利用單通道腦電波進行自動睡眠分期之快速動眼期睡眠剝奪
文章推薦指數: 80 %
本論文目的為發展以單通道腦電波為分析訊號來發展即時自動睡眠分期系統,並利用此系統進行快速動眼期之睡眠剝奪實驗。
醫學文獻顯示,針對憂鬱症的睡眠腦波, ...
資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽|
首頁|
關於本站|
聯絡我們|
國圖首頁|
常見問題|
操作說明
English
|FB專頁
|Mobile
免費會員
登入|
註冊
功能切換導覽列
(167.99.71.17)您好!臺灣時間:2022/06/2505:18
字體大小:
:::
詳目顯示
recordfocus
第1筆/
共1筆
/1頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QRCode
本論文永久網址: 複製永久網址Twitter研究生:李郁萱研究生(外文):Lee,Yu-Shiuan論文名稱:利用單通道腦電波進行自動睡眠分期之快速動眼期睡眠剝奪論文名稱(外文):AutomatedSleepStagingusingSingleEEGChannelforREMSleepDeprivation指導教授:陳永昇指導教授(外文):Chen,Yong-Sheng學位類別:碩士校院名稱:國立交通大學系所名稱:生醫工程研究所學門:工程學門學類:生醫工程學類論文種類:學術論文畢業學年度:97語文別:英文論文頁數:61中文關鍵詞:腦波、自動分期、快速動眼期、非快速動眼期、睡眠剝奪、多重睡眠訊號分析圖、睡眠分期圖、憂鬱症外文關鍵詞:electroencephalogram(EEG)、automatedsleepstaging、rapideyemovement(REM)、non-rapideyemovement(NREM)、sleepdeprivation(SD)、polysomnogram(PSG)、sleephypnogram、depression相關次數:
被引用:1點閱:691評分:下載:158書目收藏:2
本論文目的為發展以單通道腦電波為分析訊號來發展即時自動睡眠分期系統,並利用此系統進行快速動眼期之睡眠剝奪實驗。
醫學文獻顯示,針對憂鬱症的睡眠腦波,其中一項特徵為憂鬱症患者的快速動眼期發生頻率會比正常人頻繁,因此在他們所服用的抗憂鬱劑具有抑制快速動眼期的效果。
相關醫學文獻指出,服用抗憂鬱藥物和快速動眼期睡眠剝奪的機制是相同的,在過去有少量針對憂鬱症患者進行睡眠剝奪的實驗,其實驗結果也證實了睡眠剝奪對於內生型憂鬱症(endogenousdepression)的改善是具有一定效果的。
由於在進行睡眠剝奪的實驗中,睡眠分析師必須整夜監測受試者的睡眠狀態,利用人工方式判讀睡眠分期,並在受試者的睡眠狀態處於快速動眼期時將之吵醒。
但由於費時費力的缺點,過去僅有少數研究提出睡眠剝奪實驗的治療方式對於憂鬱症治療的效果。
因此,本論文欲發展以單通道腦電波為基礎的即時自動睡眠分期系統,以即時偵測到快速動眼期並對受測者進行睡眠剝奪。
在此系統中,我們利用支援向量機作為分類器,對擷取之腦電波特徵做分類。
我們利用二十五位受測者的睡眠腦波作為挑選腦電波特徵的測試資料,在嘗試過各種不同的特徵擷取方式後,採用可以得到最佳睡眠分期準確度的特徵擷取方法。
利用本論文所建構之自動睡眠分期系統,針對二十五位不同受測者,平均可達到百分之八十五的分期準確度。
我們對此自動睡眠分期系統進一步發展成即時自動睡眠分期系統,一旦偵測到快速動眼期,系統即會自動發出聲音以剝奪受測者之快速動眼期的睡眠。
在睡眠剝奪的實驗中,我們以六位健康狀況良好,無失眠狀況及憂鬱傾向的受試者來進行本實驗。
本實驗目的在於驗證我們所設計的自動睡眠剝奪機制是否能夠達到一定的睡眠剝奪效果,未來預期能運用此系統以進行憂鬱症患者的睡眠剝奪,並探討睡眠剝奪對於憂鬱症的療效。
Theobjectiveofthisstudyistodevelopanon-line automatedsleepstagingsystembasedonsingleEEGanalysistoassistREMsleepdeprivation.Polysomnographicsleepresearchhasdemonstratedthattheincreasedrapideyemovement(REM)densityisoneofthecharacteristicsofdepressedsleep.SomeexperimentswereconductedtoconfirmthatREMsleepdeprivation(REM-SD)foraperiodoftimeistherapeuticforendogenousdepressedpatients.However,becauseofitsintensivelaborrequirement,validityofthistherapyhasnotyetbeenassessedbyasufficientamountofdepressionpatients.Therefore,weproposetodevelopanautomatedsleepstagingsystemusingonlysingleEEGchanneltoachieveon-linedetectionforREMstateduringsleep.Foroursleepstagingsystem,itisbasedonthesupervisedclassificationmethodwithsupportvectormachine.InordertoselectthefeatureextractionmethodwhichcanachievethebestclassificationresultwithinsingleEEGchannel,wehaveimplementedsomefeatureextractionmethodsandtestedwith25sleeprecords.Featuresetsderivedfromdifferentfeatureextractionmethodwhichcanachievethebestclassificationaccuracyistheonewewilladoptedintheproposedsystem.Theaverageaccuracyofclassificationofall25recordscanachieve85%thatisfeasibletoREMsleepdeprivation.Afterthealgorithmofsleepstagingisestablished,weextendthesystemtoon-