY.ψ[x,Y]|x∈U|ϕ[x]}\{\iota\,Y.\;\psi[x,Y]\;|\;x\inU\;|\;\phi[x]\},butnobodyseemstodothis. PowerSets:IfUUisaset,thenthereisaset𝒫U\mathcal{P}U,thepowersetofUU,whoseelementsarepreciselythesubsetsofUU,thatisthesetsAAwhoseelementsareallelementsofUU.Whenusingintuitionisticlogic,itispossibletoacceptonlyaweakversionofthis,suchasSubsetCollectionor(evenweaker)Exponentiation.Butinclassicallogic,PowerSetsfollowsfromExponentiationandtheweakestformof(5). Infinity:Thereisasetω\omegaoffiniteordinalsaspuresets.Normallyonestatesthat∅∈ω\empty\in\omegaanda∪{a}∈ωa\cup\{a\}\in\omegawhenevera∈ωa\in\omega,althoughvariationsarepossible.Usinganybuttheweakestversionof(6),itisenoughtostatethatthereisasetsatisfyingPeano'saxiomsofnaturalnumbers,orevenanyDedekind-infiniteset.Itseemstobeuncommontoincorporate(2)into(8),butinprinciple(8)implies(2). Choice:If𝒞\mathcal{C}isaset,eachofwhoseelementshasanelement,thenthereisasetwithexactlyoneelementfromeachelementof𝒞\mathcal{C}.Notethatthissetisnotunique,norcanweconstructacanonicalversionwhichis,sowedonotgiveitanynameornotation.ThisversionisthesimplesttostateinthelanguageofZFCZFC;seeaxiomofchoiceforfurtherdiscussionandweakversions.Itispossibletoincorporate(9)into(5)or(6),butthisseemstoberare. Foundation/Regularity/Induction:Givenaformulaϕ\phiwithachosenfreevariableXXoftypeVV,ifϕ\phiholdswheneverϕ[a/X]\phi[a/X]holdsforeverya∈Xa\inX,thenϕ\phiholdsabsolutely.Forvariations(includingtheaxiomofanti-foundation),seeaxiomoffoundation.Thisaxiomscheme?canbemadeintoasingleaxiomeveninZFCZFCitself(althoughnotinversionswithintuitionisticlogic;inthatcaseitcanbemadeasingleaxiomonlyinaclasstheory). Variations Zermelo'soriginalversionconsistsofaxioms(1–5)and(7–9),inasomewhatimpreciseform(whichaffectstheinterpretationof5)ofhigher-orderclassicallogic. ThemodernZFZFconsistsof(1–8)and(10),usingfirst-orderclassicallogic,thestrongestformof(6)(thatis,StrongCollection,althoughthestandardReplacementissufficientwithclassicallogic),andthestrongestformof(5)possibleusingonlysetsandnotclasses(FullSeparation).SinceFullSeparationfollowsfromReplacementwithclassicallogic,itisoftenomittedfromthelistofaxioms. ZFCZFCadds(9)andisthusthestrongestversionwithoutclassesoradditionalaxioms.TheversionoriginallyformulatedbyFraenkelandSkolemdidnotinclude(10),althoughthethreefoundersalleventuallyacceptedit. ItiscommontotakeZermelosettheory(Z\mathrm{Z})tobeZFZFwithout(6),althoughZermeloneveracceptedthefirst-orderformulation;notethattheweakestform(WeakReplacement)of(6)followsfrom(7)and(5),soitholdseveninZ\mathrm{Z}. AnothervariantisboundedZermelosettheory(BZBZ),whichislikeZ\mathrm{Z}butwithonlyBoundedSeparation;thisisofinteresttocategorytheoristsbecauseBZCBZCisequivalenttoETCS. Constructiveversions Seealsoconstructivesettheory. Themostwell-knownfoundationsforconstructivemathematicsthroughmaterialsettheoryarePeterAczel'sconstructiveZermelo–Fraenkelsettheory(CZFCZF)andJohnMyhill'sintuitionisticZermelo–Fraenkelsettheory(IZFIZF). CZFCZFusesaxioms(1–8)and(10),usuallyweakforms,inintuitionisticlogic;specifically,itusesBoundedSeparationfor(5),StrongCollectionfor(6),andanintermediate(SubsetCollection)formof(7).IZFIZFissimliar,butitusesFullSeparationfor(5)andthefullstrengthof(7);Myhill'soriginalversionusesonlyReplacementfor(6),butCollection(equivalenttoStrongCollectionusingFullSeparation)