linestagingwhichcanoutputthescoringresultrightawayasevery30-secondepochisacquired.OncetheREMstateisdetectedbythesystem,thesystemwillmakeashrillsoundtodisturbthesubjectuntiltheREMsleepstateischangedtootherstates.SixhealthysubjectsenrolledinthisexperimentandhaveverifiedthefeasibilityoftheprocedureofREMsleepdeprivationassistingwiththeon-lineautomatedsleepstagingsystem.Theexperimentalresultsdemonstratethatouron-lineautomatedsleepstagingsystemisreliableandapplicableforon-lineREMsleepdeprivation.
ListofFiguresviiListofTablesix1Introduction11.1Motivation......................21.2SleepEEG......................31.3Sleepstaging....................51.3.1Polysomnography..................51.3.2RechtschaffenandKales(R&K)rules........61.3.3Necessityforautomatedsleepstaging.......111.4Sleepdeprivation..................111.5Thesisoverview...................122AutomatedSleepStaging152.1Introductiontoautomatedsleepstaging.......162.2Surveyofautomatedsleepstagingmethods......172.2.1Featureextractionmethod.............172.2.2Classificationmethod................192.3Thesisoverview...................203TheProposedMethods233.1Signalpreprocessing.................243.2Featureextraction..................243.3Classification....................263.4On-linesystemforREMsleepdeprivation.......294Experiments314.1Off-lineanalysis..................324.1.1Datapreparation..................324.1.2Experimentalresults...............324.2On-lineanalysis...................364.2.1Experimentsetup..................364.2.2Experimentalresults................395Discussions475.1Parametersearching.................485.2Problemsofautomatedstaging............495.2.1Reasonsforbadclassification...........495.2.2Comparedwithgeneralmodelandsubject-specificmodel.....525.3EffectonREM-SDwiththeproposedsystem......536ConclusionsandFutureWorks556.1Conclusions.....................566.2Futureworks....................56Bibliography59
[1]FlexerArthur,GruberGeorg,andDorffnerGeorg.Areliableprobabilisticsleepstagerbasedonasingleeegsignal.ArtificialIntelligenceinMedicine.[2]ChangChih-ChungandLinChih-Jen.Libsvm:alibraryforsupportvectormachines.2007.[3]Chih-ChungChangChih-Wei,HsuandLinChih-Jen.Apracticalguidetosupportvectorclassification.2008.[4]BerthomierChristian,DrouotXavier,StoicaMaria,Herman,BerthomierPierre,PradoJacques,Bokar-ThireDjibril,BenoitOdile,MattoutJ`er`emie,andd’OrthoMarie-Pia.Automaticanalysisofsingle-channelsleepeeg:Validationinhealthyindividuals.SLEEP,30(11),2007.[5]F.LopesdaSilva.Computer-assistedeegdiagnosis:Patternrecognitiontechniques.Electroencephalography,BasicPrinciples,ClinicalApplicationsandRelatedFields.,54,1987.[6]RiemannDieter,BergerMathias,andVoderholzerUlrich.Sleepanddepression-resultsfrompsychobiologicalstudies:anoverview.BiologicalPsychology,57,2001.[7]W.VogelGerald,BuffensteinA.,MinterK.,andHennesseyAnn.Drugeffectsonremsleepandonendogenousdepression.Neuroscience&BiobehavioralReviews,14,1990.