isstandardnow. Notethatadding(9)toIZFIZFimpliesexcludedmiddleandsomakesZFCZFC.However,someauthorsliketoincludeaweakformof(9),suchasdependentchoiceorCOSHEP. MikeShulman'ssurveyofmaterialandstructuralsettheories(Shulman2018)takesCPZ↺−CPZ^{\circlearrowleft-}asthemostbasicform;itconsistsof(1–4)andtheweakestversions(BoundedSeparationandWeakReplacement)of(5&6)inintuitionisticlogic.Adding(10)givesCPZ−CPZ^{-},adding(8)givesCPZ↺CPZ^{\circlearrowleft},andaddingbothgivesCPZCPZ,constructivepre-Zermelosettheory.Shulmangivessystematicnotationforotherversions,whichincludesthose(constructiveandclassical)listedabove. Myhillhasanotherversion,constructivesettheory(CSTCST);thisconsistsof(1–4),BoundedSeparationfor(5),Replacementfor(6),theweakest(Exponentiation)formof(7),(8),andaweakversion(DependentChoice)of(9).Italsousesavariationofthelanguage,withurelementsfornaturalnumbers;notethattheexistenceofω\omegastillfollowsusing(6).ThisclassifiesCSTCSTasCΠZF↺+DC\mathrm{C}{\Pi}ZF^{\circlearrowleft}+DCinShulman'ssystemifoneignorestheuseofurelementsandstrengthensReplacementtoStrongCollection. Classtheories Morse–Kelleyclasstheory(MKMK)featuresbothsetsandproperclasses.Thisallowsittostrengthen(5)toFullComprehension,sinceϕ\phicanincludequantificationoverclasses;thesameholdsin(6)and(10),althoughthisdoesnotaddanyadditionalstrength. VonNeumann–Bernays–Gödelclasstheory(NBGNBG)usesthesamelanguageasMKMK,butitstillusesonlyFullSeparationfor(5).ThismakesitconservativeoverZFCZFCandalsoallowsforafiniteaxiomatisation;wereplacetheformulasin(5)and(6)withclasses,andaddsomespecialcasesof(5)forsubclasses,oneforeachlogicalconnective.(ItisprovablethatplainZFZF,ifconsistent,cannotbefinitelyaxiomatizedinitsownfirst-orderlanguage;NBGNBGescapesthisconclusionbyextendingthelanguagewiththenotionofclasses.) OnecanalsoreworkalloftheweakversionsofsettheoryaboveintoaclasstheorylikeNBGNBG,whichisconservativeovertheoriginalsettheory.OnecanalsouseaclasstheorylikeMKMK,althoughthisdestroysanyattempttouseaweakversionof(5). Largecardinals OneoftenaddsaxiomsforlargecardinalstoZFCZFC.Even(8)canbeseenasalargecardinalaxiom,statingthatℵ0\aleph_0exists.Theseadditionalaxiomsaremostcommonlystudiedinthecontextofamaterialsettheory,buttheyworkjustaswellinastructuralsettheory. Notethataddinganinaccessiblecardinal(commonlyconsideredthesmallestsortoflargecardinal)toZFCZFCisalreadystrongerthanMKMK:givenaninaccessiblecardinalκ\kappa,onecaninterpretthesetsandclassesinMKMKasthesetsinVκV_\kappaandVκ+1V_{\kappa+1},respectively.Ofcourse,onecanaddalargecardinaltoMKMKtogetsomethingevenstronger. Itisoftenconvenienttoassumethatonealwayshasmorelargecardinalswhennecessary.Youcannotsaythisinanabsolutesense,butyoucanadopttheaxiomthateverysetbelongstosomeGrothendieckuniverse.AddingthisaxiomtoZFCZFCmakesTarski–Grothendiecksettheory(TGTG).Thisisnotthelastword,however;youcanmakeitstrongerbyaddingclassesinthestyleofMKMK,orevenaddingacardinalwhichisinaccessiblefromTGTG.Infact,wehavebarelybegunthelargecardinalsknowntomodernsettheory! Miscellaneousvariations