[8]W.VogelGerald,A.Thurmond,P.Gibbons,andK.Sloan.Remsleepreductioneffectsondepressionsyndromes.ArchGenPsychiatry,32,1975.[9]GiedkeHennerandSchw‥arzlerFrank.Therapeuticuseofsleepdeprivationindepression.SleepMedicineReviews,6(5),2002.[10]B.Hjorth.Timedomaindescriptorsandtheirrelationstoaparticularmodelforgenerationofeegactivity.1975.[11]INTERNATIONALCOMPUTERSCIENCEINSTITUTE.SleepStageClassi?cationusingWaveletTransformandNeuralNetwork,1999.[12]H.H.Jasper.Reportsofthecommitteeonmethodsofclinicalexaminationinelectroencephalography.ElectroencephalographyandClinicalNeurophysiology,10,1958.[13]CafferelJennifer,JohnGibsonG.,PhilHarrisonJ.,J.Grif?thsClive,andJ.DrinnanMichael.Comparisonofmanualsleepstagingwithautomatedneuralnetwork-basedanalysisinclinicalpractice.InternationalFederationforMedicalandBiologicalEngineering,44,2006.[14]FellJ‥urgen,R‥oschkeJoachim,MannKlaus,andSch‥affnerCornelius.Discriminationofsleepstages:acomparisonbetweenspectralandnonlineareegmeasures.ElectroencephalographyandClinicalNeurophysiology,98,1996.[15]JobertMarc,TimerChristian,OiseauEric,andSchulzHarmut.Wavelets-anewtoolinsleepbiosignalanalysis.JournalofSleepResearch,3,1994.[16]W.MahowaldMarkandH.SchenckCarlos.Insightsfromstudyinghumansleepdisorders.Nature,437(27),2005.[17]A.CarskadonMaryandC.DementWilliam.Normalhumansleep:anoverview.Philadelphia:Saunders,1994.[18]B.RussoMichael.Sleepstagescoring.[19]Proceedingsofthe23rdAnnualEMBSInternationalConference.Istanbul,Turkey.AutomaticdetectionofsleepstagesusingtheEEG,2001.[20]Proceedingsofthe26thAnnualInternationalConferenceoftheIEEEEMBS.SanFrancisco,CA,USA.EEGfeatureextractionforclassi?cationofsleepstages,2004.[21]ProceedingsoftheInternationalConferenceonComputationalIntelligenceforModelling,ControlandAutomation,andInternationalConferenceIntelligentAgents,WebTechnologiesandInternetCommerceIEEEcomputersociety.AutomaticSleepStagingusingSupportVectorMachineswithPosteriorProbabilityEstimates,2005.[22]Proceedingsofworldacademyofscience,engineeringandtechnology.HarmonicparameterswithHHTandWavelettransformationforautomaticsleepstagesscoring,2007.[23]L.R.RabinerandB.H.Juang.Anintroductiontohiddenmarkovmodels.IEEEASSPMagazine,3(1),1986.[24]AcharyaU.Rajendra,FaustOliver,KannathalN.,ChuaTjiLeng,andLaxminarayanSwamy.Non-linearanalysisofeegsignalsatvarioussleepstages.ComputerMethodsandProgramsinBiomedicine,80(1):37–45,2005.[25]A.RechtschaffenandA.Kales.Amanualofstandardizedterminology,techniquesandscoringsystemforsleepstagesofhumansubjects.1968.[26]HimanenSari-LeenaandHasanJoel.Limitationsofrechtschaffenandkales.SleepMedicineReviews,4(2),2000.[27]PenzelThomasandConradtRegina.Computerbasedsleeprecordingandanalysis.SleepMedicineReviews,4(2),2000.[28]GeraldW.Vogel.Evidenceforremsleepdeprivationasthemechanismofactionofantidepressantdrugs.ProgressinNeuro-PsychopharmacologyandBiologicalPsychiatry,7,1983.