Theaxiomofconstructibility,usuallynotated“V=LV=L”,isaverystrongaxiomthatcanbeaddedtoZFZF;itassertsthatallsetsbelongtotheconstructibleuniverseLL,whichcanbe“constructed”inadefinablewaythroughatransfiniteprocedure.Thisnotionof“constructible”shouldnotbeconfusedwithconstructivemathematics;forinstance,V=LV=Limpliestheaxiomofchoiceandthusalsoexcludedmiddleevenwithintuitionisticlogic.V=LV=Lalsoimpliesthegeneralizedcontinuumhypothesis(GCHGCH),whichishowGödeloriginallyprovedthatGCHGCHwasconsistentwithZFCZFC.However,itisincompatiblewiththesufficientlylargecardinals:theexistenceofameasurablecardinalimpliesthatV≠LV\neqL.MostcontemporarysettheoristsdonotregardV=LV=Laspotentially“true.” Theaxiomofdeterminacy(ADAD)isanotheraxiomthatcanbeaddedtoZFZF;itassertsthatacertainclassofinfinitegame?sisdetermined(oneplayerortheotherhasawinningstrategy).ADADisinconsistentwiththefullaxiomofchoice,althoughitisconsistentwithdependentchoice.AweakerformofADADcalled“projectivedeterminacy”isconsistentwithACACandisequiconsistentwithcertainlargecardinalassertions. TheGCHGCHitself,oritsnegation,couldalsoberegardedasanadditionalaxiomthatcanbeaddedtoZFZF.Manysettheoristswouldprefertofindamore“natural”axiom,suchasalargecardinalaxiom,whichimplieseitherGCHGCHoritsnegation.Theequiconsistencyofprojectivedeterminacywithalargecardinalassertioncanberegardedasastepinthisdirection. Relationtostructuralsettheories ThestructuralsettheoryETCSisequivalenttoBZCBZCinthatthecategoryofsetsinthattheorysatisfiesETCSETCSwhilethewell-foundedpuresetsinETCSETCSsatisfyBZCBZC.Thisuses(1–4),BoundedSeparationfor(5),and(7–10),withWeakReplacementfollowingfrom(5)and(7). MikeShulman'sSEARCisequivalenttoZFCZFCinthesameway.SEARSEAR,whichlackstheaxiomofchoice,isequivalenttoZF↺ZF^{\circlearrowleft},whichisZFZFwithout(10),inaweakersenseofequivalence. Shulman2018isanextensivesurveyofvariationsofZFCZFCandvariationsofETCSETCS(mostlyweakones),showinghowthesecorrespond. Relatedentries materialsettheory algebraicsettheory cumulativehierarchy References Zermelo’saxiomatisationgrewoutofhisreflectionsonhisproofsofthewell-orderingtheorem(1904/08)andwaspublishedin ErnstZermelo,UntersuchungenüberdieGrundlagenderMengenlehreI,Math.Ann.65(1908)pp.261-81.(gdz) EnglishversionsoftheearlykeytextsonsettheorybyZermelo,Fraenkel,Skolem,vonNeumannetal.canbefoundin J.vanHeijenoort,FromFregetoGödel-ASourcebookinMathematicalLogic1879-1931,HarvardUP1967. TherearemanytextswhichdiscussZFCandthecumulativehierarchyfromatraditional(material)set-theoreticperspective.Agoodexampleis KennethKunen,SetTheory:AnIntroductiontoIndependenceProofs,StudiesinLogicandtheFoundationsofMathematicsVol.102(2006),Elsevier. AclassificationofaxiomsofvariantsofZFCZFC,withaneyetowardscorrespondingstructuralsettheories,is MichaelShulman(2018).Comparingmaterialandstructuralsettheories.arXiv:1808.05204. LastrevisedonFebruary6,2021at20:21:31. Seethehistoryofthispageforalistofallcontributionstoit. EditDiscussPreviousrevisionChangesfrompreviousrevisionHistory(40revisions) Cite Print Source
延伸文章資訊
- 1ZFC: Why? What? And, how?. Naïve set theory ...
That's it! Zermelo-Fraenkel set theory with the axiom of choice, ZFC, consists of the 10 axioms w...
- 2Zermelo–Fraenkel set theory - Wikipedia
Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands ...
- 3ZFC | Brilliant Math & Science Wiki
ZFC, or Zermelo-Fraenkel set theory, is an axiomatic system used to formally define set theory (a...
- 4ZFC in nLab
Axioms
- 5Set Theory - Stanford Encyclopedia of Philosophy
One can prove in ZFC—and the use of the AC is necessary—that there are non-determined sets. Thus,...