電子全文
國圖紙本論文
推文
網路書籤
推薦
評分
引用網址
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
以LabVIEW為基礎之視覺誘發電位分析與睡眠腦波分期整合系統
2.
失眠症之中西醫論述與關聯研究
3.
Scopolamine影響小鼠情緒行為的機制
4.
睡眠剝奪小鼠之睡眠及心率變異性變化
5.
應用於大鼠之法則式自動睡眠-清醒判讀方法
無相關期刊
1.
開發一套基於單通道睡眠生理訊號的自動睡眠判讀系統與其在睡眠環境控制上之應用
2.
單通道腦波睡眠品質評估系統
3.
基於睡眠階段轉換信賴度分析之人機合作睡眠判讀系統
4.
瘦素改善快速動眼期睡眠剝奪引起的認知功能障礙之機制探討
5.
睡眠障礙患者身體活動、睡眠品質與憂鬱程度之關係研究
6.
針對睡眠呼吸中止症患者探討非穿戴式技術測量睡眠呼吸運動之可行性
7.
在有無快速動眼期睡眠剝奪環境下比較冷壓力以及條件刺激對大鼠心血管反應的影響
8.
基於前額腦波訊號之自動化睡眠分期判讀系統
9.
使用不同組合的腦電圖、眼動圖及肌動圖訊號自動偵測快速動眼睡眠期
10.
居家睡眠評估系統-單通道腦波跟單通道眼動信號之應用
11.
睡眠教育對大學生的睡眠知識、睡眠型態及情緒的影響
12.
居家式睡眠活動行為監測平台與生理回饋智慧頭枕開發、驗證
13.
睡眠腦波電極位置替換之相關性驗證
14.
用碎形分析腦波來判別睡眠狀態
15.
為阻塞型睡眠呼吸中止症病患的篩選完成一套結合智慧型手機之可攜式睡眠監測系統
簡易查詢 |
進階查詢 |
熱門排行 |
我的研究室
延伸文章資訊
- 1憂鬱風險提高,也可能是失智、帕金森徵兆…睡覺時會踢腳
在整體睡眠中,約有25%屬於快速動眼期,在這段期間,大部分的肌肉會處於鬆弛狀態,但若是腦幹調節出現問題,則有可能讓身體隨著夢境動作,出現不自覺地踢 ...
- 2睡夢中拳打腳踢- 更恐是失智、帕金森氏症前兆 - 早安健康
- 3情感性精神疾患與睡眠「憂鬱的那些日子,我失眠了」 - 第一醫院
患者在躁症發作時會有明顯失眠症狀,對睡眠的需要降低,通常只要幾個小時的睡眠,卻非快速動眼期第三期(NREM Stage 3)減少無法熟睡,很就進入快速動眼 ...
- 4寬心無憂好入眠 - 台大醫院巴金森症醫療中心
近來有醫師研究發現,快速動眼期睡眠行. 為障礙(REM sleep behavior disorder,以下. 簡稱為RBD)可能是巴金森病的前兆。所謂. RBD是一種異常的睡眠狀態,常發生在5...
- 5憂鬱!日有所思動眼期當心噩夢連連
最近天氣陰雨綿綿,是憂鬱症與躁鬱症的好發期,患者除了白天活動的情緒不穩定,也可能延續到晚上的睡眠品質。 耕莘醫院精神科暨心理衛生中心主任楊聰財 ...